首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Association of focal adhesion kinase with Grb7 and its role in cell migration.   总被引:11,自引:0,他引:11  
Focal adhesion kinase (FAK) has been implicated to play a key role in integrin-mediated signal transduction in cell migration. Grb7 is an Src homology (SH) 2-containing and pleckstrin homology domain-containing molecule, which shares significant homology with the Caenorhabditis elegans gene for Mig-10 involved in cell migration during embryogenesis. Here, we report that the SH2 domain of Grb7 can directly interact with FAK through Tyr-397, a major autophosphorylation site in vitro and in vivo. This interaction is cell adhesion-dependent, suggesting that the FAK-Grb7 complex is involved in integrin signaling. Using tetracycline-regulated expression system, we showed that overexpression of Grb7 enhanced cell migration toward fibronectin, whereas overexpression of its SH2 domain alone inhibited cell migration. In addition, we found that phosphorylation of FAK or p130(cas) was not affected by the expression of either Grb7 or its SH2 domain alone, suggesting that Grb7 is downstream of FAK and does not compete with Src for binding to FAK in vivo. Taken together, these results suggest that the FAK-Grb7 complex plays a role in cell migration stimulated by integrin signaling through FAK.  相似文献   

2.
Reiske HR  Zhao J  Han DC  Cooper LA  Guan JL 《FEBS letters》2000,486(3):275-280
Focal adhesion kinase (FAK) is an important mediator of signal transduction pathways initiated by integrins in cell migration, survival and cell cycle regulation. The ability of FAK to mediate integrin signaling in the regulation of cell cycle progression depends on the phosphorylation of Tyr397, which implies a functional significance for the formation of FAK signaling complexes with Src, phosphatidylinositol-3-kinase (PI3K) and Grb7. We have previously described a FAK mutant, D395A, that selectively disrupts FAK binding to PI3K, but allows FAK association with Src. Using this mutation in a mislocalized FAK mutant background, we show here that formation of a FAK/PI3K complex is not sufficient for cell cycle progression but the formation of a FAK/Src complex plays an essential role. We also show that mutation of D395 to A disrupted FAK association with Grb7. This suggests that a FAK/Grb7 complex is not involved in the cell cycle regulation either, which is supported by direct analysis of cells expressing a dominant negative Grb7 construct. Finally, we provide evidence that the Src-dependent association of FAK with Grb2 and p130(Cas) are both required for the regulation of cell cycle progression by FAK. Together, these studies identify important FAK downstream signaling pathways in cell cycle regulation.  相似文献   

3.
Grb10 is a member of the Grb7 family of adapter proteins lacking intrinsic enzymatic function and encodes functional domains including a pleckstrin homology (PH) domain and an SH2 domain. The role of different Grb10 splice variants in signal transduction of growth factors like insulin or insulin-like growth factor has been described as inhibitory or stimulatory depending on the presence of a functional PH and/or SH2 domain. Performing a yeast two-hybrid screen with the c-kit cytoplasmic tail fused to LexA as a bait and a mouse embryo cDNA library as prey, we found that the Grb10 SH2 domain interacted with the c-kit receptor tyrosine kinase. In the course of SCF-mediated activation of c-kit, Grb10 is recruited to the c-kit receptor in an SH2 domain- and phosphotyrosine-dependent but PH domain-independent manner. We found that Akt and Grb10 form a constitutive complex, suggesting a role for Grb10 in the translocation of Akt to the cell membrane. Indeed, coexpression studies revealed that Grb10 and c-kit activate Akt in a synergistic manner. This dose-dependent effect of Grb10 is wortmannin sensitive and was also seen at a lower level in cells in which c-kit was not expressed. Expression of a Grb10 mutant lacking the SH2 domain as well as a mutant lacking the PH domain did not influence Akt activity. Grb10-induced Akt activation was observed without increased phosphatidylinositol 3-kinase (PI3-kinase) activity, suggesting that Grb10 is a positive regulator of Akt downstream of PI3-kinase. Significantly, deficient activation of Akt by a constitutively activated c-kit mutant lacking the binding site for PI3-kinase (c-kitD814V/Y719F) could be fully compensated by overexpression of Grb10. In Ba/F3 cells, the incapacity of c-kitD814V/Y719F to induce interleukin-3 (IL-3)-independent growth could be rescued by overexpression of Grb10. In contrast, expression of the SH2 deletion mutant of Grb10 together with c-kitD814V/Y719F did not render Ba/F3 cells independent of IL-3. In summary, we provide evidence that Grb10 is part of the c-kit signaling pathway and that the expression level of Grb10 critically influences Akt activity. We propose a model in which Grb10 acts as a coactivator for Akt by virtue of its ability to form a complex with Akt and its SH2 domain-dependent translocation to the cell membrane.  相似文献   

