首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
David SV  Hayden BY  Mazer JA  Gallant JL 《Neuron》2008,59(3):509-521
Previous neurophysiological studies suggest that attention can alter the baseline or gain of neurons in extrastriate visual areas but that it cannot change tuning. This suggests that neurons in visual cortex function as labeled lines whose meaning does not depend on task demands. To test this common assumption, we used a system identification approach to measure spatial frequency and orientation tuning in area V4 during two attentionally demanding visual search tasks, one that required fixation and one that allowed free viewing during search. We found that spatial attention modulates response baseline and gain but does not alter tuning, consistent with previous reports. In contrast, feature-based attention often shifts neuronal tuning. These tuning shifts are inconsistent with the labeled-line model and tend to enhance responses to stimulus features that distinguish the search target. Our data suggest that V4 neurons behave as matched filters that are dynamically tuned to optimize visual search.  相似文献   

2.
Recent studies have used grating orientation as a measure of tactile spatial acuity on the fingerpad. In this task subjects identify the orientation of a grooved surface presented in either the proximal-distal or lateral-medial orientation. Other recent results have suggested that there might be a substantial anisotropy on the fingerpad related to spatial sensitivity. This anisotropy was revealed using a task in which subjects discriminated between a smooth and a grooved surface presented at different orientations on the fingerpad. The anisotropy was substantial enough that it might permit subjects to discriminate grating orientation on the basis of intensive rather than spatial cues. The present study examined the possibility that anisotropy on the fingerpad might provide cues in a spatial acuity task. The ability of subjects to discriminate between a smooth and a grooved surface was measured under conditions that are typically used in grating orientation tasks. No evidence of anisotropy was found. Also, using a grating orientation task, separate estimates were made of sensitivity in the proximal-distal and lateral-medial orientations. Again no evidence of anisotropy was found. Consistent with changes in the density of innervation, grating orientation sensitivity was found to vary as a function of location on the fingerpad. The results support the view that grating orientation is a valid measure of spatial acuity reflecting underlying neural, spatial mechanisms.  相似文献   

3.
We report a series of dual-task experiments, in which a rapid serial visual presentation (RSVP) task was combined with a visual search task. Orientation, motion, and color were used as the defining target features in the search task. Lag between target onsets was manipulated and interference between the two tasks was quantified by measuring detection scores for the search task as a function of lag. While simultaneous performance of an orientation detection task with an RSVP letter identification task resulted in a performance decrease for lags up to 320 ms, no such decrease was detected for highly salient motion- and color-defined targets. Subsequently, detectability of the motion and color feature was matched to that of the orientation-feature resulting in the reintroduction of a (smaller) performance decrease, but only during simultaneous performance (lag 0 ms). The results suggest that there are two causes for the impaired search performance occurring when a feature search task is combined with an RSVP task. The first is short-lasting interference probably due to attentional competition; the second, which plays a role only when targets for both tasks share features, is interference that may be attributed to a central processing bottleneck.  相似文献   

4.
Current models of attention, typically claim that vision and audition are limited by a common attentional resource which means that visual performance should be adversely affected by a concurrent auditory task and vice versa. Here, we test this implication by measuring auditory (pitch) and visual (contrast) thresholds in conjunction with cross-modal secondary tasks and find that no such interference occurs. Visual contrast discrimination thresholds were unaffected by a concurrent chord or pitch discrimination, and pitch-discrimination thresholds were virtually unaffected by a concurrent visual search or contrast discrimination task. However, if the dual tasks were presented within the same modality, thresholds were raised by a factor of between two (for visual discrimination) and four (for auditory discrimination). These results suggest that at least for low-level tasks such as discriminations of pitch and contrast, each sensory modality is under separate attentional control, rather than being limited by a supramodal attentional resource. This has implications for current theories of attention as well as for the use of multi-sensory media for efficient informational transmission.  相似文献   

