首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Bouts of induced wheel-running, 3 h long, accelerate the rate of re-entrainment of hamsters' activity rhythms to light-dark (LD) cycles that have been phase-advanced by 8 h (Mrosovsky and Salmon 1987). The bouts of running are given early in the first night of the new LD cycle, and by the second night the phase advance in activity onset already averages 7 h. Such large shifts contrast with the mean phase advance of <1 h at the peak of the phase response curve when hamsters in constant darkness (DD) experience 2-h pulses of induced activity (Reebs and Mrosovsky 1989). The present paper investigates pulse duration and light as possible causes for the discrepancy in shift amplitude between these two studies. In a first experiment, pulses of induced wheel-running 1 h, 3 h, or 5 h long were given at circadian times (CT) 6 and 22-2 to hamsters free-running in DD. Pulses given at CT 6 caused phase-advances of up to 2.8 h, whereas pulses at CT 22-2 resulted in delays of up to 1.0 h. Shifts after 3-h and 5-h pulses did not differ, but were larger than after 1-h pulses, and larger than after the 2-h pulses given in DD by Reebs and Mrosovsky (1989). Thus 3 h appears to be the minimum pulse duration necessary to obtain maximum phase-shifting effects. In a second experiment, the re-entrainment design of Mrosovsky and Salmon (1987) was repeated with the light portion of the shifted LD cycle eliminated. Hamsters exercised for 3 h phase-advanced 2.9 h on average (excluding 2 animals who ran poorly). When the same hamsters were exposed 7 days later to a 14-h light pulse starting 5 h after their activity onset, they advanced by an average of 3.3 h. Adding the average values for activity-induced shifts and light-induced shifts gives a total of about 6 h. Possible synergism between the effects of induced activity and those of light may account for the remaining small difference between this total and the 7-h advances previously reported.Abbreviations CT circadian time - DD constant darkness - LD light-dark - PRC phase response curve - free-running period of rhythm  相似文献   

2.
We have investigated the effects of destruction of the geniculo-hypothalamic tract (GHT) on the circadian system of golden hamsters. In the first experiment, intact hamsters were housed in constant darkness, and phase shifts in running-wheel activity rhythms were assessed following 15-min light pulses administered at circadian time (CT) 12 (defined as the beginning of activity), CT 14, CT 18, and CT 20. Responses to light pulses at the same CTs were then reassessed after GHT lesions. Hamsters with complete lesions showed decreases in phase advances caused by light pulses at CT 18 and CT 20. Phase delays elicited by light at CT 12 and CT 14 were not altered. In a second study, intact and GHT-ablated hamsters housed in constant light received 6-hr dark pulses at various CTs. Hamsters with complete GHT ablation showed smaller advances than controls to dark pulses centered on CT 8-10. After 110 days in constant light, 7 of 10 intact hamsters showed splitting of their activity rhythms into two components, while only 1 of the 8 similarly treated ablated hamsters displayed dissociated activity components. Ablated hamsters had significantly shorter free-running periods during the first 35 days of exposure to constant light than did the intact hamsters. These results demonstrate that destruction of the GHT in the hamster alters phase shifting in response to periods of light or dark, and they indicate a role for the GHT in mediating several photic effects on the circadian system.  相似文献   

3.
Circadian rhythms of wheel-running activity of the antelope ground squirrel (Ammospermophilus leucurus) were entrained by light-dark cycles (LD: 100 1x vs total darkness) with periods (T) between ca 23.75 and 24.75 hr. Two 1-hr light pulses per cycle ('skeleton photoperiods') with T = 24.25 hr as well as one 1-hr light pulse per cycle with Ts of 23.75 and 24.25 hr were effective in entraining the circadian activity rhythms in at least 50% of the antelope ground squirrels. Phase and period responses to single 1-hr light pulses were measured which depend on the initial phase and period of the rhythm. It is concluded that discrete (phasic) light input contributes to the mechanism of entrainment to LD cycles in diurnal rodents.  相似文献   