4.
Etk/BMX, a member of the Btk family of tyrosine kinases, is highly expressed in cells with great migratory potential, including endothelial cells and metastatic carcinoma cell lines. Here, we present evidence that Etk is involved in integrin signalling and promotes cell migration. The activation of Etk by extracellular matrix proteins is regulated by FAK through an interaction between the PH domain of Etk and the FERM domain of FAK. The lack of Etk activation by extracellular matrix in FAK-null cells could be restored by co-transfection with wild-type FAK. Disrupting the interaction between Etk and FAK diminished the cell migration promoted by either kinase. Furthermore, inhibiting Etk expression in metastatic carcinoma cell lines with an antisense oligonucleotide blocks integrin-mediated migration of these cells. Taken together, our data indicate the essential role of the interaction of the PH domain of Etk and the FERM domain of FAK in integrin signalling.  相似文献   

5.
T L Shen  J L Guan 《FEBS letters》2001,499(1-2):176-181
Focal adhesion kinase (FAK) is a key mediator of integrin signaling, which has been implicated in the regulation of cell migration and cell cycle progression. Using chimeric molecules that fuse the focal adhesion targeting (FAT) sequence directly to several signaling molecules, we investigated the potential role of FAK recruitments of signaling molecules to focal contacts in the regulation of cell migration and cell cycle progression. We found that fusion of FAT to Src, the p85 subunit of phosphatidylinositol 3-kinase, Grb7 and Grb2 resulted in the efficient focal adhesion targeting of these signaling molecules. We showed that expression of Src-FAT, p85-FAT, or Grb7-FAT, but not Grb2-FAT, each stimulated cell migration. Interestingly, tyrosine phosphorylation of paxillin, but not p130cas, was induced by expression of Src-FAT, suggesting a potential role of paxillin in mediating stimulation of cell migration by the chimeric molecule. In contrast, targeting of Grb2, but not Src, p85, or Grb7, to focal contacts increased cell cycle progression. Biochemical analyses correlated Erk activation by Grb2-FAT with its stimulation of cell cycle progression. Together, these results suggest that at least part of the role of FAK interaction with these signaling molecules is to recruit them to focal contacts and that distinct FAK signaling complexes are involved in the regulation of cell migration vs. cell cycle progression.  相似文献   

6.
We have previously described Grb7 association with focal adhesion kinase (FAK) and its possible roles in cell migration. In this paper, we investigated the mechanisms by which Grb7 and its association with FAK regulate cell migration. We found that deletion of the Grb7 SH2 domain eliminated partial Grb7 localization to focal contacts and its ability to stimulate cell migration. Replacement of the SH2 domain with the focal adhesion targeting sequence from FAK resulted in the focal contacts localization of the chimeric molecule and restored its activity to stimulate cell migration. We also found that Grb7 could be phosphorylated by FAK, which was dependent on the FAK kinase activity but not the presence of the Src family kinases. Cell adhesion also enhanced Grb7 phosphorylation in FAK+/+ cells but not FAK-/- cells, suggesting that Grb7 is a physiological substrate of FAK. Furthermore, both Grb7 and the chimeric molecule did not increase migration of FAK-/- cells, although the chimeric molecule was targeted to the focal contacts. Last, we showed that other Grb7 family members could not stimulate cell migration under similar experimental conditions. Together, these results demonstrate a role for Grb7 targeting to focal contacts and its phosphorylation by FAK in the regulation of cell migration.  相似文献   