5.
采用事件相关电位技术研究了在视觉搜索过程中的外源易化和返回抑制(inhibition of return,IOR)的相互关系。当外源注意保持在序列搜索过的位置上时,有一个延时反应(即IOR),伴随其产生的相关脑电成分有:分布在后顶的潜伏期为200 ms 的正差异、分布在前额叶内侧靠左的潜伏期为240 毫秒的负差异,以及分布在两侧颞顶联合区的潜伏期为280 ms 的负差异。而当外源注意保持在平行搜索的位置上时,则出现了明显的易化效应,伴随其产生的脑电成分仅为分布在枕顶区域的潜伏期为280 ms 的负差异。这些结果表明,外源易化和IOR 涉及了不同的脑区和神经过程,从而支持两者在机制上是可分离性的观点。  相似文献   

6.
In repeated visual search tasks, facilitation of reaction times (RTs) due to repetition of the spatial arrangement of items occurs independently of RT facilitation due to improvements in general task performance. Whereas the latter represents typical procedural learning, the former is a kind of implicit memory that depends on the medial temporal lobe (MTL) memory system and is impaired in patients with amnesia. A third type of memory that develops during visual search is the observers’ explicit knowledge of repeated displays. Here, we used a visual search task to investigate whether procedural memory, implicit contextual cueing, and explicit knowledge of repeated configurations, which all arise independently from the same set of stimuli, are influenced by sleep. Observers participated in two experimental sessions, separated by either a nap or a controlled rest period. In each of the two sessions, they performed a visual search task in combination with an explicit recognition task. We found that (1) across sessions, MTL-independent procedural learning was more pronounced for the nap than rest group. This confirms earlier findings, albeit from different motor and perceptual tasks, showing that procedural memory can benefit from sleep. (2) Likewise, the sleep group compared with the rest group showed enhanced context-dependent configural learning in the second session. This is a novel finding, indicating that the MTL-dependent, implicit memory underlying contextual cueing is also sleep-dependent. (3) By contrast, sleep and wake groups displayed equivalent improvements in explicit recognition memory in the second session. Overall, the current study shows that sleep affects MTL-dependent as well as MTL-independent memory, but it affects different, albeit simultaneously acquired, forms of MTL-dependent memory differentially.  相似文献   

7.
In the present study we determined the performance interrelations of ten different tasks that involved the processing of temporal intervals in the subsecond range, using multidimensional analyses. Twenty human subjects executed the following explicit timing tasks: interval categorization and discrimination (perceptual tasks), and single and multiple interval tapping (production tasks). In addition, the subjects performed a continuous circle-drawing task that has been considered an implicit timing paradigm, since time is an emergent property of the produced spatial trajectory. All tasks could be also classified as single or multiple interval paradigms. Auditory or visual markers were used to define the intervals. Performance variability, a measure that reflects the temporal and non-temporal processes for each task, was used to construct a dissimilarity matrix that quantifies the distances between pairs of tasks. Hierarchical clustering and multidimensional scaling were carried out on the dissimilarity matrix, and the results showed a prominent segregation of explicit and implicit timing tasks, and a clear grouping between single and multiple interval paradigms. In contrast, other variables such as the marker modality were not as crucial to explain the performance between tasks. Thus, using this methodology we revealed a probable functional arrangement of neural systems engaged during different timing behaviors.  相似文献   

8.
Schizophrenia has been linked to impaired performance on a range of visual processing tasks (e.g. detection of coherent motion and contour detection). It has been proposed that this is due to a general inability to integrate visual information at a global level. To test this theory, we assessed the performance of people with schizophrenia on a battery of tasks designed to probe voluntary averaging in different visual domains. Twenty-three outpatients with schizophrenia (mean age: 40±8 years; 3 female) and 20 age-matched control participants (mean age 39±9 years; 3 female) performed a motion coherence task and three equivalent noise (averaging) tasks, the latter allowing independent quantification of local and global limits on visual processing of motion, orientation and size. All performance measures were indistinguishable between the two groups (ps>0.05, one-way ANCOVAs), with one exception: participants with schizophrenia pooled fewer estimates of local orientation than controls when estimating average orientation (p = 0.01, one-way ANCOVA). These data do not support the notion of a generalised visual integration deficit in schizophrenia. Instead, they suggest that distinct visual dimensions are differentially affected in schizophrenia, with a specific impairment in the integration of visual orientation information.  相似文献   

