首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Much progress has been made concerning histone function in the nucleus; however, following their synthesis, how their marking and subcellular trafficking are regulated remains to be explored. To gain an insight into these issues, we focused on soluble histones and analyzed endogenous and tagged H3 histones in parallel. We distinguished six complexes that we could place to account for maturation events occurring on histones H3 and H4 from their synthesis onward. In each complex, a different set of chaperones is involved, and we found specific post-translational modifications. Interestingly, we revealed that histones H3 and H4 are transiently poly(ADP-ribosylated). The impact of these marks in histone metabolism proved to be important as we found that acetylation of lysines 5 and 12 on histone H4 stimulated its nuclear translocation. Furthermore, we showed that, depending on particular histone H3 modifications, the balance in the presence of the different translocation complexes changes. Therefore, our results enabled us to propose a regulatory means of these marks for controlling cytoplasmic/nuclear shuttling and the establishment of early modification patterns.  相似文献   

2.
3.
Here we report a novel two-dimensional liquid chromatography-mass spectrometry (2D LC-MS) method that combines offline hydroxyapatite (HA) chromatography with online reversed-phase liquid chromatography-mass spectrometry (HA/RP LC-MS). The 2D LC-MS method was used to enrich and characterize histones and their posttranslational modifications. The 2D HA/RP LC-MS approach separates histones based on their relative binding affinity to DNA and relative hydrophobicity. HA/RP separations showed improvement in the number of histone isoforms detected as compared with one-dimensional RP LC-MS of acid-extracted histones. The improved histone fractionation resulted in better detection of lower abundant histone variants as well as their posttranslationally modified isoforms. Histones eluted from the HA/RP in the following order: H1, H2A/H2B heterodimers followed by H3/H4 heterotetramers, as predicted from their spatial organization in nucleosomes for binding affinity to DNA. Comparison between HA-purified and acid-extracted histones revealed similar histone profiles with the exception that the HA fractions showed a greater number of H1 isoforms. Two elution conditions were also examined: batch elution and salt gradient elution. Although both elution techniques were able to fractionate the histones sufficiently, the salt gradient approach has the most potential for purification of selected histone isoforms.  相似文献   

4.
Distinct lysine methylation marks on histones create dynamic signatures deciphered by the “effector” modules, although the underlying mechanisms remain unclear. We identified the plant homeodomain- and Jumonji C domain-containing protein PHF2 as a novel histone H3K9 demethylase. We show in biochemical and crystallographic analyses that PHF2 recognizes histone H3K4 trimethylation through its plant homeodomain finger and that this interaction is essential for PHF2 occupancy and H3K9 demethylation at rDNA promoters. Our study provides molecular insights into the mechanism by which distinct effector domains within a protein cooperatively modulate the “cross-talk” of histone modifications.  相似文献   

5.
6.
Histone methylation acts as an epigenetic regulator of chromatin activity through the modification of arginine and lysine residues on histones H3 and H4. In the case of lysine, this includes the formation of mono-, di-, or trimethyl groups, each of which is presumed to represent a distinct functional state at the cellular level. To examine the potential developmental roles of these modifications, we determined the global patterns of lysine methylation involving K9 on histone H3 and K20 on histone H4 in midgestation mouse embryos. For each lysine target site, we observed distinct subnuclear distributions of the mono- and trimethyl versions in 10T1/2 cells that were conserved within primary cultures and within the 3D-tissue architecture of the embryo. Interestingly, three of these modifications, histone H3 trimethyl K9, histone H4 monomethyl K20, and histone H4 trimethyl K20 exhibited marked differences in their distribution within the neuroepithelium. Specifically, both histone H3 trimethyl K9 and H4 monomethyl K20 were elevated in proliferating cells of the neural tube, which in the case of the K9 modification was limited to mitotic cells on the luminal surface. In contrast, histone H4 trimethyl K20 was progressively lost from these medial regions and became enriched in differentiating neurons in the ventrolateral neural tube. The inverse relationship of histone H4 K20 methyl derivatives is even more striking during skeletal and cardiac myogenesis where the accumulation of the trimethyl modification in pericentromeric heterochromatin suggests a role in gene silencing in postmitotic muscle cells. Importantly, our results establish that histone lysine methylation occurs in a highly dynamic manner that is consistent with their function in an epigenetic program for cell division and differentiation.  相似文献   

7.
Alteration of chromatin structure by chromatin modifying and remodelling activities is a key stage in the regulation of many nuclear processes. These activities are frequently interlinked, and many chromatin remodelling enzymes contain motifs that recognise modified histones. Here we adopt a peptide ligation strategy to generate specifically modified chromatin templates and used these to study the interaction of the Chd1, Isw2 and RSC remodelling complexes with differentially acetylated nucleosomes. Specific patterns of histone acetylation are found to alter the rate of chromatin remodelling in different ways. For example, histone H3 lysine 14 acetylation acts to increase recruitment of the RSC complex to nucleosomes. However, histone H4 tetra-acetylation alters the spectrum of remodelled products generated by increasing octamer transfer in trans. In contrast, histone H4 tetra-acetylation was also found to reduce the activity of the Chd1 and Isw2 remodelling enzymes by reducing catalytic turnover without affecting recruitment. These observations illustrate a range of different means by which modifications to histones can influence the action of remodelling enzymes.  相似文献   