7.
Phosphoinositide 3-kinase (PI3K) mediates essential functions of vascular endothelial growth factor (VEGF), including the stimulation of endothelial cell proliferation and migration. Nevertheless, the mechanisms coupling the receptor VEGFR-2 to PI3K remain obscure. We observed that the Grb2-bound adapter Gab1 is tyrosine-phosphorylated and relocated to membrane fractions upon VEGF stimulation of endothelial cells. We could detect the PI3K regulatory subunit p85 in immunoprecipitates of endogenous Gab1, and vice versa, and measure a Gab1-associated lipid kinase activity upon VEGF stimulation. Furthermore, transfection of the Gab1-YF3 mutant lacking all p85-binding sites strongly repressed PI3K activation measured in vitro. Moreover, Gab1-YF3 severely decreased the cellular amount of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generated in response to VEGF. Furthermore, adenoviral expression of Gab1-YF3 suppressed both Akt phosphorylation and recovery of wounded human umbilical vein endothelial cell monolayers, a VEGF-dependent process involving cell migration and proliferation under PI3K control. Transfection of other Gab1 mutants, lacking Grb2-binding sites or the pleckstrin homology (PH) domain, also prevented Akt activation, further demonstrating Gab1 involvement in PI3K activation. These mutants were also used to show that interactions with both Grb2 and PtdIns(3,4,5)P3 mediate Gab1 recruitment by VEGFR-2. Importantly, Gab1 mobilization was impaired by (i) PI3K inhibitors, (ii) deletion of Gab1 PH domain, (iii) PTEN (phosphatase and tensin homolog deleted on chromosome 10) overexpression to repress PtdIns(3,4,5)P3 production, and (iv) overexpression of a competitor PH domain for PtdIns(3,4,5)P3 binding, which altogether demonstrated that PI3K is also an upstream regulator of Gab1. Gab1 thus appears as a primary actor in coupling VEGFR-2 to PI3K/Akt, recruited through an amplification loop involving PtdIns(3,4,5)P3 and its PH domain.  相似文献   

8.
cAMP-dependent protein kinase A (PKA) is important in processes requiring localized cell protrusion, such as cell migration and axonal path finding. Here, we used a membrane-targeted PKA biosensor to reveal activation of PKA at the leading edge of migrating cells. Previous studies show that PKA activity promotes protrusion and efficient cell migration. In live migrating cells, membrane-associated PKA activity was highest at the leading edge and required ligation of integrins such as α4β1 or α5β1 and an intact actin cytoskeleton. α4 integrins are type I PKA-specific A-kinase anchoring proteins, and we now find that type I PKA is important for localization of α4β1 integrin-mediated PKA activation at the leading edge. Accumulation of 3′ phosphorylated phosphoinositides [PtdIns(3,4,5)P3] products of phosphatidylinositol 3-kinase (PI3-kinase) is an early event in establishing the directionality of migration; however, polarized PKA activation did not require PI3-kinase activity. Conversely, inhibition of PKA blocked accumulation of a PtdIns(3,4,5)P3-binding protein, the AKT-pleckstrin homology (PH) domain, at the leading edge; hence, PKA is involved in maintaining cell polarity during migration. In sum, we have visualized compartment-specific PKA activation in migrating cells and used it to reveal that adhesion-mediated localized activation of PKA is an early step in directional cell migration.  相似文献   

