首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This work aimed to study the regulation of K+/Na+ homeostasis and the physiological responses of salt-treated sorghum plants [Sorghum bicolor (L.) Moench] grown with different inorganic nitrogen (N) sources. Four days after sowing (DAS), the plants were transferred to complete nutrient solutions containing 0.75 mM K+ and 5 mM N, supplied as either NO3 ? or NH4 +. Twelve DAS, the plants were subjected to salt stress with 75 mM NaCl, which was applied in two doses of 37.5 mM. The plants were harvested on the third and seventh days after the exposure to NaCl. Under the salt stress conditions, the reduction of K+ concentrations in the shoot and roots was higher in the culture with NO3 ? than with NH4 +. However, the more conspicuous effect of N was on the Na+ accumulation, which was severely limited in the presence of NH4 +. This ionic regulation had a positive influence on the K+/Na+ ratio and the selective absorption and transport of K+ in the plants grown with NH4 +. Under control and salt stress conditions, higher accumulation of free amino acids and soluble proteins was promoted in NH4 + grown roots than NO3 ? grown roots at both harvesting time, whereas higher accumulation of soluble sugars was observed only at 7 days of salt stress exposure. Unlike the NH4 + grown plants, the gas exchanges of the NO3 ? grown plants were reduced after 7 days of salt stress. These results suggest that external NH4 + may limit Na+ accumulation in sorghum, which could contribute to improving its physiological and metabolic responses to salt stress.  相似文献   

2.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

3.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

4.
To understand protective roles of nitric oxide against salt stress, the effects of exogenous sodium nitroprusside on activities of lipoxygenase, peroxidase, phenylalanine ammonialyase, catalase, superoxide dismutase enzymes, proline accumulation, and distribution of sodium in soybean plants under salt were determined. Application of sodium nitroprusside + bacterium enhanced plant growth-promotion characteristics, activities of different enzymes, and proline accumulation in the presence of sodium nitroprusside under salt stress. Treatment with NaCl at 200 mM and sodium nitroprusside (0.1 mM) reduced Na+ levels but increased K+ levels in leaves in comparison with the NaCl-treated plants. Correspondingly, the plants treated with exogenous sodium nitroprusside and NaCl maintained a lower ratio of [Na+]/[K+] in NaCl-stressed plants.  相似文献   

5.
The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na+ content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K+ content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K+/Na+ ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K+/Na+. Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF–MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na+ content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na+ ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the halotolerant cyanobacterium Anabaena sp is grown under low and high salinity levels.  相似文献   

6.
Salinity is a major abiotic stress that limits plant productivity. Plants respond to salinity by switching on a coordinated set of physiological and molecular responses that can result in acclimation. Medicago truncatula is an important model legume species, thus understanding salt stress responses and acclimation in this species is of both fundamental and applied interest. The aim of this work was to test whether acclimation could enhance NaCl tolerance in calli of M. truncatula. A new protocol is described incorporating multi-step up acclimation over 0–350 mM exogenous NaCl. By the end of the experiment, calli were tolerant to 150 mM and competent for embryogenesis at 100 mM NaCl. Positive and negative linear relationships between Na+ and K+ uptake and exogenous NaCl concentration intercepted at 160 mM suggesting a Na+/K+ homeostasis. Proline level peaked at 100/150 mM whilst highest osmolarity and lowest water content occurred at 250/350 mM NaCl. The concentration of water soluble sugars was positively related to 0–250 mM NaCl whilst callus growth and embryogenesis occurred regardless of endoreduplication. Expression of genes linked to growth (WEE1), in vitro embryogenesis (SERK), salt tolerance (SOS1), proline synthesis (P5CS) and ploidy level (CCS52 and WEE1) peaked at 100/150 mM NaCl. Hence, these genes and various physiological traits except sugar levels, served as useful markers of NaCl tolerance. To our knowledge, this is the first report of a multi-step acclimation conferring tolerance to 150 mM NaCl in leaf-derived calli of M. truncatula.  相似文献   