4.
The circadian rhythm of locomotor activity in hamsters maintained in either constant darkness or constant light can be phase-shifted by a single injection of the short-acting benzodiazepine, triazolam. These results suggest that treatment with triazolam may also alter the entrainment pattern of circadian rhythms in animals that are synchronized to a light-dark (LD) cycle. To test this hypothesis, hamsters maintained on an LD 6:18 light cycle received daily injections of triazolam (or vehicle) for 10-12 days, and any subsequent effects on the phase relationship between the onset of activity and the LD cycle were determined. Daily injections of triazolam (but not vehicle) induced pronounced advances or delays in the phase relationship between the entrained activity rhythm and the LD cycle; the direction of the shift was dependent on the time of the injection. Taken together with data from previous studies, these results suggest that triazolam, and perhaps other short-acting benzodiazepines, can be used to manipulate the mammalian circadian clock under a variety of experimental conditions.  相似文献   

5.
Brainstem monoaminergic projections to the suprachiasmatic nucleus (SCN), and to the intergeniculate leaflet (IGL), appear to modulate both photic and non-photic effects on the circadian system. Recent work in this laboratory has concentrated on the role of noradrenaline in the regulation of circadian period and phase. Previously, this lab has shown that chronic administration of the alpha2 adrenergic agonist, clonidine, to rats maintained in constant light (LL) shortens free-running circadian period and promotes dissociation of rhythmicity, while acute clonidine administration to hamsters produces phase shifts similar to those observed with photic stimuli. These results suggest an interaction between clonidine and photic input on circadian rhythmicity, and so the present study was designed to examine systematically the relationship between chronic clonidine administration and photic input in both rats and hamsters. In DD and low intensity LL, clonidine did not alter free-running circadian wheel-running rhythms of rats, but under moderate to high intensity LL, clonidine significantly reduced the period-lengthening effects of LL. Chronic clonidine administration also altered several aspects of circadian phase in hamsters; phase shifts in response to light pulses of varying intensity at CT 19 were reduced; steady-state entrainment phase under a 24-h light-dark cycle (LD 14:10)was delayed; and synchronization to a 23-h light-dark cycle (LD 13:10) was impaired. Clonidine appeared to have little effect on free-running period of hamsters, but a trend towards dissociation of rhythmicity under LL was observed. These effects may reflect an action of clonidine at the photic input pathways to the circadian system, or directly at the circadian pacemaker, since alpha 2 adrenoceptors have been localized both in the suprachiasmatic nucleus (SCN) and in several of its projection areas. As both clinical and experimental studies suggest that clonidine may have depressogenic properties, chronic administration of clonidine to rodents may provide an animal model of the alterations in circadian rhythmicity seen in human depression.  相似文献   

6.
It is well established that in the absence of photic cues, the circadian rhythms of rodents can be readily phase-shifted and entrained by various nonphotic stimuli that induce increased levels of locomotor activity (i.e., benzodiazepines, a new running wheel, and limited food access). In the presence of an entraining light-dark (LD) cycle, however, the entraining effects of nonphotic stimuli on (parts of) the circadian oscillator are far less clear. Yet, an interesting finding is that appropriately timed exercise after a phase shift can accelerate the entrainment of circadian rhythms to the new LD cycle in both rodents and humans. The present study investigated whether restricted daytime feeding (RF) (1) induces a phase shift of the melatonin rhythm under entrained LD conditions and (2) accelerates resynchronization of circadian rhythms after an 8-h phase advance. Animals were adapted to RF with 2-h food access at the projected time of the new dark onset. Before and at several time points after the 8-h phase advance, nocturnal melatonin profiles were measured in RF animals and animals on ad libitum feeding (AL). In LD-entrained conditions, RF did not cause any significant changes in the nocturnal melatonin profile as compared to AL. Unexpectedly, after the 8-h phase advance, RF animals resynchronized more slowly to the new LD cycle than AL animals. These results indicate that prior entrainment to a nonphotic stimulus such as RF may "phase lock" the circadian oscillator and in that way hinder resynchronization after a phase shift.  相似文献   