9.
Protein kinase B (PKB or Akt) is a mitogen-regulated protein kinase involved in the protection of cells from apoptosis, the promotion of cell proliferation and diverse metabolic responses [1]. Its activation is initiated by the binding of 3' phosphorylated phosphoinositide lipids to its pleckstrin homology (PH) domain, resulting in the induction of activating phosphorylation at residues Thr308 and Ser473 by upstream kinases such as phosphoinositide-dependent protein kinase-1 (PDK1) [2]. Adhesion of epithelial cells to extracellular matrix leads to protection from apoptosis via the activation of phosphoinositide (PI) 3-kinase and Akt/PKB through an unknown mechanism [3] [4]. Here, we use the localisation of Akt/PKB within the cell to probe the sites of induction of PI 3-kinase activity. In fibroblasts, immunofluorescence microscopy showed that endogenous Akt/PKB localised to membrane ruffles at the outer edge of the cell following mitogen treatment as did green fluorescent protein (GFP) fusions with full-length Akt/PKB or its PH domain alone. In epithelial cells, the PH domain of Akt/PKB localised to sites of cell-cell and cell-matrix contact, distinct from focal contacts, even in the absence of serum. As this localisation was disrupted by PI 3-kinase inhibitory drugs and by mutations that inhibit interaction with phosphoinositides, it is likely to represent the sites of constitutive 3' phosphoinositide generation that provide a cellular survival signal. We propose that the attachment-induced, PI-3-kinase-mediated survival signal in epithelial cells is generated not only by cell-matrix interaction but also by cell-cell interaction.  相似文献   

10.
Adaptor proteins mediate signal transduction from cell surface receptors to downstream signaling pathways. The Grb7 protein family of adaptor proteins is constituted by Grb7, Grb10, and Grb14. This protein family has been shown to be overexpressed in certain cancers and cancer cell lines. Grb7‐mediated cell migration has been shown to proceed through a focal adhesion kinase (FAK)/Grb7 pathway, although the specific participants downstream of Grb7 in cell migration signaling have not been fully determined. In this study, we report that Grb7 interacts with Hax‐1, a cytoskeletal‐associated protein found overexpressed in metastatic tumors and cancer cell lines. Additionally, in yeast 2‐hybrid assays, we show that the interaction is specific to the Grb7‐RA and ‐PH domains. We have also demonstrated that full‐length Grb7 and Hax‐1 interact in mammalian cells and that Grb7 is tyrosine phosphorylated. Isothermal titration calorimetry measurements demonstrate the Grb7‐RA‐PH domains bind to the Grb7‐SH2 domain with micromolar affinity, suggesting full‐length Grb7 can exist in a head‐to‐tail conformational state that could serve a self‐regulatory function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Rajala RV  Chan MD  Rajala A 《Biochemistry》2005,44(47):15461-15471
Many retinal degenerative diseases show an early loss of rod cells followed by cone cells. In these degenerations the pathological phenotype is apoptosis. We have previously demonstrated the light-dependent tyrosine phosphorylation of the insulin receptor in the retina, which leads to the activation of anti-apoptotic signaling molecules. The mechanism of the regulation of the insulin receptor in the retina is not known. Yeast two-hybrid screening of a bovine retinal cDNA library with the cytoplasmic domain of the retinal insulin receptor (IRbeta) identified a member of the Grb7 (growth factor receptor-bound protein 7) gene family, Grb14. In this report, we describe the unique features of Grb14. Grb14 forms a specific complex with the cytoplasmic domain of IRbeta when both are expressed as hybrid proteins in yeast cells. This interaction is strictly dependent upon receptor tyrosine kinase activity. Deletion mutagenesis on Grb14 indicated a phosphorylated insulin receptor interacting (PIR) domain between the PH (pleckstrin homology) and SH2 (Src homology) domains that binds to IRbeta. Nuclear import assays in yeast indicated the presence of a functional nuclear localization signal in Grb14 between amino acids 63 and 68 (RRKKD). Subcellular localization of isolated retinas probed with anti-Grb14 antibody further confirmed the presence of Grb14 in nuclear fractions. Analysis using a protein-lipid overlay assay indicated binding of Grb14 and its PH domain to D3 phosphoinositides. In addition, Grb14-phosphoinositide 3,4,5-trisphosphate complexes are detected in lysates prepared from insulin-stimulated retina tissues, whereas Grb14-phosphoinositide 4,5-bisphosphate interactions are observed under non-insulin stimulated conditions. These findings suggest that Grb14 could be a diverse regulator of insulin receptor mediated pathways in the retina.  相似文献   

