首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Differences in the pharmacokinetics of alcohol absorption and elimination are, in part, genetically determined. There are polymorphic variants of the two main enzymes responsible for ethanol oxidation in liver, alcohol dehydrogenase and aldehyde dehydrogenase. The frequency of occurrence of these variants, which have been shown to display strikingly different catalytic properties, differs among different racial populations. Since the activity of alcohol dehydrogenase in liver is a rate-limiting factor for ethanol metabolism in experimental animals, it is likely that the type and content of the polymorphic isoenzyme subunit encoded at ADH2, beta-subunit, and at ADH3, the gamma-subunit, are contributing factors to the genetic variability in ethanol elimination rate. The recent development of methods for genotyping individuals at these loci using white cell DNA will allow us to test this hypothesis as well as any relationship between ADH genotype and the susceptibility to alcoholism or alcohol-related pathology. A polymorphic variant of human liver mitochondrial aldehyde dehydrogenase, ADLH2, which has little or no acetaldehyde oxidizing activity has been identified. Individuals with the deficient ALDH2 phenotype do not have altered ethanol elimination rates but they do exhibit high blood acetaldehyde levels and dysphoric symptoms such as facial flushing, nausea and tachycardia, after drinking alcohol. Because acetaldehyde is so reactive, it binds to free amino groups of proteins including a 37 kilodalton hepatic protein-acetaldehyde adduct and may elicit an antibody response. We would predict that individuals who have low ALDH2 activity because of liver disease or because they have the inactive ALDH2 variant isoenzyme might form more protein-acetaldehyde adducts and elicit a greater immune response. These adducts may represent good biological markers of alcohol abuse and may also play a role in liver injury due to chronic alcohol consumption.  相似文献   

2.
Metabolic tolerance to ethanol has been attributed to enhanced mitochondrial reoxidation of reducing equivalents produced in the alcohol dehydrogenase (ADH) pathway or to non-ADH mechanisms. To resolve this issue, deermice lacking low Km hepatic ADH were fed for 2 weeks a liquid diet containing ethanol or isocaloric carbohydrate and hepatocytes were isolated. Ethanol (50 mM) oxidation increased (9.8 vs 4.5 nmol/min/10(6) cells in controls). To differentiate which of two non-ADH pathways (the microsomal ethanol oxidizing system (MEOS) or catalase) was responsible for the induction, four approaches were used. First, MEOS was assayed in hepatic microsomes and found to be increased (24.4 vs 6.8 nmol/min/mg protein in controls). Second, hepatocyte ethanol metabolism was measured after addition of the catalase inhibitor azide (0.1 mM) and found to be unchanged. By contrast, the competitive MEOS inhibitor, 1-butanol, depressed metabolism in a concentration-dependent manner. A third approach relied on measurement of isotope effects known to be different for MEOS and catalase. From the isotope effect values, MEOS was calculated to contribute 85% or more of total ethanol oxidation by cells from both ethanol-fed and control animals. A fourth approach involved in vivo pretreatment with pyrazole (300 mg/kg/day for 2 days), which reduced peroxidation by catalase to 13% of control values in liver homogenates while inducing MEOS activity to 152% of controls. Hepatocytes from pyrazole-treated deermice showed a 47% increase in ethanol metabolism, paralleling the MEOS induction and contrasting with the catalase suppression. These results indicate that since metabolic tolerance occurs in the absence of ADH, it is not necessarily ADH mediated, and further, that MEOS rather than catalase accounts for basal ethanol metabolism and its increase after chronic ethanol treatment.  相似文献   

