首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor–ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer‐mediated recycling of the plant VSR BP80 starts at the trans‐Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co‐expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII‐mediated transport route. Retention of soluble cargo despite ongoing COPII‐mediated bulk flow can only be explained by an interaction with membrane‐bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER‐anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR–ligand interaction. It also implies that the retromer‐mediated recycling route for the VSRs leads from the TGN back to the ER.  相似文献   

2.
We have isolated four yeast mutants that are unable to partition maternal vacuoles into growing buds. Three of these vacuole segregation (vac) mutants also mislocalize the vacuolar protease carboxypeptidase Y (CPY) to the cell surface, a phenotype previously reported for vac strains. A fourth mutant, vac2-1, exhibits a temperature-sensitive defect in vacuole segregation but does not show a defect in protein targeting from the Golgi apparatus to the vacuole. Haploid vac2-1 cells grown at the non-permissive temperature do not secrete CPY or a second vacuolar protease, proteinase A (PrA). Furthermore, newly synthesized precursors of CPY are converted to mature forms with similar kinetics in both vac2-1 and wild-type cells. In addition, invertase is secreted normally from vac2-1 cells, indicating that post-Golgi steps in the secretory pathway are not blocked in this mutant. These results suggest that VAC2 function is necessary for vacuole division and segregation in yeast but is not involved in vacuole protein sorting events at the Golgi apparatus.  相似文献   

3.
In receptor‐mediated transport pathways in mammalian cells, clathrin‐coated vesicle (CCV) µ‐adaptins are the main binding partners for the tyrosine sorting/internalization motif (YXXØ). We have analyzed the function of the µA‐adaptin, one of the five µ‐adaptins from Arabidopsis thaliana, by pull‐down assays and plasmon resonance measurements using its receptor‐binding domain (RBD) fused to a histidine tag. We show that this adaptin is able to bind the consensus tyrosine motif YXXØ from the pea vacuolar sorting receptor (VSR)‐PS1, as well as from the mammalian trans‐Golgi network (TGN)38 protein. Moreover, the tyrosine residue was revealed to be crucial for binding of the complete cytoplasmic tail of VSR‐PS1 to the plant µA‐adaptin. The trans‐Golgi localization of the µA‐adaptin strongly suggests its involvement in Golgi‐ to vacuole‐trafficking events.  相似文献   

4.
SNA (Sensitive to Na+) proteins form a membrane protein family, which, in the yeast Saccharomyces cerevisiae, is composed of four members: Sna1p/Pmp3p, Sna2p, Sna3p and Sna4p. In this study, we focused on the 79 residue Sna2p protein. We found that Sna2p is localized in the vacuolar membrane. Directed mutagenesis showed that two functional tyrosine motifs YXXØ are present in the C‐terminal region. Each of these is involved in a different Golgi‐to‐vacuole targeting pathway: the tyrosine 65 motif is involved in adaptor protein (AP‐1)‐dependent targeting, whereas the tyrosine 75 motif is involved in AP‐3‐dependent targeting. Moreover, our data suggest that these motifs also play a crucial role in the exit of Sna2p from the endoplasmic reticulum (ER). Directed mutagenesis of these tyrosines led to a partial redirection of Sna2p to lipid bodies, probably because of a decrease in ER exit efficiency. Sna2p is the first yeast protein in which two YXXØ motifs have been identified and both were shown to be functional at two different steps of the secretory pathway, ER exit and Golgi‐to‐vacuole transport.  相似文献   