7.
Brainstem monoaminergic projections to the suprachiasmatic nucleus (SCN), and to the intergeniculate leaflet (IGL), appear to modulate both photic and non-photic effects on the circadian system. Recent work in this laboratory has concentrated on the role of noradrenaline in the regulation of circadian period and phase. Previously, this lab has shown that chronic administration of the alpha2 adrenergic agonist, clonidine, to rats maintained in constant light (LL) shortens free-running circadian period and promotes dissociation of rhythmicity, while acute clonidine administration to hamsters produces phase shifts similar to those observed with photic stimuli. These results suggest an interaction between clonidine and photic input on circadian rhythmicity, and so the present study was designed to examine systematically the relationship between chronic clonidine administration and photic input in both rats and hamsters. In DD and low intensity LL, clonidine did not alter free-running circadian wheel-running rhythms of rats, but under moderate to high intensity LL, clonidine significantly reduced the period-lengthening effects of LL. Chronic clonidine administration also altered several aspects of circadian phase in hamsters; phase shifts in response to light pulses of varying intensity at CT 19 were reduced; steady-state entrainment phase under a 24-h light-dark cycle (LD 14:10)was delayed; and synchronization to a 23-h light-dark cycle (LD 13:10) was impaired. Clonidine appeared to have little effect on free-running period of hamsters, but a trend towards dissociation of rhythmicity under LL was observed. These effects may reflect an action of clonidine at the photic input pathways to the circadian system, or directly at the circadian pacemaker, since alpha 2 adrenoceptors have been localized both in the suprachiasmatic nucleus (SCN) and in several of its projection areas. As both clinical and experimental studies suggest that clonidine may have depressogenic properties, chronic administration of clonidine to rodents may provide an animal model of the alterations in circadian rhythmicity seen in human depression.  相似文献   

8.
The suprachiasmatic nucleus (SCN) is the central circadian pacemaker governing the circadian rhythm of locomotor activity in mammals. The mammalian retina also contains circadian oscillators, but their roles are unknown. To test whether the retina influences circadian rhythms of locomotor behavior, the authors compared the activity of bilaterally enucleated hamsters with the activity of intact controls held in constant darkness (DD). Enucleated hamsters showed a broader range of free-running periods (tau) than did intact hamsters held for the same length of time in DD. This effect was independent of the age at enucleation (on postnatal days 1, 7, or 28). The average tau of intact animals kept in DD from days 7 or 28 was significantly longer than that of intact animals kept in DD from day 1 or any of the enucleated groups. This indicates that early exposure to light-dark cycles lengthens the tau and that the eye is required to maintain this effect even in DD. These data suggest that hypothalamic circadian pacemakers may interact continuously with the retina to determine the tau of locomotor activity. Enucleation caused a large decrease in glial fibrillary acidic protein in the SCN but has no (or slight) effects on calbindin, neuropeptide Y, vasopressin, or vasoactive intestinal polypeptide, which suggests that enucleation does not produce major damage to the SCN, an interpretation that is supported by the fact that enucleated animals retain robust circadian rhythmicity. The presence of an intact retina appears to contribute to system-level circadian organization in mammals perhaps as a consequence of interaction between its circadian oscillators and those in the SCN.  相似文献   

9.
Much is known about the formal properties of circadian rhythm regulation and the physiological substrates underlying rhythmicity in nocturnal rodents, but relatively few studies have addressed circadian rhythm regulation in other mammalian taxonomic groups. In this study, some formal and functional aspects of circadian organization in a nocturnal dasyurid marsupial, the stripe-faced dunnart (Sminthopsis macroura), were analyzed. To determine phasic responses to discrete pulses of light, dunnarts were placed in constant darkness (DD) and were periodically administered pulses of bright light at different times of the animals' circadian day. Analysis of phase shifts in response to light indicated a phase response curve that was similar to responses observed in nocturnal rodents. To determine the possibility of extraretinal photoreception mediating photic entrainment, dunnarts were anesthetized and orbitally enucleated while maintained in a light-dark regimen (LD 14:10). All blinded dunnarts free-ran with periods (tau) that were similar to those observed in DD, indicating that entrainment is mediated through ocular photoreception. However, the data also indicated a decrease in activity in blind dunnarts during the last 3-5 hr of the dark phase, raising the possibility of some retention of photoreceptive capacities.  相似文献   