3.
Alcohol induced hepatic fibrosis: role of acetaldehyde   总被引:2,自引:0,他引:2  
Alcohol abuse is one of the major causes of liver fibrosis worldwide. Although the pathogenesis of liver fibrosis is a very complex phenomenon involving different molecular and biological mechanisms, several lines of evidence established that the first ethanol metabolite, acetaldehyde, plays a key role in the onset and maintenance of the fibrogenetic process. This review briefly summarizes the molecular mechanisms underlying acetaldehyde pro-fibrogenic effects. Liver fibrosis represents a general wound-healing response to a variety of insults. Although mortality due to alcohol abuse has been constantly decreasing in the past 20 years in Southern Europe and North America, in several Eastern-European countries and Great Britain Alcoholic Liver Disease (ALD) shows a sharply increasing trend [Bosetti, C., Levi, F., Lucchini, F., Zatonski, W.A., Negri, E., La, V.C., 2007. Worldwide mortality from cirrhosis: an update to 2002. J. Hepatol. 46, 827-839]. ALD has a complex pathogenesis, in which acetaldehyde (AcCHO), the major ethanol metabolite, plays a central role. Ethanol is mainly metabolized in the liver by two oxidative pathways. In the first one ethanol is oxidized to acetaldehyde by the cytoplasmic alcohol dehydrogenase enzyme (ADH), acetaldehyde is then oxidized to acetic acid by the mitochondrial acetaldehyde dehydrogenase (ALDH). The second pathway is inducible and involves the microsomal ethanol-oxidizing system (MEOS), in which the oxidation of ethanol to acetaldehyde and acetic acid also leads to generation of reactive oxygen species (ROS). Chronic ethanol consumption significantly inhibits mitochondrial ALDH activity while the rate of ethanol oxidation to acetaldehyde is even enhanced, resulting in a striking increase of tissue and plasma acetaldehyde levels [Lieber, C.S., 1997. Ethanol metabolism, cirrhosis and alcoholism. Clin. Chim. Acta 257, 59-84]. This review will focus on the molecular mechanisms by which acetaldehyde promote liver fibrosis.  相似文献   

4.
The brain being highly sensitive to the action of alcohol is potentially susceptible to its carcinogenic effects. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to the generation of carcinogenic acetaldehyde. Human brain tissue contains various ADH isoenzymes and possess also ALDH activity. The purpose of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity in cancer tissues and healthy brain cells. The samples were taken from 62 brain cancer patients (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The total activity of ADH, and activity of class I ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH and ALDH did not show statistically significant differences of activity in cancer and in normal cells. Analysis of the enzymes activity did not show significant differences depending on the location of the tumor. The differences in the activity of total alcohol dehydrogenase, and class I isoenzyme between cancer tissues and healthy brain cells might be a factor for metabolic changes and disturbances in low mature cancer cells and additionally might be a reason for higher level of acetaldehyde which can intensify the carcinogenesis.  相似文献   

5.
Alcohol metabolism in vivo cannot be explained solely by the action of the classical alcohol dehydrogenase, Class I ADH (ADH1). Over the past three decades, attempts to identify the metabolizing enzymes responsible for the ADH1-independent pathway have focused on the microsomal ethanol oxidizing system (MEOS) and catalase, but have failed to clarify their roles in systemic alcohol metabolism. In this study, we used Adh3-null mutant mice to demonstrate that Class III ADH (ADH3), a ubiquitous enzyme of ancient origin, contributes to alcohol metabolism in vivo dose-dependently resulting in a diminution of acute alcohol intoxication. Although the ethanol oxidation activity of ADH3 in vitro is low due to its very high Km, it was found to exhibit a markedly enhanced catalytic efficiency (kcat/Km) toward ethanol when the solution hydrophobicity of the reaction medium was increased with a hydrophobic substance. Confocal laser scanning microscopy with Nile red as a hydrophobic probe revealed a cytoplasmic solution of mouse liver cells to be much more hydrophobic than the buffer solution used for in vitro experiments. So, the in vivo contribution of high-Km ADH3 to alcohol metabolism is likely to involve activation in a hydrophobic solution. Thus, the present study demonstrated that ADH3 plays an important role in systemic ethanol metabolism at higher levels of blood ethanol through activation by cytoplasmic solution hydrophobicity.  相似文献   

6.
The leaves of trees emit significant amounts of acetaldehyde which is synthesized there by the oxidation of ethanol. In the present study, we examined plant internal and environmental factors controlling the emission of acetaldehyde by the leaves of young poplar ( Populus tremula × P. alba ) trees. The enzymes possibly involved in the oxidation of ethanol in the leaves of trees are catalase (CAT; EC 1.11.1.6) and alcohol dehydrogenase (ADH; EC 1.1.1.1), both expressed constitutively in the leaves of poplars. Inhibition of ADH in excised leaves caused a significant decrease of acetaldehyde emission accompanied by an increased ethanol emission. Since inhibition of CAT by aminotriazole did not affect acetaldehyde and ethanol emission, it is concluded that the oxidation of ethanol in the leaves is mediated by ADH rather than by CAT. Further studies indicated that aldehyde dehydrogenase (ALDH; EC 1.2.1.5) seems to be responsible for the oxidation of acetaldehyde. The present results demonstrate that acetaldehyde emission is clearly dependent on its production in the leaves as controlled by the delivery of ethanol to the leaves via the transpiration stream. Environmental factors that control stomatal conductance seem to be of less importance for acetaldehyde emission by the leaves.  相似文献   