12.
Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases.  相似文献   

13.
Pleckstrin homology (PH) domains are found in numerous membrane-associated proteins and have been implicated in the mediation of protein-protein and protein-phospholipid interactions. Dynamin, a GTPase required for clathrin-dependent endocytosis, contains a PH domain which binds to phosphoinositides and participates in the interaction between dynamin and the βγ subunits of heterotrimeric G proteins. The PH domain is essential for expression of phosphoinositide-stimulated GTPase activity of dynamin in vitro, but its involvement in the endocytic process is unknown. We expressed a series of dynamin PH domain mutants in cultured cells and determined their effect on transferrin uptake by those cells. Endocytosis is blocked in cells expressing a PH domain deletion mutant and a point mutant that fails to interact with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. In contrast, expression of a point mutant with unimpaired PI(4,5)P2 interaction has no effect on transferrin uptake. These results demonstrate the significance of the PH domain for dynamin function and suggest that its role may be to mediate interactions between dynamin and phosphoinositides.  相似文献   

14.
Vascular endothelial growth factor (VEGF)-A stimulates formation of new blood vessels (angiogenesis). This process includes migration of endothelial cells from the preexisting vessel toward the source of the growth factor. We show that VEGF-A-induced migration of porcine aortic endothelial cells expressing VEGF receptor-2 (VEGFR-2) is dependent on activation of phosphoinositide 3-kinase (PI3-kinase). There is no direct interaction between VEGF receptor-2 and PI3-kinase; instead PI3-kinase is activated downstream of focal adhesion kinase (FAK) in VEGF-A-stimulated cells. Thus, VEGF-A stimulation leads to complex formation between FAK and PI3-kinase and overexpression of dominant-negative FAK decreases VEGF-A-induced PI3-kinase activation. FAK activation by VEGF-A increases with increasing concentration of growth factor, without apparent collapse of the cytoskeleton, in contrast to the effect of platelet-derived growth factor. FAK activation is mediated via the C-terminal tail of VEGFR-2 and loss of VEGF-A-induced FAK activation in cells expressing mutant VEGFR-2 correlates with loss of migration capacity. These data show that VEGF-A-induced FAK and PI3-kinase activation are required for migration of cells expressing VEGFR-2, via a pathway independent of direct interaction with the receptor.  相似文献   

15.
Insulin receptor substrates (IRS) mediate biological actions of insulin, growth factors, and cytokines. All four mammalian IRS proteins contain pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains at their N termini. However, the molecules diverge in their C-terminal sequences. IRS3 is considerably shorter than IRS1, IRS2, and IRS4, and is predicted to interact with a distinct group of downstream signaling molecules. In the present study, we investigated interactions of IRS3 with various signaling molecules. The PTB domain of mIRS3 is necessary and sufficient for binding to the juxtamembrane NPXpY motif of the insulin receptor in the yeast two-hybrid system. This interaction is stronger if the PH domain or the C-terminal phosphorylation domain is retained in the construct. As determined in a modified yeast two-hybrid system, mIRS3 bound strongly to the p85 subunit of phosphatidylinositol 3-kinase. Although high affinity interaction required the presence of at least two of the four YXXM motifs in mIRS3, there was not a requirement for specific YXXM motifs. mIRS3 also bound to SHP2, Grb2, Nck, and Shc, but less strongly than to p85. Studies in COS-7 cells demonstrated that deletion of either the PH or the PTB domain abolished insulin-stimulated phosphorylation of mIRS3. Insulin stimulation promoted the association of mIRS3 with p85, SHP2, Nck, and Shc. Despite weak association between mIRS3 and Grb2, this interaction was not increased by insulin, and may not be mediated by the SH2 domain of Grb2. Thus, in contrast to other IRS proteins, mIRS3 appears to have greater specificity for activation of the phosphatidylinositol 3-kinase pathway rather than the Grb2/Ras pathway.  相似文献   