8.
9.
Qin S  Jin L  Zhang J  Liu L  Ji P  Wu M  Wu J  Shi Y 《The Journal of biological chemistry》2011,286(42):36944-36955
MOZ (monocytic leukemic zinc-finger protein) and MORF (MOZ-related factor) are histone acetyltransferases important for HOX gene expression as well as embryo and postnatal development. They form complexes with other regulatory subunits through the scaffold proteins BRPF1/2/3 (bromodomain-PHD (plant homeodomain) finger proteins 1, 2, or 3). BRPF proteins have multiple domains, including two PHD fingers, for potential interactions with histones. Here we show that the first PHD finger of BRPF2 specifically recognizes the N-terminal tail of unmodified histone H3 (unH3) and report the solution structures of this PHD finger both free and in complex with the unH3 peptide. Structural analysis revealed that the unH3 peptide forms a third antiparallel β-strand that pairs with the PHD1 two-stranded antiparallel β-sheet. The binding specificity was determined primarily through the recognition of arginine 2 and lysine 4 of the unH3 by conserved aspartic acids of PHD1 and of threonine 6 of the unH3 by a conserved asparagine. Isothermal titration calorimetry and NMR assays showed that post-translational modifications such as H3R2me2as, H3T3ph, H3K4me, H3K4ac, and H3T6ph antagonized the interaction between histone H3 and PHD1. Furthermore, histone binding by PHD1 was important for BRPF2 to localize to the HOXA9 locus in vivo. PHD1 is highly conserved in yeast NuA3 and other histone acetyltransferase complexes, so the results reported here also shed light on the function and regulation of these complexes.  相似文献   

10.
Tagai C  Morita S  Shiraishi T  Miyaji K  Iwamuro S 《Peptides》2011,32(10):2003-2009
There is growing evidence of the antimicrobial properties of histones and histone-derived peptides; however, most of them are specific to lysine (Lys)-rich histones (H1, H2A, and H2B). In the present study, we focused on arginine (Arg)-rich histones (H3 and H4) and investigated their antimicrobial properties in comparison with those of histone H2B. In a standard microdilution assay, calf thymus histones H2B, H3, and H4 showed growth inhibitory activity against the bacterial outer membrane protease T (OmpT) gene-expressing Escherichia coli strain JCM5491 with calculated 50% growth inhibitory concentrations of 3.8, 10, and 12.7 μM, respectively. A lysate prepared from the JCM5491 cells was capable of strongly, moderately, and slightly fragmenting histones H2B, H3, and H4, respectively. While the lysate prepared from the cells of the ompT-deleted E. coli strain BL21(DE3) did not digest these histones, the ompT-transformed BL21(DE3), termed BL21/OmpT+, cell lysate digested the histones more strongly than the JCM5491 cell lysate. Laser confocal and scanning electron microscopic analyses demonstrated that while histone H2B penetrated the cell membrane of JCM5491 or BL21/OmpT+ cells, histones H3 and H4 remained on the cell surface and subsequently disrupted the cell membrane structure with bleb formation in a manner similar to general antimicrobial peptides. The BL21(DE3) cells treated with each histone showed no bleb formation, but cell integrity was affected and the cell surface was corrugated. Consequently, it is suggested that OmpT is involved in the antimicrobial properties of Arg- and Lys-rich histones and that the modes of antimicrobial action of these histones are different.  相似文献   

11.
We previously reported the activities and modes of action of arginine (Arg)-rich histones H3 and H4 against Gram-negative bacteria. In the present study, we investigated the properties of the Arg-rich histones against Gram-positive bacteria in comparison with those of lysine (Lys)-rich histone H2B. In a standard microdilution assay, calf thymus histones H2B, H3, and H4 showed growth inhibitory activity against Staphylococcus aureus with minimum effective concentration values of 4.0, 4.0, and 5.6 μM, respectively. Laser confocal microscopic analyses revealed that both the Arg-rich and Lys-rich histones associated with the surface of S. aureus. However, while the morphology of S. aureus treated with histone H2B appeared intact, those treated with the histones H3 and H4 closely resembled each other, and the cells were blurred. Electrophoretic mobility shift assay results revealed these histones have binding affinity to lipoteichoic acid (LTA), one of major cell surface components of Gram-positive bacteria. Scanning electron microscopic analyses demonstrated that while histone H2B elicited no obvious changes in cell morphology, histones H3 and H4 disrupted the cell membrane structure with bleb formation in a manner similar to general antimicrobial peptides. Consequently, our results suggest that bacterial cell surface LTA initially attracts both the Arg- and Lys-rich histones, but the modes of antimicrobial action of these histones are different; the former involves cell membrane disruption and the latter involves the cell integrity disruption.  相似文献   

