首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
The aim of this study was to characterize the molecular forms of acetylcholinesterase (AChE) associated with the synaptic basal lamina at the neuromuscular junction. The observations were made on the neuromuscular junctions of cutaneous pectoris muscles of frog, Rana pipiens, which are similar to junctions of most other vertebrates including mammals, but are especially convenient for experimentation. By measuring relative AChE activity in junctional and extrajunctional regions of muscles after selective inactivation of extracellular AChE with echothiophate, or of intracellular AChE with DFP and 2-PAM, we found that > 66% of the total AChE activity in the muscle was junction- specific, and that > 50% of the junction-specific AChE was on the cell surface. More than 80% of the cell surface AChE was solubilized in high ionic strength detergent-free buffer, indicating that most, if not all, was a component of the synaptic basal lamina. Sedimentation analysis of that fraction indicated that while asymmetric forms (A12, A8) were abundant, globular forms sedimenting at 4-6 S (G1 and G2), composed > 50% of the AChE. It was also found that when muscles were damaged in various ways that caused degeneration of axons and muscle fibers but left intact the basal lamina sheaths, the small globular forms persisted at the synaptic site for weeks after phagocytosis of cellular components; under certain damage conditions, the proportion of globular to asymmetric forms in the vacated basal lamina sheaths was as in normal junctions. While the asymmetric forms required high ionic strength for solubilization, the extracellular globular AChE could be extracted from the junctional regions of normal and damaged muscles by isotonic buffer. Some of the globular AChE appeared to be amphiphilic when examined in detergents, suggesting that it may form hydrophobic interactions, but most was non-amphiphilic consistent with the possibility that it forms weak electrostatic interactions. We conclude that the major form of AChE in frog synaptic basal lamina is globular and that its mode of association with the basal lamina differs from that of the asymmetric forms.  相似文献   

2.
The evolution of acetylcholinesterase (AChE) activity and AChE molecular form distribution were studied in slow-tonic anterior latissimus dorsi (ALD) and in fast-twitch posterior latissimus dorsi (PLD) muscles of chickens 2-18 days of age. In ALD as well as in PLD muscles, the AChE-specific activity increased transiently from day 2 to day 4; the activity then decreased more rapidly in PLD muscle. During this period asymmetric AChE forms decreased dramatically in ALD muscle and the globular forms increased. In PLD muscle, the most striking change was the decline in A8 form between days 2 and 18 of development. Denervation performed at day 2 delayed the normal decrease in AChE-specific activity in PLD muscle, whereas little change was observed in ALD muscle. Moreover, A forms in these two muscles were virtually absent 8 days after denervation. Direct electrical stimulation depressed the rise in AChE-specific activity in denervated PLD muscle and prevented the loss of the A forms. Furthermore, the different molecular forms varied according to the stimulus pattern. In ALD muscle, electrical stimulation failed to prevent the effect of denervation. This study emphasizes the differential response of denervated slow and fast muscles to electrical stimulation and stresses the importance of the frequency of stimulation in the regulation of AChE molecular forms in PLD muscle during development.  相似文献   

3.
The accumulation of acetylcholinesterase (AChE), the changes in AChE-specific activity and in AChE molecular form distribution were studied in slow-tonic anterior latissimus dorsi (ALD) and in fast-twitch posterior latissimus dorsi (PLD) muscles of the chick embryo. From stage 36 (day 11) to stage 42 (day 17) of Hamburger and Hamilton, the AChE-specific activity decreased, while the relative proportion of asymmetric A 12 and A 8 forms increased. Repetitive injection of curare resulted at stage 42 (day 17) in a decrease in AChE-specific activity, in the accumulation of the synaptic AChE and in the expression of AChE asymmetric forms. Electrical stimulation at a relatively high frequency (40 Hz) of curarized ALD and PLD muscles resulted in a normal increase in AChE asymmetric forms, whereas a lower frequency (5 Hz) resulted in a dominance of globular forms. Both patterns of stimulation partly prevented the loss in synaptic AChE accumulations. These results suggest that in chick embryo muscles, muscle activity and its rhythms are involved in the normal evolution of AChE.  相似文献   