7.
To evaluate the roles of MEOS (microsomal ethanol oxidizing system) and catalase in non-alcohol dehydrogenase (ADH) ethanol metabolism, MEOS and catalase activities in vitro and ethanol oxidation rates in hepatocytes from ADH-negative deermice were measured after treatment with catalase inhibitors and/or a stimulator of H2O2 generation. Inhibition of ethanol peroxidation by 3-amino-1,2,4-triazole (aminotriazole) was found to be greater than 85% up to 3 h and 80% at 6 h in liver homogenates. Urate (1 mM) which stimulates H2O2 production in living systems, increased ethanol oxidation fourfold in control but not in cells from aminotriazole-treated animals, documenting effective inhibition of catalase-mediated ethanol peroxidation by aminotriazole. While aminotriazole slightly depressed (15%) basal ethanol oxidation in hepatocytes, in vitro experiments showed a similar decrease in MEOS activity after aminotriazole pretreatment. Azide (0.1 mM), a potent inhibitor of catalase in vitro, also did not affect ethanol oxidation in control cells. By contrast, 1-butanol, a competitive inhibitor of MEOS, but neither a substrate nor an inhibitor of catalase, decreased ethanol oxidation rates in a dose-dependent manner. These results show that, in deermice lacking ADH, catalase plays little if any role in hepatic ethanol oxidation, and that MEOS mediates non-ADH metabolism.  相似文献   

8.
The liver enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), which are responsible for the oxidative metabolism of ethanol, are polymorphic in humans. An allele encoding an inactive form of the mitochondrial ALDH2 is known to reduce the likelihood of alcoholism in Japanese. We hypothesized that the polymorphisms of both ALDH and ADH modify the predisposition to development of alcoholism. Therefore, we determined the genotypes of the ADH2, ADH3, and ALDH2 loci of alcoholic and nonalcoholic Chinese men living in Taiwan, using leukocyte DNA amplified by the PCR and allele-specific oligonucleotides. The alcoholics had significantly lower frequencies of the ADH2*2, ADH3*1, and ALDH2*2 alleles than did the nonalcoholics, suggesting that genetic variation in both ADH and ALDH, by modulating the rate of metabolism of ethanol and acetaldehyde, influences drinking behavior and the risk of developing alcoholism.  相似文献   

9.
Guinea pig ethanol metabolism as well as distribution and activities of ethanol metabolizing enzymes were studied. Alcohol dehydrogenase (ADH; EC 1.1.1.1) is almost exclusively present in liver except for minor activities in the cecum. All other organ tissues tested (skeletal muscle, heart, brain, stomach, and testes) contained only negligible enzyme activities. In fed livers, ADH could only be demonstrated in the cytosolic fraction (2.94 μmol/g liver/min at 38 °C) and its apparent Km value of 0.42 mm for ethanol as substrate is similar to the average Km of the human enzymes. Acetaldehyde dehydrogenase (ALDH; EC 1.2.1.3) of guinea pig liver was measured at low (0.05 mm) and high (10 mm) acetaldehyde concentrations and its subcellular localization was found to be mainly mitochondrial. The total acetaldehyde activity in liver amounts to 3.56 μmol/g/ min. Fed and fasted animals showed similar zero-order alcohol elimination rates after intraperitoneal injection of 1.7 or 3.0 g ethanol/kg body wt. The ethanol elimination rate of fed animals after 1.7 g ethanol/kg body wt (2.59 μmol/g liver/min) was inhibited by 80% after intraperitoneal injection of 4-methylpyrazole. Average ethanol elimination rates in vivo after 1.7 g/kg ethanol commanded only 88% of the totally available ADH activity in fed guinea pig livers. Catalase (EC 1.11.1.6), an enzyme previously implicated in ethanol metabolism, is of 3.4-fold higher activity in guinea pig (10,400 U/g liver) than in rat livers (3,100 U/g liver), but 98% inhibition by 3-amino-1,2,4-triazole did not significantly alter ethanol elimination rates. After ethanol injection, fed and fasted guinea pigs reacted with prolonged hyperglycemia.  相似文献   