12.
It has been known for several years that DNA replication and histone synthesis occur concomitantly in cultured mammalian cells. Normally all five classes of histones are synthesized coordinately. However, mouse myeloma cells, synchronized by starvation for isoleucine, synthesize increased amounts of histone H1 relative to the four nucleosomal core histones. This unscheduled synthesis of histone H1 is reduced within 1 h after refeeding isoleucine, and is not a normal component of G1. The synthesis of H1 increases coordinately again with other histones during the S phase. The DNA synthesis inhibitors, cytosine arabinoside and hydroxyurea, block all histone synthesis in S-phase cells. The levels of histone H1 mRNA, relative to the other histone mRNAs, is increased in isoeleucine-starved cells and decreases rapidly after refeeding isoleucine. The increased incorporation of histone H1 is at least partially due to the low isoleucine content of histone H1. Starvation of cells for lysine resulted in a decrease in H1 synthesis relative to core histones. Again the ratio was altered on refeeding the amino acid. 3T3 cells starved for serum also incorporated only H1 histones into chromatin. The ratio of different H1 proteins also changed. The synthesis of the H10 protein was predominant in G0 cells, and reduced in S-phase cells. These data indicate the metabolism of H1 is independent of the other histones when cell growth is arrested.  相似文献   

13.
Yeast histones H2A, H3 and H4 were specifically extracted from purified nuclei using a 2% NaCl/75% ethanol solution. The extraction resulted in the complete removal of H2A, H3 and H4 from the nuclear pellet, as monitored by SDS-polyacrylamide gel electrophoresis of the protein. The relative absence of nonhistone proteins from this histone subset simplifies the determination of the extent of histone modification in yeast. Levels of H4 acetylation were measured directly on Coomassie blue-stained Triton acid-urea gels and the levels verified by gel fluorography of the [3H]acetate-labeled histone.  相似文献   

14.
Amounts of soluble histones in cells are tightly regulated to ensure supplying them for the newly synthesized DNA and preventing the toxic effect of excess histones. Prior to incorporation into chromatin, newly synthesized histones H3 and H4 are highly acetylated in pre-deposition complex, wherein H4 is di-acetylated at Lys-5 and Lys-12 residues by histone acetyltransferase-1 (Hat1), but their role in histone metabolism is still unclear. Here, using chicken DT 40 cytosolic extracts, we found that histones H3/H4 and their chaperone Asf1, including RbAp48, a regulatory subunit of Hat1 enzyme, were associated with Hat1. Interestingly, in HAT1-deficient cells, cytosolic histones H3/H4 fractions on sucrose gradient centrifugation, having a sedimentation coefficient of 5–6S in DT40 cells, were shifted to lower molecular mass fractions, with Asf1. Further, sucrose gradient fractionation of semi-purified tagged Asf1-complexes showed the presence of Hat1, RbAp48 and histones H3/H4 at 5–6S fractions in the complexes. These findings suggest the possible involvement of Hat1 in regulating cytosolic H3/H4 pool mediated by Asf1-containing cytosolic H3/H4 pre-deposition complex.  相似文献   

15.
Site-specific proteolysis of the N or C-terminus of histone tails has emerged as a novel form of irreversible post-translational modifications assigned to histones. Though there are many reports describing histone specific proteolysis, there are very few studies on purification of a histone specific protease. Here, we demonstrate a histone H3 specific protease (H3ase) activity in chicken liver nuclear extract. H3ase was purified to homogeneity and identified as glutamate dehydrogenase (GDH) by sequencing. A series of biochemical experiments further confirmed that the H3ase activity was due to GDH. The H3ase clipped histone H3 products were sequenced by N-terminal sequencing and the precise clipping sites of H3ase were mapped. H3ase activity was only specific to chicken liver as it was not demonstrated in other tissues like heart, muscle and brain of chicken. We assign a novel serine like protease activity to GDH which is specific to histone H3.  相似文献   

16.
17.
Faithful repair of DNA double-strand breaks is vital to the maintenance of genome integrity and proper cell functions. Histone modifications, such as reversible acetylation, phosphorylation, methylation, and ubiquitination, which collectively contribute to the establishment of distinct chromatin states, play important roles in the recruitment of repair factors to the sites of double-strand breaks. Here we report that histone acetyltransferase 1 (HAT1), a classical B type histone acetyltransferase responsible for acetylating the N-terminal tail of newly synthesized histone H4 in the cytoplasm, is a key regulator of DNA repair by homologous recombination in the nucleus. We found that HAT1 is required for the incorporation of H4K5/K12-acetylated H3.3 at sites of double-strand breaks through its HIRA-dependent histone turnover activity. Incorporated histones with specific chemical modifications facilitate subsequent recruitment of RAD51, a key repair factor in mammalian cells, to promote efficient homologous recombination. Significantly, depletion of HAT1 sensitized cells to DNA damage compromised the global chromatin structure, inhibited cell proliferation, and induced cell apoptosis. Our experiments uncovered a role for HAT1 in DNA repair in higher eukaryotic organisms and provide a mechanistic insight into the regulation of histone dynamics by HAT1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号