4.
Acetylcholinesterase (AChE) molecular forms in denervated rat muscles, as revealed by velocity sedimentation in sucrose gradients, were examined from three aspects: possible differences between fast and slow muscles, response of junctional vs extrajunctional AChE, and early vs late effects of denervation. In the junctional region, the response of the asymmetric AChE forms to denervation is similar in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle: (a) specific activity of the A12 form decreases rapidly but some persists throughout and even increases after a few weeks; (b) an early and transient increase of the A4 AChE form lasting for a few weeks may be due to a block in the synthetic process of the A12 form. In the extrajunctional regions, major differences with regard to AChE regulation exist already between the normal EDL and SOL muscle. The extrajunctional asymmetric AChE forms are absent in the EDL because they became completely repressed during the first month after birth, but they persist in the SOL. Differences remain also after denervation and are, therefore, not directly due to different neural stimulation patterns in both muscles: (a) an early but transient increase of the G4 AChE occurs in the denervated EDL but not in the SOL; (b) no significant extrajunctional activity of the asymmetric AChE forms reappears in the EDL up till 7 wk after denervation. In the SOL, activity of the asymmetric AChE forms is decreased early after denervation but increases thereafter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Chicken muscle and retina, and rat muscle asymmetric acetylcholinesterase (AChE) species were bound to immobilized heparin at 0.4 M NaCl. Binding efficiency was between 50 and 80% for crude fraction I A-forms (AI; muscle), and nearly 100% for fraction II A-forms (AII; muscle and retina). Antibody-affinity-purified AI-forms (chicken) were, however, quantitatively bound to heparin-agarose gels, whereas diisopropylfluorophosphate-inactivated high-salt extracts partially prevented the binding of both AI and AII AChE forms, thus suggesting the presence in crude AI extracts of heparin-like molecules interfering with the tail-heparin interaction. All bound A-forms were progressively displaced from the heparin-agarose columns by increasing salt concentrations, with maximal release at about 0.6 M. They were also efficiently eluted by heparin solutions (1 mg/ml), other glycosaminoglycans being much less effective. Chicken globular AChE forms (G-forms, both low-salt-soluble and detergent-soluble) also bound to immobilized heparin in the absence of salt. Stepwise elution with increasing NaCl concentrations showed maximal release of G-forms at 0.15 M, all globular forms being totally displaced from the column at 0.4 M NaCl. Heparin (1 mg/ml) had the same eluting capacity as 0.4 M NaCl, whereas other glycosaminoglycans were only marginally effective. We conclude that the molecular forms of AChE in these vertebrate species interact with heparin, at salt concentrations that are characteristic for asymmetric and globular forms. Within the A and G molecular form groups, no differences were found in the behavior of the different fractions or subtypes, provided that the enzyme samples were free of interfering molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
All the current methods available for analyzing the acetylcholinesterase (AChE) molecular forms are time consuming and require the use of expensive equipment. We have found that by using the differential inactivation of globular (G4 + G1) and asymmetric AChE forms by high Mg2+ concentration, we can set up a very easy and quick assay that allows us to determine the relative proportions of AChE molecular forms present in rat skeletal muscles. This assay will be of great help in estimating changes in the muscle AChE forms under experimental conditions that require several simultaneous determinations.  相似文献   