9.
Attention modulates auditory perception, but there are currently no simple tests that specifically quantify this modulation. To fill the gap, we developed a new, easy-to-use test of attention in listening (TAIL) based on reaction time. On each trial, two clearly audible tones were presented sequentially, either at the same or different ears. The frequency of the tones was also either the same or different (by at least two critical bands). When the task required same/different frequency judgments, presentation at the same ear significantly speeded responses and reduced errors. A same/different ear (location) judgment was likewise facilitated by keeping tone frequency constant. Perception was thus influenced by involuntary orienting of attention along the task-irrelevant dimension. When information in the two stimulus dimensions were congruent (same-frequency same-ear, or different-frequency different-ear), response was faster and more accurate than when they were incongruent (same-frequency different-ear, or different-frequency same-ear), suggesting the involvement of executive control to resolve conflicts. In total, the TAIL yielded five independent outcome measures: (1) baseline reaction time, indicating information processing efficiency, (2) involuntary orienting of attention to frequency and (3) location, and (4) conflict resolution for frequency and (5) location. Processing efficiency and conflict resolution accounted for up to 45% of individual variances in the low- and high-threshold variants of three psychoacoustic tasks assessing temporal and spectral processing. Involuntary orientation of attention to the irrelevant dimension did not correlate with perceptual performance on these tasks. Given that TAIL measures are unlikely to be limited by perceptual sensitivity, we suggest that the correlations reflect modulation of perceptual performance by attention. The TAIL thus has the power to identify and separate contributions of different components of attention to auditory perception.  相似文献   

10.
The present study investigated the interactions between motor action and cognitive processing with particular reference to kanji-culture individuals. Kanji-culture individuals often move their finger as if they are writing when they are solving cognitive tasks, for example, when they try to recall the spelling of English words. This behavior is called kusho, meaning air-writing in Japanese. However, its functional role is still unknown. To reveal the role of kusho behavior in cognitive processing, we conducted a series of experiments, employing two different cognitive tasks, a construction task and a stroke count task. To distinguish the effects of the kinetic aspects of kusho behavior, we set three hand conditions in the tasks; participants were instructed to use either kusho, unrelated finger movements or do nothing during the response time. To isolate possible visual effects, two visual conditions in which participants saw their hand and the other in which they did not, were introduced. We used the number of correct responses and response time as measures of the task performance. The results showed that kusho behavior has different functional roles in the two types of cognitive tasks. In the construction task, the visual feedback from finger movement facilitated identifying a character, whereas the kinetic feedback or motor commands for the behavior did not help to solve the task. In the stroke count task, by contrast, the kinetic aspects of the finger movements influenced counting performance depending on the type of the finger movement. Regardless of the visual condition, kusho behavior improved task performance and unrelated finger movements degraded it. These results indicated that motor behavior contributes to cognitive processes. We discussed possible mechanisms of the modality dependent contribution. These findings might lead to better understanding of the complex interaction between action and cognition in daily life.  相似文献   

11.
Neurons in the primary visual cortex, V1, are specialized for the processing of elemental features of the visual stimulus, such as orientation and spatial frequency. Recent fMRI evidence suggest that V1 neurons are also recruited in visual perceptual memory; a number of studies using multi-voxel pattern analysis have successfully decoded stimulus-specific information from V1 activity patterns during the delay phase in memory tasks. However, consistent fMRI signal modulations reflecting the memory process have not yet been demonstrated. Here, we report evidence, from three subjects, that the low V1 BOLD activity during retention of low-level visual features is caused by competing interactions between neural populations coding for different values along the spectrum of the dimension remembered. We applied a memory masking paradigm in which the memory representation of a masker stimulus interferes with a delayed spatial frequency discrimination task when its frequency differs from the discriminanda with ±1 octave and found that impaired behavioral performance due to masking is reflected in weaker V1 BOLD signals. This cross-channel inhibition in V1 only occurs with retinotopic overlap between the masker and the sample stimulus of the discrimination task. The results suggest that memory for spatial frequency is a local process in the retinotopically organized visual cortex.  相似文献   