7.
Carthamus tinctorius L., rich in antioxidant compounds, is a herbal medicine. Biochemical mechanisms of adaptation to salinity stress in safflower are still poorly understood at the cellular level. For this purpose, callus cultures of four different genotypes of safflower were used in this study to evaluate changes in their biochemical (ionic content, proline, and glycine betaine), total phenolics content (TPC), total flavonoids content (TFD), antioxidant responses (2,2-diphenyl-1-picrylhydrazyl: DPPH assay and carotenoid content), and lipid peroxidation (malon dialdehyde content: MDA) under salinity stress. The calluses derived from hypocotyls were exposed to in vitro salt stress at different concentrations of sodium chloride (0, 100, 200, and 300 mM). A reducing trend was observed in K+ and carotenoid reserves of the calluses with increasing NaCl concentration while an increasing trend was observed in Na+ content, proline, MDA, TPC, TFD, and DPPH activity under the same conditions. Callus glycine betaine content was found to decrease in the medium containing 100 mM NaCl but increased beyond this concentration up to 300 mM NaCl. Positive and significant correlations were recognized between DPPH and total phenolics as well as DPPH and total flavonoid contents, demonstrating that phenolics are the main contributors to the potential antioxidant activity of safflower at the cellular level. Overall, the salt-tolerant genotypes of Mex.2-137 and Mex.2-138 were found capable of being processed for the production of secondary metabolites via NaCl elicitation.  相似文献   

8.
The protective effects of free polyamines (PAs) against salinity stress were investigated for pistachio seedlings (Pistacia vera cv. Badami-Zarand) in a controlled greenhouse. Seedlings were treated with 25, 50, 100 and 150 mM of salts including NaCl, CaCl2 and MgCl2. Foliar treatments of putrescine, spermidine (Spd) and spermine (Spm) (0.1 and 1 mM) were applied during the salinity period. Results showed that growth characteristics of pistachio seedlings decreased under salinity stress and the application of PAs efficiently reduced the adverse effects of salt stress. PAs reduced the severe effects of salt stress in pistachio seedlings neither by increasing the activities of peroxidase and ascorbate peroxidase nor by increasing the proline content but by increasing the activities of superoxide dismutase and catalase and decreasing the hydrogen peroxide (H2O2) activity. PAs treated seedlings showed a lower Na+:K+ ratio and Cl? in leaves suggesting the role of PAs in balancing the ion exchange and better Na+:K+ discrimination under salt stress condition. These results showed the promising potential use of PAs especially Spm and Spd for reducing the negative effects of salinity stress and improving the growth of pistachio seedlings.  相似文献   

9.
The inherent differences for salt tolerance in two maize cultivars (Agatti-2002 and Sahiwal-2002) were evaluated in pot experiments. Plants were grown in half-strength of Hoagland nutrient solution added with 0, 80, 100, 120, 140 and 160 mM of NaCl. Salt stress markedly reduced the shoot and root lengths and fresh and dry masses. Reduction in growth attributes was more pronounced in cv. Agatti-2002 than cv. Sahiwal-2002. Both maize cultivars exhibited significant perturbations in important biochemical attributes being employed for screening the crops for salt tolerance. Cultivar Sahiwal-2002 was found salt tolerant as compared to cv. Agatti-2002 because it exhibited lower levels of H2O2, malondialdehyde (MDA) and higher activities of antioxidant enzymes. In addition, cultivar Sahiwal-2002 exhibited less salt-induced degradation of photosynthetic pigments, lower levels of toxic Na+ and Cl and higher endogenous levels of K+ and K+/Na+ ratio. The results indicate that salt stress induced a marked increase in MDA, H2O2, relative membrane permeability, total soluble proteins and activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase andascorbate peroxidase). Moreover, increase in endogenous levels of Na+ and Cl and decrease in K+ and K+/Na+ ratio and photosynthetic pigments were recorded in plants grown under salinity regimes.  相似文献   

