首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
在室内研究了不同浓度外源ABA处理和不同水分胁迫对 6种不同基因型的三叶草 (TrifoliumsubterraneumL .)生长的影响。当三叶草的第四片叶完全展开时 ,向营养液中施加不同浓度的ABA时对盆栽土壤进行控水。在处理的 1,4 ,7和 11d ,测定植株鲜重、叶片数、最长根长 ,以表示三叶草的生长状况。各参试品种以上三项生长指标均受外源ABA和水分胁迫的影响而呈现下降的趋势。同时 ,叶片水势值随ABA浓度的增加和水分胁迫强度的增加而明显降低。在 10 -4mol/LABA处理 11d后 ,参试品种平均生长量的减少与水分胁迫 15d后其生长量的减少的结论一致。在不同浓度ABA处理下 ,不同基因型三叶草平均叶片数 ,完全展开叶面积和每株干物质重约降低了5 0 % ,而其根冠比却增加了 80 %。不同基因型三叶草生长参数间的变化及排序结果与盆栽相同品种获得的实验结果非常相似。品种Clare、Nuba和SeatonPark在对照和处理下均表现最好。由于三叶草对一定浓度范围的外源ABA的反应与其在盆栽水分胁迫下的反应结果十分相似 ,因此 ,利用外源ABA处理的方法来研究不同基因型三叶草的耐旱性将可能是一种行之有效的方法。  相似文献   

2.
Genetic variants for abscisic acid (ABA) sensitivity are important for investigating the role of ABA sensitivity in conditioning plant response to environmental stress, and especially to those soil conditions that may elicit a root-mediated hormonal signal. This study was performed in order to isolate variation in ABA sensitivity among wheat (Triticum aestivum and T. durum) cultivars, as characterized by two plant responses: (i) shoot growth reduction in response to 5×10?2mol m?3 ABA (racemic) in the root medium of hydroponically grown plants, and (ii) changes in transpiration and gas exchange in a bioassay of detached leaves (leaflaminac) infused with 10?4mol m?3 ABA. Very significant (P≤0.01) and repeatable differences were found among 36 wheat cultivars and 19 landraces in the growth rate in ABA-containing nutrient solutions, expressed as a percentage of the growth rate in control nutrient solutions (ABA/control ratio). In duplicate experiments, the ABA/control ratio ranged between 60 and 83% for the least sensitive cultivars (V2151-3, Bethlehem, K1056 and Sunstar) and between 9 and 19% for the most sensitive cultivars (Sundor, Comet, Barkaec and V5). In the transpiration bioassay, performed with seven selected cultivars, it was found that the reductions in transpiration of ABA-infused leaves corresponded very well with the reductions in growth in response to ABA in the root media. Measurement of gas exchange in the detached leaves of two cultivars differing in ABA sensitivity (Bethlehem and Sundor) showed that variable ABA sensitivity was expressed very well in the stomatal conductance, carbon exchange rate (CER) and photosynthetic capacity (CER/Ci ratio) of the leaf. These results therefore allowed us to isolate wheat variants for ABA sensitivity and to conclude that, while ABA sensitivity is expressed in the growth of plants challenged by ABA in the root medium, the control of sensitivity resides, at least partly, in the leaf.  相似文献   

3.
Longan species (Dimocarpus longan Lour.) exhibit a high agronomic potential in many subtropical regions worldwide; however, little is known about its responses to abiotic stress conditions. Drought and salinity are the most environmental factors inducing negative effects on plant growth and development. In order to elucidate the responses of longan to drought and salinity, seedlings were grown under conditions of drought and salt stresses. Drought was imposed by suspending water supply leading to progressive soil dehydration, and salinity was induced using two concentrations of NaCl, 100 and 150 mM in water solution, for 64 days. Data showed that salt concentrations increased foliar abscisic acid (ABA) and only 150 mM NaCl reduced indole-3-acetic acid (IAA) and increased proline levels. NaCl treatments also increased Na+ and Cl? content in plant organs proportionally to salt concentration. Drought increased leaf ABA but did not change IAA concentrations, and also increased proline synthesis. In addition, drought and salt stresses reduced the photosynthesis performance; however, only drought decreased leaf growth and relative leaf water content. Overall, data indicate that under severe salt stress, high ABA accumulation was accompanied by a reduction of IAA levels; however, drought strongly increased ABA but did not change IAA concentrations. Moreover, drought and high salinity similarly increased (or maintained) ion levels and proline synthesis. Data also suggest that ABA accumulation may mitigate the impact of salt stress through inducing stomatal closure and delaying water loss, but did not mediate the effects of long-term drought conditions probably because leaves reached a strong dehydration and the role of ABA at this stage was not effective to detain leaf injuries.  相似文献   