5.
The glycan shield of human immunodeficiency virus type 1 (HIV-1) gp120 contributes to viral evasion from humoral immune responses. However, the shield is recognized by the HIV-1 broadly neutralizing antibody (Ab), 2G12, at a relatively conserved cluster of oligomannose glycans. The discovery of 2G12 raises the possibility that a carbohydrate immunogen may be developed that could elicit 2G12-like neutralizing Abs and contribute to an AIDS vaccine. We have previously dissected the fine specificity of 2G12 and reported that the synthetic tetramannoside (Man(4)) that corresponds to the D1 arm of Man(9)GlcNAc(2) inhibits 2G12 binding to gp120 as efficiently as Man(9)GlcNAc(2) itself, indicating the potential use of Man(4) as a building block for creating immunogens. Here, we describe the development of neoglycoconjugates displaying variable copy numbers of Man(4) on bovine serum albumin (BSA) molecules by conjugation to Lys residues. The increased valency enhances the apparent affinity of 2G12 for Man(4) up to a limit which is achieved at approximately 10 copies per BSA molecule, beyond which no further enhancement is observed. Immunization of rabbits with BSA-(Man(4))(14) elicits significant serum Ab titers to Man(4). However, these Abs are unable to bind gp120. Further analysis reveals that the elicited Abs bind a variety of unbranched and, to a lesser extent, branched Man(9) derivatives but not natural N-linked oligomannose containing the chitobiose core. These results suggest that Abs can be readily elicited against the D1 arm; however, potential differences in the presentation of Man(4) on neoglycoconjugates, compared to glycoproteins, poses challenges for eliciting anti-mannose Abs capable of cross-reacting with gp120 and HIV-1.  相似文献   

6.
Listeria monocytogenes (Lm) evade microbicidal defences inside macrophages by secreting a pore-forming cytolysin listeriolysin O (LLO), which allows Lm to escape vacuoles. LLO also inhibits Lm vacuole fusion with lysosomes, which indicates LLO alters vacuole chemistry prior to release of Lm into cytoplasm. Using fluorescent probes to measure membrane permeability, calcium and pH, we identified small membrane perforations in vacuoles containing wild-type but not LLO-deficient (hly-) Lm. The small membrane perforations released small fluorescent molecules and persisted for several minutes before expanding to allow exchange of larger fluorescent molecules. Macropinosomes and hly- Lm vacuoles acidified and increased their calcium content ([Ca2+]vac) within minutes of formation; however, the small perforations made by LLO-expressing bacteria increased vacuolar pH and decreased [Ca2+]vac shortly after infection. Experimental increases in vacuolar pH inhibited Lm vacuole fusion with lysosomes. The timing of perforation indicated that LLO-dependent delays of Lm vacuole maturation result from disruption of ion gradients across vacuolar membranes.  相似文献   

7.
Sugarcane is an ideal candidate for biofarming applications because of its large biomass, rapid growth rate, efficient carbon fixation pathway and a well‐developed storage tissue system. Vacuoles occupy a large proportion of the storage parenchyma cells in the sugarcane stem, and the stored products can be harvested as juice by crushing the cane. Hence, for the production of any high‐value protein, it could be targeted to the lytic vacuoles so as to extract and purify the protein of interest from the juice. There is no consensus vacuolar‐targeting sequence so far to target any heterologous proteins to sugarcane vacuole. Hence, in this study, we identified an N‐terminal 78‐bp‐long putative vacuolar‐targeting sequence from the N‐terminal domain of unknown function (DUF) in Triticum aestivum 6‐SFT (sucrose: fructan 6‐fructosyl transferase). In this study, we have generated sugarcane transgenics with gene coding for the green fluorescent protein (GFP) fused with the vacuolar‐targeting determinants at the N‐terminal driven by a strong constitutive promoter (Port ubi882) and demonstrated the targeting of GFP to the vacuoles. In addition, we have also generated transgenics with His‐tagged β‐glucuronidase (GUS) and aprotinin targeted to the lytic vacuole, and these two proteins were isolated and purified from the transgenic sugarcane and compared with commercially available protein samples. Our studies have demonstrated that the novel vacuolar‐targeting determinant could localize recombinant proteins (r‐proteins) to the vacuole in high concentrations and such targeted r‐proteins can be purified from the juice with a few simple steps.  相似文献   