7.
8.
To obtain information about the evolution of acetylcholinesterase (AChE), we undertook a study of the enzyme from the skeletal muscle of the lamprey Petromyzon marinus, a primitive vertebrate. We found that the cholinesterase activity of lamprey muscle is due to AChE, not pseudocholinesterase; the enzyme was inhibited by 1,5-bis(4-allyldimethylammonium phenyl) pentane-3-one (BW284C51), but not by tetramonoisopropyl pyrophosphortetramide (iso-OMPA) or ethopropazine. Also, the enzyme had a high affinity for acetylthiocholine and was inhibited by high concentrations of substrate. A large fraction of the AChE was found to be glycoprotein, since it was precipitated by concanavalin A-agarose. Optimal extraction of AChE was obtained in a high-salt detergent-containing buffer; fractional amounts of enzyme were extracted in buffers lacking salt and/or detergent. These data suggest that globular and asymmetric forms of AChE are present. On sucrose gradients, enzyme that was extracted in high-salt detergent-containing buffer sedimented as a broad peak of activity corresponding to G4; additionally, there was usually a peak corresponding to A12. Sequential extraction of AChE in conjunction with velocity sedimentation resolved minor forms of AChE and revealed that the G1, G2, G4, A4, A8, and A12 forms of AChE could be obtained from the muscle. The identity of the forms was confirmed through high-salt precipitation and collagenase digestion. The asymmetric forms of AChE were precipitated in low ionic strength buffer, and their sedimentation coefficients were shifted to higher values by collagenase digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To learn more about the evolution of the cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase in the vertebrates, we investigated the AChE activity of a deuterostome invertebrate, the urochordate Ciona intestinalis, by expressing in vitro a synthetic recombinant cDNA for the enzyme in COS-7 cells. Evidence from kinetics, pharmacology, molecular biology, and molecular modeling confirms that the enzyme is AChE. Sequence analysis and molecular modeling also indicate that the cDNA codes for the AChE(T) subunit, which should be able to produce all three globular forms of AChE: monomers (G(1)), dimers (G(2)), and tetramers (G(4)), and assemble into asymmetric forms in association with the collagenic subunit collagen Q. Using velocity sedimentation on sucrose gradients, we found that all three of the globular forms are either expressed in cells or secreted into the medium. In cell extracts, amphiphilic monomers (G(1)(a)) and non-amphiphilic tetramers (G(4)(na)) are found. Amphiphilic dimers (G(2)(a)) and non-amphiphilic tetramers (G(4)(na)) are secreted into the medium. Co-expression of the catalytic subunit with Rattus norvegicus collagen Q produces the asymmetric A(12) form of the enzyme. Collagenase digestion of the A(12) AChE produces a lytic G(4) form. Notably, only globular forms are present in vivo. This is the first demonstration that an invertebrate AChE is capable of assembling into asymmetric forms. We also performed a phylogenetic analysis of the sequence. We discuss the relevance of our results with respect to the evolution of the ChEs in general, in deuterostome invertebrates, and in chordates including vertebrates.  相似文献   

10.
With the aim of investigating the roles of motor innervation and activity on muscle characteristics, we studied the molecular forms of acetylcholinesterase (AChE) in fast-twitch (semimembranosus accessorius; SMa) and slow-twitch (semimembranosus proprius; SMp) muscles of the rabbit. We have shown that SMa and SMp express different patterns and tissue distribution of AChE forms and that the effect of long denervation varies with age. Three principal findings concerning expression of AChE molecular forms emerge from these studies. (1) The activity of AChE and the pattern of its molecular forms are particularly altered in adult denervated SMa and SMp muscles. AChE activity increases by 10-fold in both muscles, but asymmetric forms disappear in SMa and increase by 20-fold in SMp muscles. A similar alteration of AChE is found after tenotomy of these muscles, showing that the effect of denervation may be partly due to suppression of muscle activity. (2) The different changes occurring in the composition of AChE molecular forms in adult denervated SMa and SMp muscles are consistent with fluorescent staining with anti-AChE monoclonal antibodies and with DBA or VVA lectins, which bind to AChE asymmetric, collagen-tailed forms. These lectins poorly stain denervated SMa muscle surfaces but intensely stain neuromuscular junctions and extrasynaptic areas in denervated SMp muscle. (3) In contrast with the adult, denervation of 1-day-old muscles does not markedly modify the total amount of AChE or the proportions of its molecular forms, despite dramatic effects on muscle structure. These results are supported by studies of labeling with fluorescent DBA: the lectin only slightly stains the muscle fiber surface of denervated 15-day-old SMp muscle. Taken together, these data show that denervated muscles escape physiological regulation, producing increased levels of AChE with highly variable cellular distribution and patterns of molecular forms, depending on the age of operation and on the type of muscle.  相似文献   