4.
Dry direct‐seeded rice (DSR) cultivation is widely spreading in tropical Asia, but drought and nutrient deficiency stresses often cause crop failure in rainfed lowlands. The objective of this study was to dissect the physio‐morphological characteristics associated with crop establishment and early vigour of DSR under drought and P deficiency conditions in the Philippines. It was found that new drought‐resistant cultivars bred for DSR (Rc348 and Rc192) had faster germination and sprout growth than popular irrigated rice cultivars (Rc222 and Rc10) under soil water deficit due to rapid moisture acquisition by the germinating seeds from drying soils. There was a significant correlation between seed moisture content and the reduction in seed dry weight, and between reduction in seed dry weight and shoot elongation under both control and drought stress treatments at the germination stage. At the seedling stage, the root growth of Rc348 under drought tended to be more vigorous with its higher root‐to‐shoot ratio compared to Rc222 and Rc10. The seedling vigour of Rc348 under P deficiency was also greater than that of Rc222 due to its greater root growth and P uptake. The yields of Rc348 and Rc192 grown under rainfed condition at the target drought‐prone site where a dry spell of 13 days occurred during crop establishment were higher (4.0–4.1 t ha?1) than the yield of Rc10 (3.0 t ha?1). These results suggest that quick germination and seedling vigour with quick root anchorage and great nutrient uptake capacity, even with limitations of soil moisture and nutrients, would be important traits for DSR in rainfed lowlands.  相似文献   

5.
This paper is a continuation of our studies related to the response of two tomato cultivars: Robin and New Yorker to chilling: the later is more tolerant to chilling than the former one (Starck et al. 1994). The concentration of ABA in the xylem sap and ABA delivery rate (calculated as the amount of ABA exuded in 2h from the cut stump, following shoot removal) were estimated by ELISA. The relative water content (RWC) of the leaf blades and stomatal resistance (RS) were also measured. Tomato plants were grown in a greenhouse, under noncontrolled conditions. Before chilling some of the plants were drought hardened for 10 days (H). As an consequence of water deficit only New Yorker growth slightly decreased. Plants were chilled to 2–5 °C during three consecutive, 16-h nights, preceded by warm days, which caused a decrease in the RWC of leaf blades. Chilling did not decreased leaf blade hydration significantly, but drastically increased the concentration of ABA in the xylem sap in more chilling tolerant cv. New Yorker only. The delivery rate of ABA was markedly enhanced in both cultivars, but much more in New Yorker. Drought hardening increased ABA delivery rate in cv. Robin only, especially after chilling. The lack of correlation between changes in the RWC of leaf blades after low temperature treatment and the concentration of ABA in the xylem sap as well as its delivery rate suggest, that in both tomato cultivars chilling increased ABA level directly, not as an secondery effect of temperature-induced water deficit.  相似文献   

6.
The experiments were carried out with maize (Zea mays L.) seedlings, hybrid Kneja 530, grown hydroponically in a growth chamber. Twelve-day-old plants were foliar treated with putrescine, N1-(2-chloro-4-pyridyl)-N2-phenylurea (4-PU-30), and abscisic acid (ABA) at concentrations of 10−5 m. Twenty-four hours later the plants were subjected to a water deficit program, induced by 15% polyethylene glycol (PEG; molecular weight, 6,000). Three days after drought stress half of the plants were transferred to nutrient solution for the next 3 days. The effects of the water shortage, rewatering, and plant growth regulator (PGR) treatment on the fresh and dry weights, leaf pigment content, proline level, relative water content (RWC), transpiration rate, activities of catalase and guaiacol peroxidase, hydrogen peroxide content, and level of the products of lipid peroxidation were studied. It was established that the application of PGRs alleviated to some extent the plant damage provoked by PEG stress. At the end of the water shortage program the plants treated with these PGRs possessed higher fresh weight than drought-subjected control seedlings. It was found also that putrescine increased the dry weight of plants. Under drought, the RWC and transpiration rate of seedlings declined, but PGR treatment reduced these effects. The accumulation of free proline, malondialdehyde, and hydrogen peroxide was prevented in PGR-treated plants compared with the water stress control. The results provided further information about the influence of putrescine, 4-PU-30, and ABA on maize plants grown under normal, drought, and rewatering conditions. Received September 25, 1997; accepted August 10, 1998  相似文献   