12.
The identity of an object is a fixed property, independent of where it appears, and an effective visual system should capture this invariance [1-3]. However, we now report that the perceived gender of a face is strongly biased toward male or female at different locations in the visual field. The spatial pattern of these biases was distinctive and stable for each individual. Identical neutral faces looked different when they were presented simultaneously at locations maximally biased to opposite genders. A similar effect was observed for perceived age of faces. We measured the magnitude of this perceptual heterogeneity for four other visual judgments: perceived aspect ratio, orientation discrimination, spatial-frequency discrimination, and color discrimination. The effect was sizeable for the aspect ratio task but substantially smaller for the other three tasks. We also evaluated perceptual heterogeneity for facial gender and orientation tasks at different spatial scales. Strong heterogeneity was observed even for the orientation task when tested at small scales. We suggest that perceptual heterogeneity is a general property of visual perception and results from undersampling of the visual signal at spatial scales that are small relative to the size of the receptive fields associated with each visual attribute.  相似文献   

13.
Even when confined to the same spatial location, flickering and steady light evoke very different conscious experiences because of their distinct temporal patterns. The neural basis of such differences in subjective experience remains uncertain . Here, we used functional MRI in humans to examine the neural structures involved in awareness of flicker. Participants viewed a single point source of light that flickered at the critical flicker fusion (CFF) threshold, where the same stimulus is sometimes perceived as flickering and sometimes as steady (fused) . We were thus able to compare brain activity for conscious percepts that differed qualitatively (flickering or fused) but were evoked by identical physical stimuli. Greater brain activation was observed on flicker (versus fused) trials in regions of frontal and parietal cortex previously associated with visual awareness in tasks that did not require detection of temporal patterns . In contrast, greater activation was observed on fused (versus flicker) trials in occipital extrastriate cortex. Our findings indicate that activity of higher-level cortical areas is important for awareness of temporally distinct visual events in the context of a nonspatial task, and they thus suggest that frontal and parietal regions may play a general role in visual awareness.  相似文献   

14.
In mammals, stress hormones have profound influences on spatial learning and memory. Here, we investigated whether glucocorticoids influence cognitive abilities in birds by testing a line of zebra finches selectively bred to respond to an acute stressor with high plasma corticosterone (CORT) levels. Cognitive performance was assessed by spatial and visual one-trial associative memory tasks. Task performance in the high CORT birds was compared with that of the random-bred birds from a control breeding line. The birds selected for high CORT in response to an acute stressor performed less well than the controls in the spatial task, but there were no significant differences between the lines in performance during the visual task. The birds from the two lines did not differ in their plasma CORT levels immediately after the performance of the memory tasks; nevertheless, there were significant differences in peak plasma CORT between the lines. The high CORT birds also had significantly lower mineralocorticoid receptor mRNA expression in the hippocampus than the control birds. There was no measurable difference between the lines in glucocorticoid receptor mRNA density in either the hippocampus or the paraventricular nucleus. Together, these findings provide evidence to suggest that stress hormones have important regulatory roles in avian spatial cognition.  相似文献   

15.
A unique vertical bar among horizontal bars is salient and pops out perceptually. Physiological data have suggested that mechanisms in the primary visual cortex (V1) contribute to the high saliency of such a unique basic feature, but indicated little regarding whether V1 plays an essential or peripheral role in input-driven or bottom-up saliency. Meanwhile, a biologically based V1 model has suggested that V1 mechanisms can also explain bottom-up saliencies beyond the pop-out of basic features, such as the low saliency of a unique conjunction feature such as a red vertical bar among red horizontal and green vertical bars, under the hypothesis that the bottom-up saliency at any location is signaled by the activity of the most active cell responding to it regardless of the cell's preferred features such as color and orientation. The model can account for phenomena such as the difficulties in conjunction feature search, asymmetries in visual search, and how background irregularities affect ease of search. In this paper, we report nontrivial predictions from the V1 saliency hypothesis, and their psychophysical tests and confirmations. The prediction that most clearly distinguishes the V1 saliency hypothesis from other models is that task-irrelevant features could interfere in visual search or segmentation tasks which rely significantly on bottom-up saliency. For instance, irrelevant colors can interfere in an orientation-based task, and the presence of horizontal and vertical bars can impair performance in a task based on oblique bars. Furthermore, properties of the intracortical interactions and neural selectivities in V1 predict specific emergent phenomena associated with visual grouping. Our findings support the idea that a bottom-up saliency map can be at a lower visual area than traditionally expected, with implications for top-down selection mechanisms.  相似文献   