11.
1. We have analyzed the behavior of two types of asymmetric molecular forms (A forms) of acetylcholinesterase (AChE) during development of chick hindlimb muscle, in vivo and in cell culture, and upon irreversible inactivation of peroneal muscle AChE with diisopropylfluorophosphate (DFP) in vivo. 2. In agreement with previous developmental studies on chick muscle, globular forms of AChE (G forms) are predominant in chick hindlimb at early embryonic ages, being gradually replaced by A forms as hatching (and, therefore, onset of locomotion) approaches. Of the two A-form types, AI appears and accumulates significantly earlier than AII, so that A/G and II/I ratios higher than 1 are attained only at about hatching time. 3. Cultures prepared from 11-day chick embryo hindlimb myoblasts express both types of A forms, with a combined activity of 27% of total AChE after 12 days in culture. AI forms appear again earlier and are much more abundant than type II asymmetric species through the life span of cultures. 4. All AChE activity in the peroneal muscle is irreversibly inactivated by injection of DFP in vivo. The recovery of A forms follows the same sequence described for normal development, with a delayed and slower recovery of AII forms as compared with AI. 5. Several hypotheses involving tail polypeptides or tissue target molecules, or posttranslational interconversion, are proposed to help explain the earlier appearance and accumulation of AI forms in chick muscle.  相似文献   

12.
1. In a recent study, we distinguished two classes of amphiphilic AChE3 dimers in Torpedo tissues: class I corresponds to glycolipid-anchored dimers and class II molecules are characterized by their lack of sensitivity to PI-PLC and PI-PLD, relatively small shift in sedimentation with detergent, and absence of aggregation without detergent. 2. In the present report, we analyze the amphiphlic or nonamphiphilic properties of globular AChE forms in T28 murine neural cells, rabbit muscle, and chicken muscle. The molecular forms were identified by sucrose gradient sedimentation in the presence and absence of detergent and analyzed by nondenaturing charge-shift electrophoresis. Some amphiphilic forms showed an abnormal electrophoretic migration in the absence of detergent, because of the retention of detergent micelles. 3. We show that the amphiphilic monomers (G1a) from these tissues, as well as the amphiphilic dimers (G2a) from chicken muscle, resemble the class II dimers of Torpedo AChE. We cannot exclude that these molecules possess a glycolipidic anchor but suggest that their hydrophobic domain may be of a different nature. We discuss their relationship with other cholinesterase molecular forms.  相似文献   

13.
Acetylcholinesterase (AChE) occurs in both asymmetric forms, covalently associated with a collagenous subunit called Q (ColQ), and globular forms that may be either soluble or membrane associated. At the skeletal neuromuscular junction, asymmetric AChE is anchored to the basal lamina of the synaptic cleft, where it hydrolyzes acetylcholine to terminate synaptic transmission. AChE has also been hypothesized to play developmental roles in the nervous system, and ColQ is also expressed in some AChE-poor tissues. To seek roles of ColQ and AChE at synapses and elsewhere, we generated ColQ-deficient mutant mice. ColQ-/- mice completely lacked asymmetric AChE in skeletal and cardiac muscles and brain; they also lacked asymmetric forms of the AChE homologue, butyrylcholinesterase. Thus, products of the ColQ gene are required for assembly of all detectable asymmetric AChE and butyrylcholinesterase. Surprisingly, globular AChE tetramers were also absent from neonatal ColQ-/- muscles, suggesting a role for the ColQ gene in assembly or stabilization of AChE forms that do not themselves contain a collagenous subunit. Histochemical, immunohistochemical, toxicological, and electrophysiological assays all indicated absence of AChE at ColQ-/- neuromuscular junctions. Nonetheless, neuromuscular function was initially robust, demonstrating that AChE and ColQ do not play obligatory roles in early phases of synaptogenesis. Moreover, because acute inhibition of synaptic AChE is fatal to normal animals, there must be compensatory mechanisms in the mutant that allow the synapse to function in the chronic absence of AChE. One structural mechanism appears to be a partial ensheathment of nerve terminals by Schwann cells. Compensation was incomplete, however, as animals lacking ColQ and synaptic AChE failed to thrive and most died before they reached maturity.  相似文献   