16.
Phosphoinositide binding by the pleckstrin homology domains of Ipl and Tih1   总被引:1,自引:0,他引:1  
The Ipl protein consists of a single pleckstrin homology (PH) domain with short N- and C-terminal extensions. This protein is highly conserved among vertebrates, and it acts to limit placental growth in mice. However, its biochemical function is unknown. The closest paralogue of Ipl is Tih1, another small PH domain protein. By sequence comparisons, Ipl and Tih1 define an outlying branch of the PH domain superfamily. Here we describe phosphatidylinositol phosphate (PIP) binding by these proteins. Ipl and Tih1 bind to immobilized PIPs with moderate affinity, but this binding is weaker and more promiscuous than that of prototypical PH domains from the general receptor for phosphoinositides (GRP1), phospholipase C delta1, and dual adaptor for phosphoinositides and phosphotyrosine 1. In COS7 cells exposed to epidermal growth factor, green fluorescent protein (GFP)-Ipl and GFP-Tih1 accumulate at membrane ruffles without clearing from the cytoplasm, whereas control GFP-GRP1 translocates rapidly to the plasma membrane and clears from the cytoplasm. Ras*-Ipl and Ras*-Tih1 fusion proteins both rescue cdc25ts Saccharomyces cerevisiae, but Ras*-Ipl rescues more efficiently in the presence of phosphatidylinositol 3-kinase (PI3K), whereas PI3K-independent rescue is more efficient with Ras*-Tih1. Site-directed mutagenesis defines amino acids in the beta1-loop1-beta2 regions of Ipl and Tih1 as essential for growth rescue in this assay. Thus, Ipl and Tih1 are bona fide PH domain proteins, with broad specificity and moderate affinity for PIPs.  相似文献   

17.
Cells utilize dynamic interactions with the extracellular matrix to adapt to changing environmental conditions. Thrombospondin 1 (TSP1) induces focal adhesion disassembly and cell migration through a sequence (hep I) in its heparin-binding domain signaling through the calreticulin-low density lipoprotein receptor-related protein receptor complex. This involves the Galphai-dependent activation of ERK and phosphoinositide (PI) 3-kinase, both of which are required for focal adhesion disassembly. Focal adhesion kinase (FAK) regulates adhesion dynamics, acting in part by modulating RhoA activity, and FAK is implicated in ERK and PI 3-kinase activation. In this work, we sought to determine the role of FAK in TSP1-induced focal adhesion disassembly. TSP1/hep I does not stimulate focal adhesion disassembly in FAK knockout fibroblasts, whereas re-expressing FAK rescues responsiveness. Inhibiting FAK signaling through FRNK or FAK Y397F expression in endothelial cells also abrogates this response. TSP1/hep I stimulates a transient increase in FAK phosphorylation that requires calreticulin and Galphai, but not ERK or PI 3-kinase. Hep I does not activate ERK or PI 3-kinase in FAK knockout fibroblasts, suggesting activation occurs downstream of FAK. TSP1/hep I stimulates RhoA inactivation with kinetics corresponding to focal adhesion disassembly in a FAK, ERK, and PI 3-kinase-dependent manner. Furthermore, hep I does not stimulate focal adhesion disassembly in cells expressing constitutively active RhoA, suggesting that RhoA inactivation is required for this response. This is the first work to illustrate a connection between FAK phosphorylation in response to a soluble factor and RhoA inactivation, as well as the first report of PI 3-kinase and ERK in FAK regulation of RhoA activity.  相似文献   