7.
This work aimed to discuss the effects of exogenous abscisic acid (ABA) on the root growth regulation of maize seedlings under chilling stress. The roots of the maize cultivar Zhengdan 958 were irrigated with ABA (10?7, 10?6, 10?5 and 10?4 M) at the third true leaf stage under chilling duration (0, 2, 4, 6, and 8 days). The biomass, the phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) enzyme activities, total phenolic and flavonoid contents, the ferric reducing ability of plasma (FRAP) antioxidant capacity, and 2,2-azinobis (3-ethlbenzothiazo-line-6-sulfonic acid) diammonium salt radical (ABTS·+) scavenging capacity of the roots of maize seedlings were measured after the treatment. The results showed that appropriate concentrations of exogenous ABA effectively enhanced root biomass, increased PAL and PPO enzyme activities, and significantly increased total phenolic contents and flavonoid contents. Moreover, the ABA markedly improved the FRAP antioxidant capacity and ABTS·+ scavenging capacity under low-temperature stress. These results indicate that ABA-treated maize seedlings are resistant to chilling stress and that the optimum concentration of ABA is 10?5 M. Exogenous applications of ABA have a concentration effect in alleviating chilling stress, in which low concentrations have a promoting effect and high concentrations have an inhibiting effect.  相似文献   

8.
盐旱复合胁迫对小麦幼苗生长和水分吸收的影响   总被引:4,自引:0,他引:4  
为明确盐害、干旱及盐旱复合胁迫对小麦幼苗生长和水分吸收的影响,从而为盐害和干旱胁迫下栽培调控提供理论依据。以2个抗旱性不同的小麦品种(扬麦16和耐旱型洛旱7号)为材料,采用水培试验,以NaCl和PEG模拟盐旱复合胁迫,研究了盐旱复合胁迫下小麦幼苗生长、根系形态、光合特性及水分吸收特性的变化。结果表明,盐、旱及复合胁迫下小麦幼苗的生物量、叶面积、总根长与根系表面积、叶绿素荧光和净光合速率均显著下降,但是复合胁迫处理的降幅却显著低于单一胁迫。盐旱复合胁迫下根系水导速率和根系伤流液强度显著大于单一胁迫,从而提高了小麦幼苗叶片水势和相对含水量。盐胁迫下小麦幼苗Na~+/K~+显著大于复合胁迫,但复合胁迫下ABA含量却显著小于单一的盐害和干旱胁迫。因此,盐旱复合胁迫可以通过增强根系水分吸收及降低根叶中ABA含量以维持较高光合能力,这是盐旱复合胁迫提高小麦适应性的重要原因。洛旱7号和扬麦16对盐及盐旱复合胁迫的响应基本一致,但在干旱胁迫下洛旱7号表现出明显的耐性。  相似文献   

9.
Abstract

The effects of exogenous silicon (Si) on leaf relative water content (RWC), and the growth, Si concentrations, lipid peroxidation (MDA), lipoxygenase (LOX) activity, proline and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activity of some antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX) in shoots of ten chickpea cultivars grown under drought were investigated. Drought stress decreased the growth of all the cultivars while applied Si improved the growth at least five of the 10 chickpea cultivars. Silicon applied to the soil at 100 mg kg?1 significantly increased Si concentrations of the cultivars and counteracted the deleterious effects of drought in 5 of the ten chickpea cultivars by increasing their RWC. In most cultivars tested H2O2, proline and MDA content and LOX activity were increased by drought whereas application of Si decreased their levels. APX activity was increased by drought but it was depressed by Si. In general, SOD and CAT activities of the cultivars were decreased by drought. Depending on cultivars, the CAT activity was decreased, and increased or unchanged in response to applied Si, while the SOD activity of the cultivars increased or unchanged by Si. The non-enzymatic antioxidant activity of the cultivars was also increased by Si. These observations implied an essential role for Si in minimizing drought stress-induced limitation of the growth and oxidative membrane damage in chickpea plants.  相似文献   