14.
Abstract: Velocity sedimentation analysis of acetylcholinesterase (AChE) molecular forms in the fast extensor digitorum longus muscle and in the slow soleus muscle of the rat was carried out on days 4, 8, and 14 after induction of muscle paralysis by botulinum toxin type A (BoTx). The results were compared with those observed after muscle denervation. In addition, the ability of BoTx-paralyzed muscles to resynthesize AChE was studied after irreversible inhibition of the preexistent enzyme by diisopropyl phosphorofluoridate. Major differences were observed between the effects of BoTx treatment and nerve section on AChE in the junctional region of the muscles. A precipitous drop in content of the asymmetric A12 AChE form was observed after denervation, whereas its decrease was much slower and less extensive in the BoTx-paralyzed muscles. Recovery of junctional AChE and of its A12 form after irreversible inhibition of the preexistent AChE in BoTx-paralyzed muscles was nevertheless very slow. It seems that a greater part of the junctional A12 AChE form pertains to a fraction with a very slow turnover that is rapidly degraded after denervation but not after BoTx-produced muscle paralysis. The postdenervation decrease in content of junctional A12 AChE is therefore not primarily due to muscle inactivity. The extrajunctional molecular forms of AChE seem to be regulated mostly by muscle activity because they undergo virtually identical changes both after denervation and BoTx paralysis. The differences observed in this respect between the fast and slow muscles after their inactivation must be intrinsic to muscles.  相似文献   

15.
The A12 (asymmetric) form of acetylcholinesterase (AChE) is generally considered to be synthesized in leg muscle tissues by myotubes under neural influence, but not by myoblasts. We have examined the expression of the different molecular forms of AChE in explants of developing limb buds and dermomyotomes (the myogenic part of the somites) obtained from 3-day-old chick and quail embryos, either directly after removal or during in vitro culture. We describe a muscular differentiation of both territories in vitro, leading to the formation of myotubes which are morphologically similar to the class of early muscle cells described by Bonner and Hauschka (1974). In vivo the A12 form is present in quail dermomyotomes which are almost entirely composed of mononucleated poorly differentiated cells; in contrast, it is absent from similar cells in chick dermomyotomes and from limb buds in both species. This shows that in the case of quail embryos the appearance of the A12 form precedes the fusion of myoblasts into myotubes. In both species, dermomyotome explants express asymmetric and globular forms of the enzyme during muscular differentiation in vitro, whereas limb buds synthesize only globular forms. After surgical removal of neural tube and/or neural crest at 2 days in ovo, the biosynthesis of the A forms in quail dermomyotomes is not suppressed and is consequently not dependent upon prior connection of the dermomyotomes to central neurons or upon the presence of autonomic precursors. Since limb bud muscle cells derive from somites our results raise questions concerning the differentiation of migrating somitic cells in this territory where a neural influence appears necessary to induce the biosynthesis of asymmetric AChE forms.  相似文献   