10.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

11.
In this study, we set out to investigate the effect of sodium chloride (NaCl) on carotenoid and flavonoid production by the black nightshade (Solanum nigrum L.). The study was carried out under green chamber conditions using seedlings subjected to 0, 50, 100 and 150 mM NaCl for 3 weeks. The negative effect of NaCl on dry biomass production of roots and leaves were accompanied by a significant restriction in K+, Ca2+ and Mg2+ ion uptake and by an increase in Na+ ion concentrations, the effects of which were most pronounced at the highest NaCl level. Salt stress also induced oxidative stress, according to the amplified levels of thiobarbituric acid reactive substances and relative ion leakage ratio. Expression of some related carotenoid (phytoene synthase 2 and β-lycopene cyclase) and flavonoids genes (phenylalanine ammonialyase, chalcone synthase and flavonol synthase) were induced by NaCl, followed enhanced production of β-carotene, lutein, and quercetin 3-β-d-glucoside. At the highest NaCl level (150 mM NaCl), quercetin 3-β-d-glucoside synthesis came at the expense of reduced β-carotene and lutein, while salt stress treatment affected leaf antioxidant activities to a great extent relative to the control. Our data suggest that the potential antioxidant properties of carotenoids and flavonoids and their related key genes may be efficiently involved in the restriction of salt-induced oxidative damages.  相似文献   

12.
Salt stress is a major environmental factor which adversely affects the crop yield and quality. However, adequate regulation of mineral nutrients may ameliorate the deleterious effects of salts and help to sustain crop productivity under salt stress. Salt-sensitive (SPF 213) and salt-tolerant (HSF 240) sugarcane genotypes were grown in gravel at 0 and 100 mM NaCl by supplying 0, 1.4 mM, 2.1 mM and 2.8 mM of Si as calcium silicate. Results revealed that plants treated with NaCl alone showed a significant (P?≤?0.05) reduction in dry matter production, K+ concentration, cane yield and juice quality in both genotypes but the magnitude of reduction was relatively more in salt-sensitive genotype than salt-tolerant. Addition of Si significantly (P?≤?0.05) reduced the uptake and translocation of Na+ but increased K+ concentrations particularly in shoots of both sugarcane genotypes. Cane yield and yield attributes were significantly (P?≤?0.05) higher where Si was added. Juice quality characteristics were significantly (P?≤?0.05) improved in salt-sensitive and salt-tolerant sugarcane genotypes with the application of Si. The results suggested that added Si interacted with Na+, reduced its uptake and transport to shoots and consequently improved cane yield and juice quality in salt-sensitive and salt-tolerant sugarcane genotypes under salt stress.  相似文献   

13.
Suaeda fruticosa Forssk is a leaf succulent obligate halophyte that produces numerous seeds under saline conditions. Seeds are a good source of high quality edible oil and leaves are capable of removing substantial amount of salt from the saline soil besides many other economic usages. Little is known about the biochemical basis of salt tolerance in this species. We studied some biochemical responses of S. fruticosa to different exogenous treatments under non-saline (0 mM), moderate (300 mM) or high (600 mM) NaCl levels. Eight-week-old seedlings were sprayed twice a week with distilled water, hydrogen peroxide (H2O2, 100 μM), glycine betaine (GB, 10 mM), or ascorbic acid (AsA, 20 mM) for 30 days. At moderate (300 mM) NaCl, leaf Na+, Ca2+ and osmolality increased, along with unchanged ROS and antioxidant enzyme activities, possibly causing a better plant growth. Plants grew slowly at 600 mM NaCl to avoid leaf Na+ buildup relative to those at 300 mM NaCl. Exogenous application of distilled water and H2O2 improved ROS scavenging mechanisms, although growth was unaffected. ASA and GB alleviated salt-induced growth inhibition at 600 mM NaCl through enhancing the antioxidant defense system and osmotic and ion homeostasis, respectively.  相似文献   