8.
Although much is known about the molecular mechanisms involved in transporting soluble proteins to the central vacuole, the mechanisms governing the trafficking of membrane proteins remain largely unknown. In this study, we investigated the mechanism involved in targeting the membrane protein, AtβFructosidase 4 (AtβFruct4), to the central vacuole in protoplasts. AtβFruct4 as a green fluorescent protein (GFP) fusion protein was transported as a membrane protein during transit from the endoplasmic reticulum (ER) through the Golgi apparatus and the prevacuolar compartment (PVC). The N-terminal cytosolic domain of AtβFruct4 was sufficient for transport from the ER to the central vacuole and contained sequence motifs required for trafficking. The sequence motifs, LL and PI, were found to be critical for ER exit, while the EEE and LCPYTRL sequence motifs played roles in trafficking primarily from the trans Golgi network (TGN) to the PVC and from the PVC to the central vacuole, respectively. In addition, actin filaments and AtRabF2a, a Rab GTPase, played critical roles in vacuolar trafficking at the TGN and PVC, respectively. On the basis of these results, we propose that the vacuolar trafficking of AtβFruct4 depends on multiple sequence motifs located at the N-terminal cytoplasmic domain that function as exit and/or sorting signals in different stages during the trafficking process.  相似文献   

9.
Vacuolar sorting receptors (VSRs) in Arabidopsis mediate the sorting of soluble proteins to vacuoles in the secretory pathway. The VSRs are post‐translationally modified by the attachment of N‐glycans, but the functional significance of such a modification remains unknown. Here we have studied the role(s) of glycosylation in the stability, trafficking and vacuolar protein transport of AtVSR1 in Arabidopsis protoplasts. AtVSR1 harbors three complex‐type N‐glycans, which are located in the N‐terminal ‘PA domain’, the central region and the C‐terminal epidermal growth factor repeat domain, respectively. We have demonstrated that: (i) the N‐glycans do not affect the targeting of AtVSR1 to pre‐vacuolar compartments (PVCs) and its vacuolar degradation; and (ii) N‐glycosylation alters the binding affinity of AtVSR1 to cargo proteins and affects the transport of cargo into the vacuole. Hence, N‐glycosylation of AtVSR1 plays a critical role in its function as a VSR in plants.  相似文献   

10.
Plant cells may contain two functionally distinct vacuolar compartments. Membranes of protein storage vacuoles (PSV) are marked by the presence of α-tonoplast intrinsic protein (TIP), whereas lytic vacuoles (LV) are marked by the presence of γ-TIP. Mechanisms for sorting integral membrane proteins to the different vacuoles have not been elucidated. Here we study a chimeric integral membrane reporter protein expressed in tobacco suspension culture protoplasts whose traffic was assessed biochemically by following acquisition of complex Asn-linked glycan modifications and proteolytic processing, and whose intracellular localization was determined with confocal immunofluorescence. We show that the transmembrane domain of the plant vacuolar sorting receptor BP-80 directs the reporter protein via the Golgi to the LV prevacuolar compartment, and attaching the cytoplasmic tail (CT) of γ-TIP did not alter this traffic. In contrast, the α-TIP CT prevented traffic of the reporter protein through the Golgi and caused it to be localized in organelles separate from ER and from Golgi and LV prevacuolar compartment markers. These organelles had a buoyant density consistent with vacuoles, and α-TIP protein colocalized in them with the α-TIP CT reporter protein when the two were expressed together in protoplasts. These results are consistent with two separate pathways to vacuoles for membrane proteins: a direct ER to PSV pathway, and a separate pathway via the Golgi to the LV.  相似文献   