16.
Cultures of rat myotubes from 18-day-old embryos produce both globular (G) and asymmetric (A) forms of acetylcholinesterase (AChE; EC 3.1.1.7), mostly G1, G4, and A12 and a small proportion of A8. We show that all forms are partly intracellular and partly exposed to the extracellular medium; the A forms and their intra- and extracellular distribution are not modified when myotubes are grown in the presence of spinal cord neurons. In these cocultures, however, AChE patches may be detected immunohistochemically at sites of neuromuscular contacts. These patches represent a very minor proportion of AChE activity. We found that collagenase removes AChE patches but not the acetylcholine receptor clusters with which they coincide. This digestion specifically decreases the level of the A12 form. cis-Hydroxyproline, an inhibitor of collagen synthesis, reduces the level of G1 and blocks the synthesis of A forms.  相似文献   

17.
Primary cultures of avian muscle cells express both globular and asymmetric molecular forms of acetylcholinesterase (AChE) when grown in a simple defined culture medium. Under these conditions, we analyzed the role of various agents interfering with muscular activity: tetrodotoxin (TTX) and veratridine, as well as a depolarizing concentration of KCl. These treatments caused the complete cessation of contractions in mature myotubes. We observed no influence on cellular AChE activity. The paralyzing treatments induced different effects on AChE secretion: TTX increased the secretion by approximately 25%, whereas KCl and veratridine reduced it by approximately 30%. The proportions of secreted molecular forms (mostly hydrophilic G4 and G2) were not modified significantly. TTX did not affect the pattern of molecular forms of cellular AChE (in particular, the proportion of A forms was not changed). Depolarization by veratridine or KCl induced an increase in the proportion of A forms in mature myotubes by a factor of 2-3. Similar results were obtained with quail myotubes cultured under the same conditions. This study shows that, in avian muscle cultures, the ionic balance across myotube membranes, rather than muscular activity per se, can regulate the level of A forms and the rate of AChE secretion. These results do not exclude the possible involvement of other factors, such as Ca2+ and/or peptidic factors. In addition, taking together our results and data from the literature. we conclude that the expression of AChE molecular forms depends both on the species and on the culture conditions used.  相似文献   

18.
Neural regulation of mature normal fast twitch muscle of the chicken suppresses high activity, extrajunctional localization, and isozyme forms of acetylcholinesterase (AChE) characteristic of embryonic, denervated and dystrophic muscle. Normal adult slow tonic muscle ofthe chicken retains intermediate levels of activity and embryonic isozyme forms but not extrajunctional activity; it is not affected by muscular dystrophy. The hypothesis that neural regulation of the AChE system is lacking in slow tonic muscle and thus not affected by dystrophy was tested by denervating the fast twitch posterior latissimus dorsi and slow tonic anterior latissimus dorsi muscles of normal and dystrophic chickens. Extrajunctional AChE activity and embryonic isozyme forms increased, then declined, in both muscles. The results suggest that ocntrol of AChE is qualitatively similar in slow tonic and fast twitch muscle of the chicken.  相似文献   

19.
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns.  相似文献   

20.
We report an electrophoretic analysis of the hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. In charge-shift electrophoresis, the rate of electrophoretic migration of globular amphiphilic forms (Ga) is increased at least twofold when the anionic detergent deoxycholate is added to Triton X-100, whereas that of globular nonamphiphilic forms (Gna) is not modified. The G2a forms of the first class, as defined by their aggregation properties, are converted to nonamphiphilic derivatives by phosphatidylinositol phospholipase C (PI-PLC) and human serum phospholipase D (PLD). AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which also exists in very small quantities in detergent-solubilized extracts of electric lobes and spinal cord. They present different electrophoretic mobilities, so that each of these tissues contains a distinct "electromorph," or two in the case of electric organs. The G2a forms of the second class (AChE in plasma, BuChE in heart), as well as G4a forms of AChE and BuChE, are insensitive to PI-PLC and PLD but may be converted to nonamphiphilic derivatives by Pronase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号