10.
The differential responses of the wheat cultivars Shi4185 and Yumai47 to salinity were studied. The higher sensitivity of Yumai47 to salinity was linked to a greater growth reduction under salt stress, compared to more salt-tolerant Shi4185. Salinity increased the Na+, proline and superoxide anion radical (O2 ?) contents in both cultivars. Leaf Na+ content increased less in the more salt-tolerant cultivar Shi4185 than salt-sensitive Yumai47. The proline content increased more significantly in Shi4185 than Yumai47; on the contrary, superoxide anion radical content increased less in Shi4185 than Yumai47. This data indicated that wheat salinity tolerance can be increased by controlling Na+ transport from the root to shoot, associated with higher osmotic adjustment capability and antioxidant activity. Although salinity increased aldehyde oxidase (AO) activity and abscisic acid (ABA) content in the leaves and roots of both cultivars following the addition of NaCl to the growth medium, AO and ABA increased more in the salt-sensitive cultivar Yumai47 than the more salt-tolerant cultivar Shi4185. Xanthine dehydrogenase (XDH) activity in the leaves of both cultivars increased with increasing concentrations of NaCl; however, leaf XDH activity increased more significantly in Yumai47 than Shi4185. Root XDH activity in Shi4185 decreased with increasing NaCl concentrations, whereas salinity induced an increased root XDH activity in Yumai47. The involvement of AO and XDH enzymatic activities and altered ABA content in the response mechanisms of wheat to salinity are discussed herein.  相似文献   

11.
Abscisic acid (ABA) was applied in a concentration of 1. 10?3 M and 1. 10?4 M to the quantitative SD plantChenopodium rubrum under various light regimes. ABA did not influence flowering in plants under continuous illumination, enhanced flowering in plants subjected to long days and inhibited it in plants induced by short days. It was concluded that ABA can not substitute for inductive treatment but its action may be additive to initial stages of reproductive morphogenesis (enhanced growth rate and branching of the apical meristem) as evoked by long days.  相似文献   

12.
  • The fast growth of mulberry depends on high water consumption, but considerable variations in drought tolerance exist across different cultivars. Physiological and anatomical mechanisms are important to plant survival under drought. However, few research efforts have been made to reveal the relationships of these two aspects in relation to drought tolerance.
  • In this study, growth rates, leaf functional physiology and anatomical characteristics of leaf and xylem of 1‐year‐old saplings of seven mulberry cultivars at a common garden were compared. Their relationships were also explored.
  • Growth, leaf physiology and anatomy were significantly different among the tested cultivars. Foliar stable carbon isotope composition (δ13C) was negatively correlated with growth rates, and closely related to several leaf and xylem anatomical traits. Particularly, leaf thickness, predicted hydraulic conductivity and vessel element length jointly contributed 77% of the variability in δ13C. Cultivar Wupu had small stomata, intermediate leaf thickness, the smallest hydraulically weighted vessel diameter and highest vessel number, and higher δ13C; Yunguo1 had high abaxial stomatal density, low specific leaf area, moderate hydraulic conductivity and δ13C; these are beneficial features to reduce leaf water loss and drought‐induced xylem embolism in arid areas. Cultivar Liaolu11 had contrasting physiological and anatomical traits compared with the previous two cultivars, suggesting that it might be sensitive to drought.
  • Our findings indicate that growth and δ13C are closely associated with both leaf and xylem anatomical characteristics in mulberry, which provides fundamental information to assist evaluation of drought tolerance in mulberry cultivars and in other woody trees.
  相似文献   