11.
We have isolated new temperature-sensitive mutations in five complementation groups, sec31-sec35, that are defective in the transport of proteins from the endoplasmic reticulum (ER) to the Golgi complex. The sec31-sec35 mutants and additional alleles of previously identified sec and vacuolar protein sorting (vps) genes were isolated in a screen based on the detection of α-factor precursor in yeast colonies replicated to and lysed on nitrocellulose filters. Secretory protein precursors accumulated in sec31-sec35 mutants at the nonpermissive temperature were core-glycosylated but lacked outer chain carbohydrate, indicating that transport was blocked after translocation into the ER but before arrival in the Golgi complex. Electron microscopy revealed that the newly identified sec mutants accumulated vesicles and membrane structures reminiscent of secretory pathway organelles. Complementation analysis revealed that sec32-1 is an allele of BOS1, a gene implicated in vesicle targeting to the Golgi complex, and sec33-1 is an allele of RET1, a gene that encodes the α subunit of coatomer.  相似文献   

12.
The targeting signals of two yeast integral membrane dipeptidyl aminopeptidases (DPAPs), DPAP B and DPAP A, which reside in the vacuole and the Golgi apparatus, respectively, were analyzed. No single domain of DPAP B is required for delivery to the vacuolar membrane, because removal or replacement of either the cytoplasmic, transmembrane, or lumenal domain did not affect the protein's transport to the vacuole. DPAP A was localized by indirect immunofluorescence to non-vacuolar, punctate structures characteristic of the yeast Golgi apparatus. The 118-amino acid cytoplasmic domain of DPAP A is sufficient for retention of the protein in these structures, since replacement of the cytoplasmic domain of DPAP B with that of DPAP A resulted in an immunolocalization pattern indistinguishable from that of wild type DPAP A. Overproduction of DPAP A resulted in its mislocalization to the vacuole, because cells expressing high levels of DPAP A exhibited vacuolar as well as Golgi staining. Deletion of 22 residues of the DPAP A cytoplasmic domain resulted in mislocalization of the mutant protein to the vacuole. Thus, the cytoplasmic domain of DPAP A is both necessary and sufficient for Golgi retention, and removal of the retention signal, or saturation of the retention apparatus by overproducing DPAP A, resulted in transport to the vacuole. Like wild type DPAP B, the delivery of mutant membrane proteins to the vacuole was unaffected in the secretory vesicle-blocked sec1 mutant; thus, transport to the vacuole was not via the plasma membrane followed by endocytosis. These data are consistent with a model in which membrane proteins are delivered to the vacuole along a default pathway.  相似文献   

13.
Several vacuolar sorting determinants (VSDs) have been described for protein trafficking to the vacuoles in plant cells. Because of the variety in plant models, cell types and experimental approaches used to decipher vacuolar targeting processes, it is not clear whether the three well‐known groups of VSDs identified so far exhaust all the targeting mechanisms, nor if they reflect certain protein types or families. The vacuolar targeting mechanisms of the aspartic proteinases family, for instance, are not yet fully understood. In previous studies, cardosin A has proven to be a good reporter for studying the vacuolar sorting of aspartic proteinases. We therefore propose to explore the roles of two different cardosin A domains, common to several aspartic proteinases [i.e. the plant‐specific insert (PSI) and the C–terminal peptide VGFAEAA] in vacuolar sorting. Several truncated versions of the protein conjugated with fluorescent protein were made, with and without these putative sorting determinants. These domains were also tested independently, for their ability to sort other proteins, rather than cardosin A, to the vacuole. Fluorescent chimaeras were tracked in vivo, by confocal laser scanning microscopy, in Nicotiana tabacum cells. Results demonstrate that either the PSI or the C terminal was necessary and sufficient to direct fluorescent proteins to the vacuole, confirming that they are indeed vacuolar sorting determinants. Further analysis using blockage experiments of the secretory pathway revealed that these two VSDs mediate two different trafficking pathways.  相似文献   