10.
The intestinal protozoan pathogen Entamoeba histolytica lacks mitochondria and derives energy from the fermentation of glucose to ethanol with pyruvate, acetyl enzyme Co-A, and acetaldehyde as intermediates. A key enzyme in this pathway may be the 97-kDa bifunctional E. histolytica alcohol dehydrogenase 2 (EhADH2), which possesses both alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase activity (ALDH). EhADH2 appears to be a fusion protein, with separate N-terminal ALDH and C-terminal ADH domains. Here, we demonstrate that EhADH2 expression is required for E. histolytica growth and survival. We find that a mutant EhADH2 enzyme containing the C-terminal 453 amino acids of EhADH2 has ADH activity but lacks ALDH activity. However, a mutant consisting of the N-terminal half of EhADH2 possessed no ADH or ALDH activity. Alteration of a single histidine to arginine in the putative active site of the ADH domain eliminates both ADH and ALDH activity, and this mutant EhADH2 can serve as a dominant negative, eliminating both ADH and ALDH activity when co-expressed with wild-type EhADH2 in Escherichia coli. These data indicate that EhADH2 enzyme is required for E. histolytica growth and survival and that the C-terminal ADH domain of the enzyme functions as a separate entity. However, ALDH activity requires residues in both the N- and C-terminal halves of the molecule.  相似文献   

11.
Acetaldehyde (ACH) associated with alcoholic beverages is Group 1 carcinogen to humans (IARC/WHO). Aldehyde dehydrogenase (ALDH2), a major ACH eliminating enzyme, is genetically deficient in 30–50% of Eastern Asians. In alcohol drinkers, ALDH2-deficiency is a well-known risk factor for upper aerodigestive tract cancers, i.e., head and neck cancer and esophageal cancer. However, there is only a limited evidence for stomach cancer. In this study we demonstrated for the first time that ALDH2 deficiency results in markedly increased exposure of the gastric mucosa to acetaldehyde after intragastric administration of alcohol. Our finding provides concrete evidence for a causal relationship between acetaldehyde and gastric carcinogenesis. A plausible explanation is the gastric first pass metabolism of ethanol. The gastric mucosa expresses alcohol dehydrogenase (ADH) enzymes catalyzing the oxidation of ethanol to acetaldehyde, especially at the high ethanol concentrations prevailing in the stomach after the consumption of alcoholic beverages. The gastric mucosa also possesses the acetaldehyde-eliminating ALDH2 enzyme. Due to decreased mucosal ALDH2 activity, the elimination of ethanol-derived acetaldehyde is decreased, which results in its accumulation in the gastric juice. We also demonstrate that ALDH2 deficiency, proton pump inhibitor (PPI) treatment, and L-cysteine cause independent changes in gastric juice and salivary acetaldehyde levels, indicating that intragastric acetaldehyde is locally regulated by gastric mucosal ADH and ALDH2 enzymes, and by oral microbes colonizing an achlorhydric stomach. Markedly elevated acetaldehyde levels were also found at low intragastric ethanol concentrations corresponding to the ethanol levels of many foodstuffs, beverages, and dairy products produced by fermentation. A capsule that slowly releases L-cysteine effectively eliminated acetaldehyde from the gastric juice of PPI-treated ALDH2-active and ALDH2-deficient subjects. These results provide entirely novel perspectives for the prevention of gastric cancer, especially in established risk groups.  相似文献   

12.
Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis.  相似文献   

13.
The enzyme aldehyde dehydrogenase (ALDH) is essential for ethanol metabolism in mammals, converting the highly toxic intermediate acetaldehyde to acetate. The role of ALDH in Drosophila has been debated, with some authors arguing that, at least in larvae, acetaldehyde detoxification is carried out mainly by alcohol dehydrogenase (ADH), the enzyme responsible for converting ethanol to acetaldehyde. Here, we report the creation and characterization of four null mutants of Aldh, the putative structural locus for ALDH. Aldh null larvae and adults are poisoned by ethanol concentrations easily tolerated by wild-types; their ethanol sensitivity is in fact comparable to that of Adh nulls. The results refute the view that ALDH plays only a minor role in ethanol detoxification in larvae, and suggest that Aldh and Adh may be equally important players in the evolution of ethanol resistance in fruit-breeding Drosophila.  相似文献   