13.
The effects of manganese supply on plant growth and on photosynthesisand manganese concentrations in young leaves were examined inSeaton Park subterranean clover in three glasshouse water cultureexperiments. Plants werc grown initially with a copious supply of manganese,and transferred to solutions either with or without manganese.Sequential harvests were taken to determine the effects of developingmanganese deficiency on dry matter (DM) yield of whole plantsand selected characteristics [manganese, chlorophyll and photosyntheticoxygen evolution (POE)] of youngest open leaf blades (YOL).In addition, the deffect of leaf age and iron supply on POEwerc examined. Manganese concentrations and POE in YOL declined markedly andrapidly in plants transferred to solutions without manganese,while chlorophyll concentrations of YOL and plant DM yield respondedmore weakly and more slowly. As a result, a level of manganesedeficiency which depressed POE in young leaves by more than50 per cent had no effed on DM production. In youngleaves (YOL, YOL + 1, YOL–1), POE declined whentheir manganese concentrations were < 20 µg g–1DM. Iron supply did not affect this rdationship. When learnwith < 20 µg Mn g–1 DM were detached and incubatedfor 24 h in solutions containing high concentrations of manganese,their POE increased to normal rates; leaves with higher manganeseconcentrations did not respond. It is suggested that the valueof 20 µg Mn g–1 DM is the functional manganese requirementfor POE in young subterranean clover leaves It is also suggestedthat this value may be used as a critical value for indicatingmanganese deficiency in subterranean clover. Functional nutrient requirements determined in this way by correlationof nutrient concentrations in young leaves with their biochemicalor physiological activities appear to offer more accurate andconsistent standards for use an critical values for diagnosisof plant nutrient status than do the critical values determinedin the usual way by correlation with plant dry weight. Trifolium subterraneum L. subterranean clover, manganese, functional requirements, deficiency diagnosis, nutrient requirements, critical values, photosynthetic oxygen evolution  相似文献   

14.
The beneficial effect of mycorrhization on photosynthetic gas exchange of host plants under drought conditions could be related to factors other than changes in phosphorus nutrition and water uptake. Our objective was to study the influence of drought on phytohormones and gas exchange parameters in Medicago sativa L. cv. Aragón associated with or in the absence of arbuscular mycorrhizal (AM) fungi and/or nitrogen-fixing bacteria. Four treatments were used: (1) plants inoculated with Glomus fasciculatum (Taxter sensu Gerd.) Gerdemann and Trappe and Rhizobium meliloti 102 F51 strain (MR); (2) plants inoculated with only Rhizobium (R); (3) plants inoculated with only mycorrhizae (M); and (4) non-inoculated plants (N). When endophytes were well established, treatments received different levels of phosphorus and nitrogen in the nutrient solution in order to obtain plants similar in size. Sixty days after planting, plants were subjected to two cycles of drought and recovery. Midday leaf water potential (Ψ), CO2 exchange rate (CER), leaf conductance (gw) and transpiration (T), as well as leaf and root abscisic acid (ABA) and cytokinin concentrations were measured after the second drought period. Gas exchange parameters were determined by infrared gas analysis. Cytokinins and ABA levels in tissues were analysed by ELISA and HPLC, respectively. Nodulated R and MR plants had the lowest ABA concentrations in roots under well-watered conditions. Water stress increased ABA concentrations in leaves of N, R and MR plants, while ABA concentration in M plants did not change. The highest production of ABA under water deficit was in the roots of non-mycorrhizal plants. The ratio of ABA to cytokinin concentration strongly increased in leaves and roots of non-mycorrhizal plants under drought. By contrast, this ratio was lowered in roots of M plants and remained unchanged in leaves and roots of MR plants when stress was imposed. The highest leaf conductances and transpirational fluxes under well-watered conditions were those of nitrogen-fixing R and MR plants, but these results were not impaired with increased CO2 exchange rates. Photosynthesis, leaf conductance and transpiration rates decreased in all treatments when stress was imposed, with the strongest decrease occurring in non-mycorrhizal plants. The relationships found between these gas exchange parameters and the hormone concentrations in stressed alfalfa tissues suggest that microsymbionts have an important role in the control of gas exchange of the host plant through hormone production in roots and the ABA/cytokinin balance in leaves. The most relevant effect of mycorrhizal fungi was observed under drought conditions.  相似文献   