14.
We recently demonstrated the presence of a new asparagine-linked complex glycan on plant glycoproteins that harbors the Lewis a (Lea), or Galbeta(1-3)[Fucalpha(1-4)]GlcNAc, epitope, which in mammalian cells plays an important role in cell-to-cell recognition. Here we show that the monoclonal antibody JIM 84, which is widely used as a Golgi marker in light and electron microscopy of plant cells, is specific for the Lea antigen. This antigen is present on glycoproteins of a number of flowering and non-flowering plants, but is less apparent in the Cruciferae, the family that includes Arabidopsis. Lea-containing oligosaccharides are found in the Golgi apparatus, and our immunocytochemical experiments suggest that it is synthesized in the trans-most part of the Golgi apparatus. Lea epitopes are abundantly present on extracellular glycoproteins, either soluble or membrane bound, but are never observed on vacuolar glycoproteins. Double-labeling experiments suggest that vacuolar glycoproteins do not bypass the late Golgi compartments where Lea is built, and that the absence of the Lea epitope from vacuolar glycoproteins is probably the result of its degradation by glycosidases en route to or after arrival in the vacuole.  相似文献   

15.
Transgenic plants are attractive biological systems for the large-scale production of pharmaceutical proteins. In particular, seeds offer special advantages, such as ease of handling and long-term stable storage. Nevertheless, most of the studies of the expression of antibodies in plants have been performed in leaves. We report the expression of a secreted (sec-Ab) or KDEL-tagged (Ab-KDEL) mutant of the 14D9 monoclonal antibody in transgenic tobacco leaves and seeds. Although the KDEL sequence has little effect on the accumulation of the antibody in leaves, it leads to a higher antibody yield in seeds. sec-Ab(Leaf) purified from leaf contains complex N-glycans, including Lewis(a) epitopes, as typically found in extracellular glycoproteins. In contrast, Ab-KDEL(Leaf) bears only high-mannose-type oligosaccharides (mostly Man 7 and 8) consistent with an efficient endoplasmic reticulum (ER) retention/cis-Golgi retrieval of the antibody. sec-Ab and Ab-KDEL gamma chains purified from seeds are cleaved by proteases and contain complex N-glycans indicating maturation in the late Golgi compartments. Consistent with glycosylation of the protein, Ab-KDEL(Seed) was partially secreted and sorted to protein storage vacuoles (PSVs) in seeds and not found in the ER. This dual targeting may be due to KDEL-mediated targeting to the PSV and to a partial saturation of the vacuolar sorting machinery. Taken together, our results reveal important differences in the ER retention and vacuolar sorting machinery between leaves and seeds. In addition, we demonstrate that a plant-made antibody with triantennary high-mannose-type N-glycans has similar Fab functionality to its counterpart with biantennary complex N-glycans, but the former antibody interacts with protein A in a stronger manner and is more immunogenic than the latter. Such differences could be related to a variable immunoglobulin G (IgG)-Fc folding that would depend on the size of the N-glycan.  相似文献   

16.
To investigate the biogenesis of the yeast vacuole, we have sought novel marker proteins localized to the vacuolar membrane. Glycoproteins were prepared from vacuolar membrane vesicles by concanavalin A-Sepharose column chromatography and used to raise monoclonal antibodies. The antibodies obtained recognize several vacuolar proteins that have N-linked oligosaccharide chains. A set of the antibodies reacts with a vacuolar glycoprotein with a major molecular species of 72 kDa (vgp72), which appears to associate peripherally with the vacuolar membrane. The biosynthesis of vgp72 has been examined in detail by pulse-chase experiments and by analyses using various secretory mutants (sec18, sec7, and sec1) and a vacuolar protease mutant (pep4). vgp72 first appears in the endoplasmic reticulum as a 74-kDa species and is quickly modified in the Golgi apparatus to two distinct species: a 79-kDa form, and a heterogeneously glycosylated form (90-150 kDa). Subsequently, both species are proteolytically processed in the vacuole giving rise to a 72-kDa species as well as heavily glycosylated form. Thus, the biogenesis of vgp72 utilizes the early part of the secretory pathway as is the case of vacuolar soluble enzymes. A unique feature is that two species that are different in the extent of glycosylation appear to follow the same destination to the vacuolar membrane.  相似文献   