14.
Epidemiological studies have identified chronic alcohol consumption as a significant risk factor for cancers of the upper aerodigestive tract, including the oral cavity, pharynx, larynx and esophagus, and for cancer of the liver. Ingested ethanol is mainly oxidized by the enzymes alcohol dehydrogenase (ADH), cytochrome P-450 2E1 (CYP2E1), and catalase to form acetaldehyde, which is subsequently oxidized by aldehyde dehydrogenase 2 (ALDH2) to produce acetate. Polymorphisms of the genes which encode enzymes for ethanol metabolism affect the ethanol/acetaldehyde oxidizing capacity. ADH1B*2 allele (ADH1B, one of the enzyme in ADH family) is commonly observed in Asian population, has much higher enzymatic activity than ADH1B*1 allele. Otherwise, approximately 40% of Japanese have single nucleotide polymorphisms (SNPs) of the ALDH2 gene. The ALDH2 *2 allele encodes a protein with an amino acid change from glutamate to lysine (derived from the ALDH2*1 allele) and devoid of enzymatic activity. Neither the homozygote (ALDH2*2/*2) nor heterozygote (ALDH2*1/*2) is able to metabolize acetaldehyde promptly. Acetaldehyde is a genotoxic compound that reacts with DNA to form primarily a Schiff base N2-ethylidene-2′-deoxyguanosine (N2-ethylidene-dG) adduct, which may be converted by reducing agents to N2-ethyl-2′-deoxyguanosine (N2-ethyl-dG) in vivo, and strongly blocked translesion DNA synthesis. Several studies have demonstrated a relationship between ALDH2 genotypes and the development of certain types of cancer. On the other hand, the drinking of alcohol induces the expression of CYP2E1, resulting in an increase in reactive oxygen species (ROS) and oxidative DNA damage. This review covers the combined effects of alcohol and ALDH2 polymorphisms on cancer risk. Studies show that ALDH2*1/*2 heterozygotes who habitually consume alcohol have higher rates of cancer than ALDH2*1/*1 homozygotes. Moreover, they support that chronic alcohol consumption contributes to formation of various DNA adducts. Although some DNA adducts formation is demonstrated to be an initiation step of carcinogenesis, it is still unclear that whether these alcohol-related DNA adducts are true factors or initiators of cancer. Future studies are needed to better characterize and to validate the roles of these DNA adducts in human study.  相似文献   

15.
The apparent deuterium isotope effects on Vmax/Km (D(V/K] of ethanol oxidation in two deermouse strains (one having and one lacking hepatic alcohol dehydrogenase (ADH] were used to calculate flux through the ADH, microsomal ethanol-oxidizing system (MEOS), and catalase pathways. In vitro, D(V/K) values were 3.22 for ADH, 1.13 for MEOS, and 1.83 for catalase under physiological conditions of pH, temperature, and ionic strength. In vivo, in deermice lacking ADH (ADH-), D(V/K) was 1.20 +/- 0.09 (mean +/- S.E.) at 7.0 +/- 0.5 mM blood ethanol and 1.08 +/- 0.10 at 57.8 +/- 10.2 mM blood ethanol, consistent with ethanol oxidation principally by MEOS. Pretreatment of ADH- animals with the catalase inhibitor 3-amino-1,2,4-triazole did not significantly change D(V/K). ADH+ deermice exhibited D(V/K) values of 1.87 +/- 0.06 (untreated), 1.71 +/- 0.13 (pretreated with 3-amino-1,2,4-triazole), and 1.24 +/- 0.13 (after the ADH inhibitor, 4-methylpyrazole) at 5-7 mM blood ethanol levels. At elevated blood ethanol concentrations (58.1 +/- 2.4 mM), a D(V/K) of 1.37 +/- 0.21 was measured in the ADH+ strain. For measured D(V/K) values to accurately reflect pathway contributions, initial reaction conditions are essential. These were shown to exist by the following criteria: negligible fractional conversion of substrate to product and no measurable back reaction in deermice having a reversible enzyme (ADH). Thus, calculations from D(V/K) indicate that, even when ADH is present, non-ADH pathways (mostly MEOS) participate significantly in ethanol metabolism at all concentrations tested and play a major role at high levels.  相似文献   