16.
Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.  相似文献   

17.
We investigated whether juvenile freshwater stingrays (Potamotrygon motoro) can solve spatial tasks by constructing a cognitive map of their environment. Two experimental conditions were run: allocentric and ego-allocentric. Rays were trained to locate food within a four-arm maze placed in a room with visual spatial cues. The feeding location (goal) within the maze (room) remained constant while the starting position varied for the allocentrically but not for the ego-allocentrically trained group. After training, all rays solved the experimental tasks; however, different orientation strategies were used within and between groups. Allocentrically trained rays reached the goal via novel routes starting from unfamiliar locations, while ego-allocentrically trained rays primarily solved the task on the basis of an egocentric turn response. Our data suggest that P. motoro orients by constructing a visual cognitive map of its environment, but also uses egocentric and/or other orientation strategies alone or in combination for spatial orientation, a choice which may be governed by the complexity of the problem. We conclude that spatial memory functions are a general feature of the vertebrate brain.  相似文献   

18.
We compared the alpha band EEG depression (event-related desynchnization, ERD) level in two tasks, involving activation of different attentional processes: visual search for a deviant relevant stimulus among many similar ones and visual oddball. Control data for the visual search task consisted of simple viewing of several stimuli being of the same shape as the relevant stimulus in the search trials. Gaze position was verified by eye tracking method. We interpreted alpha band ERD as a correlate of activation of attentional processes. Fixating the target in visual search task caused a significantly larger ERD than fixating the same stimuli in control trials over all leads. We suppose this to be related with task and visual environment complexities. The frontal ERD domination may indicate attentional control over voluntary movements execution (top-down attention). The caudal ERD may be related with updating of visual information as a result of search process (bottom-up attention). Both relevant and irrelevant stimuli in the oddball task also induced alpha band ERD, but it was larger in response to relevant one and reached maximum level over occipital leads. Domination of caudal ERD in oddball task is supposed to indicate bottom-up attention processes.  相似文献   

19.
Marvin M. Chun and Yuhong Jiang (1998) investigated the role of spatial context on visual search. They used two display conditions. In the Old Display condition, the spatial arrangement of items in the search display was kept constant throughout the experiment. In the New Display condition, the spatial arrangement of items was always novel from trial to trial. The results showed better performance with Old Displays than with New Displays. The authors proposed that repeated spatial context help guiding attention to the target location, thus they termed this effect Contextual Cueing. We present three attempts to reproduce this effect. Experiments 1 and 2 were near exact replications of experiments in Chun and Jiang's report, where we failed to obtain Contextual Cueing. Post-experimental interviews revealed that participants used different search strategies when performing the task: an 'active' strategy (an active effort to find the target), or a 'passive' strategy (intuitive search). In Experiment 3, we manipulated task instructions to bias participants into using active or passive strategies. A robust Contextual Cueing Effect was obtained only in the passive instruction condition.  相似文献   

20.
Healthy young adults display a leftward asymmetry of spatial attention (“pseudoneglect”) that has been measured with a wide range of different tasks. Yet at present there is a lack of systematic evidence that the tasks commonly used in research today are i) stable measures over time and ii) provide similar measures of spatial bias. Fifty right-handed young adults were tested on five tasks (manual line bisection, landmark, greyscales, gratingscales and lateralised visual detection) on two different days. All five tasks were found to be stable measures of bias over the two testing sessions, indicating that each is a reliable measure in itself. Surprisingly, no strongly significant inter-task correlations were found. However, principal component analysis revealed left-right asymmetries to be subdivided in 4 main components, namely asymmetries in size judgements (manual line bisection and landmark), luminance judgements (greyscales), stimulus detection (lateralised visual detection) and judgements of global/local features (manual line bisection and grating scales). The results align with recent research on hemispatial neglect which conceptualises the condition as multi-component rather than a single pathological deficit of spatial attention. We conclude that spatial biases in judgment of visual stimulus features in healthy adults (e.g., pseudoneglect) is also a multi-component phenomenon that may be captured by variations in task demands which engage task-dependent patterns of activation within the attention network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号