10.
Summary Pulses of darkness can phase-shift the circadian activity rhythms of hamsters,Mesocricetus auratus, kept in constant light. Dark pulses under these conditions alter photic input to the circadian system, but they also commonly trigger wheel-running activity. This paper investigates the contribution of running activity to the phase-shifting effects of dark pulses. A first experiment showed that running activity by itself can phaseshift rhythms in constant light. Hamsters were induced to run by being confined to a novel wheel for 3–5 h. When this was done at circadian times (CT) 0, 6, and 9, the mean steady-state phase-shifts were 0.6 h, 3.5 h, and 2.3 h, respectively. The latter two values are at least as large as those previously obtained with dark pulses of similar durations and circadian phases. A second experiment showed that restricting the activity of hamsters during 3-h dark pulses at CT 9 reduces the amplitude of the phase-shifts. Unrestrained animals phase-advanced by 1.1 h, but this shift was halved in animals whose wheel was locked, and completely abolished in animals confined to nest boxes during the dark pulse. Activity restriction in itself (without dark pulses) had only minimal phase-delaying effects on free-running rhythms when given between ca. CT 10 and CT 13. These results support the idea that, in hamsters at least, dark pulses affect the circadian system mostly by altering behavioural states rather than by altering photic input to the internal clock.Abbreviations CT circadian time - DD constant darkness - LD light-dark - LL constant light - PRC phase response curve - period of rhythm  相似文献   

11.
The temporal relationships of the proestrous LH surge and the circadian locomotor activity rhythm were compared in hamsters entrained to four different 24-hr light-dark (LD) cycles. Animals were housed in cages equipped with running wheels to obtain continuous activity records. Stable entrainment of locomotor activity was complete within 3 weeks of exposure to each photoperiod at which time hamsters were randomly assigned to hourly sample groups. Serum was obtained by cardiac puncture under light ether anesthesia on the day of proestrous and was assayed by RIA for LH. A computer-based least-squares sine wave-fitting technique determined a single objective phase reference point for the time of the hormone maximum. In each photoperiod, precise temporal relationships were maintained between the LH surge and activity onset, whereas the phase relationship between the LH surge and the LD cycle was more variable. These data indicate that the environmental LD cycle entrains the circadian timing system which, in turn, provides temporal information to the rhythms of proestrous gonadotropin and locomotor activity.  相似文献   

12.
Campbell and Murphy reported recently that 3 h of bright light (13,000 lux) exposure to the area behind the knee caused phase shifts of the circadian rhythms of both body temperature and saliva melatonin in humans. The authors tested the hypothesis that extraocular photoreception is also involved in the circadian system of the Syrian hamster. Hamsters were bilaterally enucleated (eyes removed), and their backs were shaved. Hamsters with stable free-running rhythms in constant darkness were exposed to direct sunlight for 1 or 3 hours during their subjective night. Intact (control) animals showed phase shifts as expected, but the locomotor activity of enucleated animals was unaffected by the exposure to sunlight. The authors also measured the pineal melatonin content after exposure to sunlight. Pineal melatonin content in intact animals declined markedly as expected, but no decline was observed in the enucleated hamsters. The authors conclude that extraocular phototransduction is not capable of shifting the phase of the hamster's locomotor activity rhythm or of suppressing pineal melatonin synthesis.  相似文献   

13.
The stimuli which normally synchronize the endogenous tidal rhythm of the isopodExcirolana chiltoni arise from turbulent waves moving across the beach. A phase-response curve for two-h pulses of similar stimuli has been derived from experiments in which individual isopods were treated with vigorous intermittent shaking in a flask of seawater. This response curve differs qualitatively from all results previously obtained by administering pulse stimuli to ordinary circadian rhythms: it is bimodal per circadian cycle, with two intervals of about 6 h duration, during which phase advance of up to 4 h results from treatment, separated by two other 6 h intervals during which phase delay of up to 3 h is evoked. This kind of responsiveness to entraining stimuli is of clear adaptive value for synchronization of a circadian rhythm to the mixed semi-diurnal tidal regime of the isopods' habitat.In addition to inducing phase shifts, this same treatment can strongly modify the persistent pattern of activity, and such effects also depend upon phase of treatment: when administered shortly before or shortly after onset of activity, shaking tends to increase the amount of activity in subsequent cycles; when administered in antiphase (6 to 18 h after activity onset), it tends to decrease the activity in the dominant activity peak, and to transform a unimodal pattern of activity into a bimodal pattern. Such induction of a persistent secondary peak of activity in a previously unimodal circadian pattern demonstrates a plasticity which has not been previously reported in those circadian rhythms which are synchronized to the day-night cycle.  相似文献   