16.
Ethanol is an important environmental variable for fruit-breedingDrosophila species, serving as a resource at low levels anda toxin at high levels. The first step of ethanol metabolism,the conversion of ethanol to acetaldehyde, is catalyzed primarilyby the enzyme alcohol dehydrogenase (ADH). The second step,the oxidation of acetaldehyde to acetate, has been a sourceof controversy, with some authors arguing that it is carriedout primarily by ADH itself, rather than a separate aldehydedehydrogenase (ALDH) as in mammals. We review recent evidencethat ALDH plays an important role in ethanol metabolism in Drosophila.In support of this view, we report that D. melanogaster populationsmaintained on ethanol-supplemented media evolved higher activityof ALDH, as well as of ADH. We have also tentatively identifiedthe structural gene responsible for the majority of ALDH activityin D. melanogaster. We hypothesize that variation in ALDH activitymay make an important contribution to the observed wide variationin ethanol tolerance within and among Drosophila species.  相似文献   

17.
Ethanol is converted to acetaldehyde by alcohol dehydrogenase (ADH), cytochrome p4502E1 (CYP2E1) and catalase. This metabolite is then detoxified by aldehyde dehydrogenase 2 (ALDH2), a key enzyme in the elimination of acetaldehyde, via further oxidation to acetic acid. The toxic effects of acetaldehyde are well documented and may be partially mediated by genotoxic damage. In the present study, we investigated the effects of alcohol-drinking behavior and genetic polymorphisms in two different genes (ALDH2 and CYP2E1) on the micronuclei (MN) frequency in 248 healthy Japanese men. Genotyping was performed by PCR-RFLP analysis. The ALDH2 variant (deficient type) was significantly associated with an increased MN frequency in subjects drinking more than three times/wk, while habitual drinkers with wild-type CYP2E1 also had a significantly increased MN frequency. Furthermore, when the subjects were divided into eight groups according to their drinking frequency and genotypes of ALDH2 and CYP2E1, we found that habitual drinkers with homozygous CYP2E1*1/*1 and heterozygous ALDH2*1/*2 or homozygous ALDH2*2/*2 showed the highest mean MN frequency. In the present study, we found clear associations among ALDH2 and CYP2E1 gene polymorphisms, alcohol-drinking behavior and genotoxic effects in a healthy Japanese population. Therefore, analysis of the polymorphisms of alcohol-metabolizing enzymes may lead to elucidation of the mechanism(s) for individual susceptibilities to the toxicity of ethanol metabolites.  相似文献   

18.
Ethanol is one of the most efficient carbon sources for Euglena gracilis. Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64–6.5 mM for ethanol, and 0.16–0.88 mM for NAD+, while the ALDH Km values were 1.7–5.3 μM for acetaldehyde and 33–47 μM for NAD+. These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.  相似文献   

19.
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) isozyme phenotypes were determined in surgical and endoscopic biopsies of the stomach and duodenum by agarose isoelectric focusing. gamma-ADH was found to be the predominant form in the mucosal layer whereas beta-ADH was predominant in the muscular layer. Low-Km ALDH1 and ALDH2 were found in the stomach and duodenum. High-Km ALDH3 isozymes occurred only in the stomach but not in the duodenum. The isozyme patterns of gastric mucosal ALDH2 and ALDH3 remained unchanged in the fundus, corpus, and antrum. The stomach ALDH3 isozymes exhibited a Km value for acetaldehyde of 75 mM, and an optimum for acetaldehyde oxidation at pH 8.5. Since the Km value was high, ALDH3 contributed very little, if any, to gastric ethanol metabolism. The activities of ALDH in the gastric mucosa deficient in ALDH2 were 60-70% of that of the ALDH2-active phenotypes. These results indicate that Chinese lacking ALDH2 activity may have a lower acetaldehyde oxidation rate in the stomach during alcohol consumption.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号