15.
In a comparison of six cowpea cultivars, we determined the variation in abscisic acid (ABA) production as an ‘early warning signal’ produced in response to drought stress. By imposing drought only to the upper 20 cm rooting zone, we compared the rates of ABA synthesis relative to (i) total root mass and (ii) inherent variation per unit root mass. We were able to relate the intensity of the stress response to these two factors, and determine which is quantitatively more important as the primary signal indicating responsiveness to drought stress. Plants were grown in 1.2 m long columns and a soil drying treatment imposed in such a way that that upper roots were in dry soil and deep roots in soil at field capacity. Relative water contents (RWC) of stressed plants were similar and not significantly different from those of well watered controls. However, roots accumulated ABA in the dehydrated zone, where root water content ranged from 10–12 g g?1 DW. The soil moisture contents and root ‐water contents in the dry zone were similar for each of the different varieties. However, the ABA contents were significantly different in drought‐stressed (upper) roots and ranged from 7.82 nmol g?1 DW in cv. APC 689 to 16.02 nmol g?1 DW in cv. APC 370, such that for varieties with similar overall root weights (e.g. APC 580 and APC 540) the different ABA contents were related to the capacity for ABA synthesis. The relationship between stomatal conductance and total root ABA was assessed, with a negative relation (r= 0.90, n= 24, P= 0.05) suggesting that the intrinsic capacity of cowpea varieties for ABA synthesis could play an important role in regulating stomatal conductance in a drying soil and provide useful selection criteria for tolerance to drought stress.  相似文献   

16.
Growth measurements of hormone-treated roots from willow cuttings were combined with electrophysiological recordings to study hormone-induced changes in membrane potential and in endogenous ion currents. The mean growth rate of roots was 10 ± 2 μm min?1 in regular nutrient solution. It increased to 13 ± 2 μm min+1 after application of spermine and decreased to 0.07 ± 0.01 μm min?1 after treatment with abscisic acid (ABA). Transient depolarizations were elicited in root cortex cells by spermine, while ABA caused a transient hyperpolarization. All changes in membrane potential were accompanied by transient responses of the endogenous current. These responses suggest that first anions, then cations leave the root during spermine-induced depolarizations. From the changes of the endogenous current an apparent efflux of anions (presumably Cl?) and cations (presumably K+) of 200 to 700 pmol cm?2 per depolarization was calculated. To further investigate a possible relation between endogenous ion currents, growth and the growth regulators ABA and spermine, long-lasting extracellular vibrating-probe measurements were performed. Control roots showed an inward current of about 1.5 μA cm?2 at the apical elongation zone and an outward current with a maximum density of 1.3 μA cm?2 at the central and basal elongation zone. The addition of ABA and spermine (final concentration 0.1 mM) to the bathing medium affected the endogenous current in opposite ways: ABA caused a reduction of inward and outward current, while spermine stimulated both. Since protons are a major component of the endogenous current, and sucrose can be taken up by root cells from the apoplast via symport with H+, a role of the endogenous current in growth regulation is indicated.  相似文献   

17.
To determine whether natural plant growth regulators (PGRs) can enhance drought tolerance and the competitive ability of transplanted seedlings, 1.5-year-old jack pine (Pinus banksana Lamb.) seedlings were treated with homobrassinolide, salicylic acid, and two polyamines, spermine and spermidine, triacontanol, abscisic acid (ABA), and the synthetic antioxidant, Ambiol. PGRs were fed into the xylem for 7 days and plants were droughted by withholding water for 12 days. ABA, Ambiol, spermidine, and spermine at a concentration of 10 μg L−1 stimulated elongation growth under drought, whereas ABA, Ambiol, and spermidine maintained higher photosynthetic rates, higher water use efficiency, and lower Ci/Ca ratio under drought compared with control plants. The damaging effects of drought on membrane leakage was reversed by Ambiol, ABA, triacontanol, spermidine, and spermine. Because ABA, Ambiol, and both polyamines enhanced elongation growth and also reduced membrane damage in jack pine under drought, they show promise as treatments to harden seedlings against environmental stress. The protective action of these compounds on membrane integrity was associated with an inhibition of ethylene evolution, with a reduction in transpiration rate and an enhancement of photosynthesis, which together increased water use efficiency under drought. Although most of the tested compounds acted as antitranspirants, the inhibition in membrane leakage in ABA-, Ambiol-, and polyamine-treated plants appeared more closely related to the antiethylene action. Received December 30, 1998; accepted October 14, 1999  相似文献   