14.
The reduced coenzyme nicotinamide-adenine dinucleotide phosphate (NADPH) is an important molecule in cellular redox balance. Glucose-6-phosphate dehydrogenase (G6PDH) is a key enzyme in the pentose phosphate pathway, the most important NADPH-generating pathway. In this study, roles of G6PDH in maintaining cell redox balance in rice suspension cells under salt stress were investigated. Results showed that the G6PDH activity decreased in the presence of 80 mM NaCl on day 2. Application of exogenous glucose stimulated the activity of G6PDH and NADPH oxidase under salt stress. Exogenous glucose also increased the ion leakage, thiobarbituric acid reactive substances and hydrogen peroxide (H2O2) contents in the presence of 80 mM NaCl on day 2, implying that the reduction of the G6PDH activity was necessary to avoid serious damage caused by salt stress. The NAPDH/NADP+ ratio increased on day 2 but decreased on day 4 under 80 mM NaCl plus glucose treatment. Diphenyleneiodonium, an NADPH oxidase inhibitor, decreased the H2O2 content under 80 mM NaCl treatment on day 2. These results imply that the H2O2 accumulation induced by glucose treatment under salt stress on day 2 was related to the NADPH oxidase. Western-blot analysis showed that the G6PDH expression was slightly induced by glucose and was obviously blocked by DPI on day 2 under salt stress. In conclusion, G6PDH plays a key role in maintaining the cell redox balance in rice suspension cells under salt stress. The coordination of G6PDH and NADPH oxidase is required in maintaining cell redox balance in salt tolerance.  相似文献   

15.
Summary Growth and physiological responses of date palm. Phoenix dactylifera L. cv. Barhee, callus to salinity stress were examined. Callus induced from shoot tips of offshoots was cultured on Murashige and Skoog medium supplemented with NaCl at concentrations ranging from 0 to 225 mM, in consective increments of 25 mM. Data obtained after 6 wk of exposure to salt have shown a significant increase in callus proliferation in response to 25 mM NaCl the lowest level tested, beyond which callus weight decreased. At 125 mM NaCl and higher, callus growth was nearly completely inhibited. Physiological studies on callus exposed to salt stress have shown an increase in proline accumulation in response to increased salinity. Proline accumulation was correlated to callus growth inhibition. Furthermore, increasing the concentration of NaCl in the culture medium generally resulted in a steady increase in Na+ and reduction in K+ concentrations. However, at 25 mM NaCl, the only level at which callus growth was significantly enhanced, an increase in K+ content was noted, in comparison to the NaCl free control. In response to increasing external NaCl level, the Na+/K+ ratio increased The Na+/K+ ratio was positively correlated to proline accumulation and hence callus growth inhibition. This study provides, an understanding of the response of date palm callus to salinity, which is important for future studies aimed at developing strategies for selecting and characterizing somaclonal variants tolerant to salt stress.  相似文献   

16.
Salinity tolerance of sugar beet (Beta vulgaris L.) cultivars in terms of growth, proline and soluble sugars concentrations, and Na+/K+ and Na+/Ca2+ ratios were analyzed in this study. Three-week-old seedlings of three sugar beet cultivars, ‘Gantang7’, ‘SD13829’, and ‘ST21916’, differing in salinity tolerance, were treated with 0, 50, 100, and 200 mM NaCl. Plant shoots and roots were harvested at 7 days after treatment and subjected to analysis. Low concentration of NaCl (50 mM) enhanced fresh and dry weights of shoot and root in ‘Gantang7’, whereas high one (200 mM) reduced growth in all cultivars and the less reduction was observed in ‘ST21916’. Shoot proline was strongly induced by salinity stress in both ‘Gantang7’ and ‘SD13829’, while it remained unchanged in ‘ST21916’. The addition of 50 mM NaCl significantly increased shoot soluble sugars concentrations in ‘Gantang7’ while it had no significant effects in the other two cultivars. ‘Gantang7’ also showed a higher level of root soluble sugars concentration as compared to the other two cultivars. At 50 mM NaCl, the lower shoot Na+ concentration, and the higher shoot K+ and root Ca2+ concentration in ‘Gantang7’ resulted in the lower shoot Na+/K+ and root Na+/Ca2+ ratio. However, ‘SD13829’ maintained a lower Na+/K+ ratio in both shoot and root when subjected to 200 mM NaCl treatment. According to comprehensive evaluation on salinity tolerance, it is clear that ‘Gantang7’ is more tolerant to salinity than the other two cultivars. Therefore, it is suggested that ‘Gantang7’ should be more suitable for cultivating in the arid and semi-arid irrigated regions.  相似文献   