18.
Akt is a phospholipid-binding protein and the downstream effector of the phosphoinositide 3-kinase (PI3K) pathway. Akt has three isoforms: Akt1, Akt2, and Akt3. All of these isoforms are expressed in rod photoreceptor cells, but the individual functions of each isoform are not known. In this study, we found that light induces the activation of Akt1. The membrane binding of Akt1 to rod outer segments (ROS) is insulin receptor (IR)/PI3K-dependent as demonstrated by reduced binding of Akt1 to ROS membranes of photoreceptor-specific IR knockout mice. Membrane binding of Akt1 is mediated through its Pleckstrin homology (PH) domain. To determine whether binding of the PH domain of Akt1 to photoreceptor membranes is regulated by light, various green fluorescent protein (GFP)/Akt1-PH domain fusion proteins were expressed in rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The R25C mutant PH domain of Akt1, which does not bind phosphoinositides, failed to associate with plasma membranes in a light-dependent manner. This study suggests that light-dependent generation of phosphoinositides regulates the activation and membrane binding of Akt1 in vivo. Our results also suggest that actin cytoskeletal organization may be regulated through light-dependent generation of phosphoinositides.  相似文献   

19.
Focal adhesion kinase (FAK) has been implicated to play a critical role in integrin-mediated control of cell behavior. However, it is unclear whether FAK also participates in the regulation of growth factor-elicited cellular functions. In this study, we have demonstrated that although overexpression of FAK in Madin-Dardy canine kidney cells did not alter their growth property or ability to form tubules within collagen gel upon hepatocyte growth factor (HGF) stimulation, it apparently enhanced HGF-induced cell scattering. This enhancement was largely because of an increase in the third phase (i.e. cell migration) of cell scattering rather than the first two phases (i.e. cell spreading and cell-cell dissociation). Conversely, the expression of FAK-related nonkinase significantly ( approximately 60%) inhibited HGF-induced cell migration. Moreover, we have found that the effect of FAK on promoting HGF-induced cell motility was greatly dependent on cell-matrix interactions. We showed that HGF treatment selectively increased the expression of integrins alpha(2) and, to a lesser extent, alpha(3) in Madin-Dardy canine kidney cells and that a monoclonal antibody against integrin alpha(2) efficiently blocked HGF-enhanced cell migration on collagen. In our efforts to determine the mechanism by which FAK promotes HGF-induced cell migration, we found that FAK mutants deficient in phosphatidylinositol 3-kinase or p130(Cas) binding failed to promote HGF-induced cell migration. Interestingly, cells expressing a FAK mutant defective in Grb2 binding exhibited a rate of migration approximately 50% lower than that of cells expressing wild type FAK in response to HGF stimulation. Taken together, our results suggest a link between HGF-increased integrin expression, FAK activation, and enhanced cell motility and implicate a role for FAK in the facilitation of growth factor-induced cell motility.  相似文献   

20.
We have previously shown that overexpression of focal adhesion kinase (FAK) in Chinese hamster ovary (CHO) cells promoted their migration on fibronectin. This effect was dependent on the phosphorylation of FAK at Tyr-397. This residue was known to serve as a binding site for both Src and phosphatidylinositol 3-kinase (PI3K), implying that either one or both are required for FAK to promote cell migration. In this study, we have examined the role of PI3K in FAK-promoted cell migration. We have demonstrated that the PI3K inhibitors, wortmannin and LY294002, were able to inhibit FAK-promoted migration in a dose-dependent manner. Furthermore, a FAK mutant capable of binding Src but not PI3K was generated by a substitution of Asp residue 395 with Ala. When overexpressed in CHO cells, this differential binding mutant failed to promote cell migration although its association with Src was retained. Together, these results strongly suggest that PI3K binding is required for FAK to promote cell migration and that the binding of Src and p130(Cas) to FAK may not be sufficient for this event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号