18.
Changes on abscisic acid (ABA), jasmonic acid (JA) and indole-3-acetic acid (IAA) levels were investigated in papaya seedlings (Carica papaya L.) cv. “Baixinho de Santa Amalia” under progressive water stress and subsequent rehydration. Also, the behaviour of leaf gas exchange and leaf growth was determined under stress condition. The results indicated that ABA and JA differ in their pattern of change under water stress. ABA continuously increased in leaves and roots during the whole period of stress whereas JA showed a sharp increase and a later decrease in both organs. Re-watering reduced rapidly (24 h) leaf and root ABA to control levels whereas the influence on JA levels could not be assessed. Drought and recovery did not alter IAA levels in leaf and root tissues of papaya seedlings. In addition, water stress reduced stomatal conductance, photosynthetic rate, transpiration rate, the percentage of attached leaves and leaf growth. Rehydration reverted in few days the effects of stress on leaf growth and gas exchange parameters. Overall, the data suggest that ABA could be involved in the induction of several progressive responses such as the induction of stomatal closure and leaf abscission to reduce papaya water loss. In addition, the pattern of accumulation of JA is compatible with a triggering signal upstream ABA. The unaltered levels of IAA could suggest a certain adaptive ability of papaya to maintain active physiological processes under progressive drought stress.  相似文献   

19.
Water status parameters, flag leaf photosynthetic activity, abscisic acid (ABA) levels, grain yield, and storage protein contents were investigated in two drought-tolerant (Triticum aestivum L. cv. MV Emese and cv. Plainsman V) and two drought-sensitive (cvs. GK élet and Cappelle Desprez) wheat genotypes subjected to soil water deficit during grain filling to characterize physiological traits related to yield. The leaf water potential decreased earlier and at a higher rate in the sensitive than in the tolerant cultivars. The net CO2 assimilation rate (P N) in flag leaves during water deficit did not display a strict correlation with the drought sensitivity of the genotypes. The photosynthetic activity terminated earliest in the tolerant cv. Emese, and the senescence of flag leaves lasted 7 days longer in the sensitive Cappelle Desprez. Soil drought did not induce characteristic differences between sensitive and tolerant cultivars in chlorophyll a fluorescence parameters of flag leaves during post-anthesis. Changes in the effective quantum yield of PSII (ΦPSII) and the photochemical quenching (qP) depended on the genotypes and not on the sensitivity of cultivars. In contrast, the levels of ABA in the kernels displayed typical fluctuations in the tolerant and in the sensitive cultivars. Tolerant genotypes exhibited an early maximum in the grain ABA content during drought and the sensitive cultivars maintained high ABA levels in the later stages of grain filling. In contrast with other genotypes, the grain number per ear did not decrease in Plainsman and the gliadin/glutenin ratio was higher than in the control in Emese during drought stress. A possible causal relationship between high ABA levels in the kernels during late stages of grain filling and a decreased grain yield was found in the sensitive cultivars during drought stress.  相似文献   

20.
The osmotic and ion-specific components of salt-induced inhibition of leaf expansion growth were investigated in beans grown from 12 h to several days in either NaCl-containing solution cultures, an isosmotic concentrated macronutrient solution, or a vermiculite–compost mixture with low Na+ but high Cl availability. Inhibition of leaf expansion and leaf ABA increase was more intense in the NaCl than in the isosmotic macronutrient treatment. Root Na+ was highly correlated to inhibition of leaf expansion and leaf or xylem sap ABA. When Na+ was sequestered in soil, salinized plants showed no reduction in leaf expansion or ABA increase, regardless of the presence of high leaf Cl concentrations. Stomatal conductance exhibited an exponential relationship with the reciprocal value of xylem sap ABA. Our results indicate that an ion-specific effect caused by Na+ in roots may account for an ABA-mediated reponse of both stomatal closure and leaf expansion inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号