17.
Using callus cells of a salt-tolerant Populus euphratica Oliver and a salt-sensitive P. popularis 35–44 (P. popularis), the effects of NaCl stress on hydrogen peroxide (H2O2) and nitric oxide (NO) production and the relevance to ionic homeostasis and antioxidant defense were investigated. Results show that P. euphratica exhibited a greater capacity to tolerate NaCl stress in terms of cell viability, membrane permeability and K+/Na+ relations. NaCl salinity (150 mM) caused a rapid increase of H2O2 and NO in P. euphratica cells, but not in P. popularis. Moreover, salinised P. euphratica cells retained a high and stable level of H2O2 and NO during the period of 24-h salt stress. Noteworthy, P. eupratica cells increased activities of superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase under salinity stress, but these antioxidant enzymes were significantly inhibited by the salt treatment in P. popularis cells. Pharmacological experiments proved that the NaCl-induced H2O2 and NO was interdependent and contributed to the mediation of K+/Na+ homeostasis and antioxidant defense in P. euphratica cells. Given these results, we conclude that the increased H2O2 and NO enable P. euphratica cells to regulate ionic and ROS (reactive oxygen species) homeostasis under salinity stress in the longer term.  相似文献   

18.
A GSK3/shaggy-like kinase (AtGSK1) has been implicated in the regulation of drought and salt tolerance. We transferred AtGSK1 from Arabidopsis thaliana to a hybrid poplar (Populus alba × P. tremula var. grandulosa) to determine the effect of the transgene expression in the transgenic trees. The results from northern blot and RT-PCR analyses showed that the expression level varied among the transgenic lines. During their culture on tissue culture media, the transgenic poplars formed vigorous growing roots even in the presence of 125 mM NaCl and callus in the presence of 150 mM NaCl. When the transgenic poplars were growing in pots and provided with NaCl solution, they stayed much healthier than did nontransgenic poplars, showing higher rates of photosynthetic rates, stomatal conductance, and evaporation rates under the stress. Whereas the total level of leaf Na+ level increased dramatically in transgenic poplars under severe saline conditions (150 mM NaCl), that of leaf K+ decreased in the same plants under the same conditions. Total root Na+ level increased in nontransgenic poplars under severe saline conditions. In contrast, total root K+ level decreased in the same plants under the same conditions. The chloride content and relative electrical conductivity of the transgenic poplars after salt stress treatment were lower than those of nontransgenic poplars. The transgenic poplars were also tolerant to up to 20 % PEG remaining significantly healthy when compared with nontransgenic poplars with necrosis and chlorosis symptoms. Another dramatic feature of the transgenic poplars was wilting tolerance for prolonged drought treatment up to 2 weeks. The results provide evidence that the expression of AtGSK1 gene conferred drought and salt tolerance in the transgenic poplars.  相似文献   

19.
Effects of iso-osmotic concentrations of NaCl and mannitol were studied in Mammilaria gracilis (Cactaceae) in both calli and tumors grown in vitro. In both tissues, relative growth rates were reduced under osmotic stress, which were accompanied by a decrease in both tissue water and K+ content. However, growth was inhibited to a lesser extent after exposure to NaCl, when accumulation of Na+ ions was observed. In calli, only salinity increased proline content, whereas with tumors proline accumulated after both osmotic stresses. Osmotic stresses also induced oxidative damage in both cactus tissues, although higher oxidative injury was caused by mannitol in calli and by salt in tumors. Low iso-osmotic concentrations of NaCl (75 mM) and mannitol (150 mM) increased peroxidase, ascorbate peroxidase, and esterase activities, whereas elevated catalase activity was recorded only after mannitol treatment in both tissues. High osmotic stress generally decreased enzymatic activities. However, in calli, esterase activity increased in response to high salinity, whereas ascorbate peroxidase activity was enhanced after high mannitol stress. In conclusion, both in vitro-grown cactus tissues were found to be sensitive to osmotic stress caused by either mannitol or NaCl, but accumulation of Na+ ions in response to salt somewhat contributed to osmotic adjustment. However, more prominent oxidative damage induced by NaCl compared to mannitol in tumor could be related to ion toxicity. The mechanisms that mediate responses to salt- and mannitol-induced osmotic stresses differed and were dependent on tissue type.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号