17.
The sec18 and sec23 secretory mutants of Saccharomyces cerevisiae have previously been shown to exhibit temperature-conditional defects in protein transport from the ER to the Golgi complex (Novick, P., S. Ferro, and R. Schekman, 1981. Cell. 25:461-469). We have found that the Sec18 and Sec23 protein functions are rapidly inactivated upon shifting mutant cells to the nonpermissive temperature (less than 1 min). This has permitted an analysis of the potential role these SEC gene products play in transport events distal to the ER. The sec-dependent transport of alpha-factor (alpha f) and carboxypeptidase Y (CPY) biosynthetic intermediates present throughout the secretory pathway was monitored in temperature shift experiments. We found that Sec18p/NSF function was required sequentially for protein transport from the ER to the Golgi complex, through multiple Golgi compartments and from the Golgi complex to the cell surface. In contrast, Sec23p function was required in the Golgi complex, but only for transport of alpha f out of an early compartment. Together, these studies define at least three functionally distinct Golgi compartments in yeast. From cis to trans these compartments contain: (a) An alpha 1----6 mannosyltransferase; (b) an alpha 1----3 mannosyltransferase; and (c) the Kex2 endopeptidase. Surprisingly, we also found that a pool of Golgi-modified CPY (p2 CPY) located in a compartment distal to the alpha 1----3 mannosyltransferase does not require Sec18p function for final delivery to the vacuole. This compartment appears to be equivalent to the Kex2 compartment as we show that a novel vacuolar CPY-alpha f-invertase fusion protein undergoes efficient Kex2-dependent cleavage resulting in the secretion of invertase. We propose that this Kex2 compartment is the site in which vacuolar proteins are sorted from proteins destined to be secreted.  相似文献   

18.
The ultrastructure and histochemistry of developing and mature cell inclusions in vegetative cells of Antithamnion defectum Kylin were examined. Those studied were chloroplast inclusions, cytoplasmic crystals and spherical bodies within the vacuole. Chloroplasts of mature vegetative cells contain an interthylakoidal, apparently noncrystalline deposit of undetermined chemical identity. The bodies are parallel to the long axis of the plastid, are square (0.13 μm) in cross-section, and up to 3 μm long. Spherical vacuolar bodies (0.5–1.5 μum diam) are formed during early stages of vacuole formation by accumulation of protein deposits in swelling endoplasmic reticulum (ER) cisternae. Swelling of smooth ER contiguous to the ER containing the deposits results in the vacuole enclosing the spherical bodies. In mature cells, vesicles appear to be secreted into the preformed vacuole. Cytoplasmic proteinaceous crystalloids develop without a bounding membrane and may serve as protein reserves.  相似文献   

19.
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive posttranslational modifications and remodeling, including the addition and subsequent removal of phosphoethanolamine (EtNP) from mannose 1 (Man1) and mannose 2 (Man2) of the glycan moiety. Removal of EtNP from Man1 is catalyzed by Cdc1p, an event that has previously been considered to occur in the endoplasmic reticulum (ER). We establish that Cdc1p is in fact a cis/medial Golgi membrane protein that relies on the COPI coatomer for its retention in this organelle. We also determine that Cdc1p does not cycle between the Golgi and the ER, and consistent with this finding, when expressed at endogenous levels ER-localized Cdc1p-HDEL is unable to support the growth of cdc1Δ cells. Our cdc1 temperature-sensitive alleles are defective in the transport of a prototypical GPI-AP-Gas1p to the cell surface, a finding we posit reveals a novel Golgi-localized quality control warrant. Thus, yeast cells scrutinize GPI-APs in the ER and also in the Golgi, where removal of EtNP from Man2 (via Ted1p in the ER) and from Man1 (by Cdc1p in the Golgi) functions as a quality assurance signal.  相似文献   

20.
Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号