14.
The split circadian activity rhythm that emerges in hamsters after prolonged exposure to constant light has been a theoretical cornerstone of a multioscillator view of the mammalian circadian pacemaker. The present study demonstrates a novel method for splitting hamster circadian rhythms and entraining them to exotic light:dark cycles. Male Syrian hamsters previously maintained on a 14-h day and 10-h night were exposed to a second 5-h dark phase in the afternoon. The 10-h night was progressively shortened until animals experienced two 5-h dark phases beginning 10 h apart. Most hamsters responded by splitting their activity rhythms into two components associated with the afternoon and nighttime dark phases, respectively. Each activity component was entrained to this light:dark:light:dark cycle. Transfer of split hamsters to constant darkness resulted in rapid joining of the two activity components with the afternoon component associated with onset of the fused rhythm. In constant light, the nighttime component corresponded to activity onset of the fused rhythm, but splitting emerged again at an interval characteristic for this species. The results place constraints on multi-oscillator models of circadian rhythms and offer opportunities to characterize the properties of constituent circadian oscillators and their interactions.  相似文献   

15.
While light is considered the dominant stimulus for entraining (synchronizing) mammalian circadian rhythms to local environmental time, social stimuli are also widely cited as 'zeitgebers' (time-cues). This review critically assesses the evidence for social influences on mammalian circadian rhythms, and possible mechanisms of action. Social stimuli may affect circadian behavioural programmes by regulating the phase and period of circadian clocks (i.e. a zeitgeber action, either direct or by conditioning to photic zeitgebers), by influencing daily patterns of light exposure or modulating light input to the clock, or by associative learning processes that utilize circadian time as a discriminative or conditioned stimulus. There is good evidence that social stimuli can act as zeitgebers. In several species maternal signals are the primary zeitgeber in utero and prior to weaning. Adults of some species can also be phase shifted or entrained by single or periodic social interactions, but these effects are often weak, and appear to be mediated by social stimulation of arousal. There is no strong evidence yet for sensory-specific nonphotic inputs to the clock. The circadian phase-dependence of clock resetting to social stimuli or arousal (the 'nonphotic' phase response curve, PRC), where known, is distinct from that to light and similar in diurnal and nocturnal animals. There is some evidence that induction of arousal can modulate light input to the clock, but no studies yet of whether social stimuli can shift the clock by conditioning to photic cues, or be incorporated into the circadian programme by associative learning. In humans, social zeitgebers appear weak by comparison with light. In temporal isolation or under weak light-dark cycles, humans may ignore social cues and free-run independently, although cases of mutual synchrony among two or more group-housed individuals have been reported. Social cues may affect circadian timing by controlling sleep-wake states, but the phase of entrainment observed to fixed sleep-wake schedules in dim light is consistent with photic mediation (scheduled variations in behavioural state necessarily create daily light-dark cycles unless subjects are housed in constant dark or have no eyes). By contrast, discrete exercise sessions can induce phase shifts consistent with the nonphotic PRC observed in animal studies. The best evidence for social entrainment in humans is from a few totally blind subjects who synchronize to the 24 h day, or to near-24 h sleep-wake schedules under laboratory conditions. However, the critical entraining stimuli have not yet been identified, and there are no reported cases yet of social entrainment in bilaterally enucleated blind subjects. The role of social zeitgebers in mammalian behavioural ecology, their mechanisms of action, and their utility for manipulating circadian rhythms in humans, remains to be more fully elaborated.  相似文献   

16.
The circadian rhythm of locomotor activity in the freshwater crab, Pseudothelphusa americana, was studied in aquaria using infrared crossing sensors. Individuals with ablated eyestalks were compared with intact individuals in constant darkness (DD) and in light-dark cycles (LD). Our results showed that intact animals in DD displayed bimodal rhythms. In LD conditions the two peaks were associated with lights on and lights off, respectively. A significant difference in the free running periods before and after LD was observed in all intact animals. After eyestalk ablation (ES-X), the circadian rhythm of locomotor activity disappeared immediately, but reappeared several days later. Diurnal activity was seen in some ES-X animals when exposed to LD. Our results indicate that locomotor activity rhythm in P. americana is driven primarily by oscillators located outside the eyestalks, and that extraretinal photoreceptors mediate either entrainment or masking effects.  相似文献   

17.
The circadian rhythm of locomotor activity in the freshwater crab, Pseudothelphusa americana , was studied in aquaria using infrared crossing sensors. Individuals with ablated eyestalks were compared with intact individuals in constant darkness (DD) and in light-dark cycles (LD). Our results showed that intact animals in DD displayed bimodal rhythms. In LD conditions the two peaks were associated with lights on and lights off, respectively. A significant difference in the free running periods before and after LD was observed in all intact animals. After eyestalk ablation (ES-X), the circadian rhythm of locomotor activity disappeared immediately, but reappeared several days later. Diurnal activity was seen in some ES-X animals when exposed to LD. Our results indicate that locomotor activity rhythm in P. americana is driven primarily by oscillators located outside the eyestalks, and that extraretinal photoreceptors mediate either entrainment or masking effects.  相似文献   

18.
Evidence suggests that there is an association between the pathophysiology of depression and a disturbance of circadian rhythms. Accordingly, attention has focused on the possible effects of antidepressants on circadian rhythms. In the present study, we examined the effects of chronic administration of two clinically effective antidepressant agents, imipramine and lithium, on several circadian rhythms in the rat. Activity, core body temperature, and drinking rhythms were assessed in constant darkness (DD) and light-dark (LD) conditions. In DD, lithium significantly lengthened the circadian period of the activity, temperature, and drinking rhythms, while imipramine had no effect. In LD, both drugs significantly delayed the phase of the activity rhythm, but did not change that of the other two rhythms. As a result, the phase-angle differences between the activity and temperature rhythms significantly increased. Neither lithium nor imipramine produced any effect on the resynchronization of these rhythms after an 8-h delay in the LD cycle. These results indicate that although both drugs produced different effects on the circadian period of individual rhythms, both caused a relative phase advance of the temperature rhythm as compared to the activity rhythm, and this effect may be related to the similarity in their antidepressant effects. (Chronobiology International, 13(4), 251-259, 1996)  相似文献   

19.
The majority of blow flies (Calliphora vicina) display circadian locomotor activity rhythms that free-run with an unchanging period (τ) in darkness (DD), or entrain to a light-dark cycle (LD 1:23). However, a minority produce more complex patterns (spontaneous changes in τ, arrhythmicity, or 'split' rhythms) in DD, or undergo rhythm dissociation ('internal desynchronisation') when the light pulses of LD 1:23 initially illuminate the subjective night. These patterns are interpreted as evidence for a complex, multioscillatory and multicellular, structure of the insects' circadian system, and this complexity is discussed in terms of the neuronal architecture of the fly's brain.  相似文献   

20.
Circadian rhythms of locomotor activity were recorded in 15 male golden hamsters and in 15 rats. The animals were exposed alternatingly to a variety of conditions with either light-dark cycles (LD) or continuous illumination (LL). The hamsters were split into two groups: 7 animals received plain water, and 8 animals water together with imipramine hydrochloride. The rats received plain water or water with imipramine in alternation. In all animals the addition of imipramine resulted in a reduction of water uptake and in a concomitant reduction of the daily amount of activity. Otherwise, no significant effects of imipramine could be observed: in LD, the phase-angle differences between rhythm and zeitgeber were not changed by imipramine, and, in the hamsters, the upper limits of entrainability and the rates of re-entrainment were identical in the two groups of animals; in LL, the period of the free-running rhythm was slightly lengthened by imipramine in the hamsters, but remained unchanged in the rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号