首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecologists are increasingly making use of molecular phylogenies, especially in the fields of community ecology and conservation. However, these phylogenies are often used without full appreciation of their underlying assumptions and uncertainties. A frequent practice in ecological studies is inferring a phylogeny with molecular data from taxa only within the community of interest. These “inferred community phylogenies” are inherently biased in their taxon sampling. Despite the importance of comprehensive sampling in constructing phylogenies, the implications of using inferred community phylogenies in ecological studies have not been examined. Here, we evaluate how taxon sampling affects the quantification and comparison of community phylogenetic diversity using both simulated and empirical data sets. We demonstrate that inferred community trees greatly underestimate phylogenetic diversity and that the probability of incorrectly ranking community diversity can reach up to 25%, depending on the dating methods employed. We argue that to reach reliable conclusions, ecological studies must improve their taxon sampling and generate the best phylogeny possible.  相似文献   

2.
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ~600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ~34 Ma, but also elevated extinction ~10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses.  相似文献   

3.
Time‐calibrated phylogenies that contain only living species have been widely used to study the dynamics of speciation and extinction. Concerns about the reliability of phylogenetic extinction estimates were raised by Rabosky (2010), where I suggested that unaccommodated heterogeneity in speciation rate could lead to positively biased extinction estimates. In a recent article, Beaulieu and O'Meara (2015a) correctly point out several technical errors in the execution of my 2010 study and concluded that phylogenetic extinction estimates are robust to speciation rate heterogeneity under a range of model parameters. I demonstrate that Beaulieu and O'Meara underestimated the magnitude of speciation rate variation in real phylogenies and consequently did not incorporate biologically meaningful levels of rate heterogeneity into their simulations. Using parameter values drawn from the recent literature, I find that modest levels of heterogeneity in speciation rate result in a consistent, positive bias in extinction estimates that are exacerbated by phylogenetic tree size. This bias, combined with the inherent lack of information about extinction in molecular phylogenies, suggests that extinction rate estimates from phylogenies of extant taxa only should be treated with caution.  相似文献   

4.
Speciation is not instantaneous but takes time. The protracted birth–death diversification model incorporates this fact and predicts the often observed slowdown of lineage accumulation toward the present. The mathematical complexity of the protracted speciation model has barred estimation of its parameters until recently a method to compute the likelihood of phylogenetic branching times under this model was outlined (Lambert et al. 2014 ). Here, we implement this method and study using simulated phylogenies of extant species how well we can estimate the model parameters (rate of initiation of speciation, rate of extinction of incipient and good species, and rate of completion of speciation) as well as the duration of speciation, which is a combination of the aforementioned parameters. We illustrate our approach by applying it to a primate phylogeny. The simulations show that phylogenies often do not contain enough information to provide unbiased estimates of the speciation‐initiation rate and the extinction rate, but the duration of speciation can be estimated without much bias. The estimate of the duration of speciation for the primate clade is consistent with literature estimates. We conclude that phylogenies combined with the protracted speciation model provide a promising way to estimate the duration of speciation.  相似文献   

5.
The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there are often limits to diversity. Here, we present a general approach to evaluate the likelihood of a phylogeny under a model that accommodates diversity-dependence and extinction. We find, by likelihood maximization, that extinction is estimated most precisely if the rate of increase in the number of lineages in the phylogeny saturates towards the present or first decreases and then increases. We demonstrate the utility and limits of our approach by applying it to the phylogenies for two cases where a fossil record exists (Cetacea and Cenozoic macroperforate planktonic foraminifera) and to three radiations lacking fossil evidence (Dendroica, Plethodon and Heliconius). We propose that the diversity-dependence model with extinction be used as the standard model for macro-evolutionary dynamics because of its biological realism and flexibility.  相似文献   

6.
Order Diplobathrida is a major clade of camerate crinoids spanning the Ordovician–Mississippian, yet phylogenetic relationships have only been inferred for Ordovician taxa. This has hampered efforts to construct a comprehensive tree of life for crinoids and develop a classification scheme that adequately reflects diplobathrid evolutionary history. Here, I apply maximum parsimony and Bayesian phylogenetic approaches to the fossil record of diplobathrids to infer the largest tree of fossil crinoids to date, with over 100 genera included. Recovered trees provide a framework for evaluating the current classification of diplobathrids. Notably, previous suborder divisions are not supported, and superfamily divisions will require significant modification. Although numerous revisions are required for families, most can be retained through reassignment of genera. In addition, recovered trees were used to produce phylogeny‐based estimates of diplobathrid lineage diversity. By accounting for ghost lineages, phylogeny‐based richness estimates offer greater insight into diversification and extinction dynamics than traditional taxonomy‐based approaches alone and provide a detailed summary of the ~150 million‐year evolutionary history of Diplobathrida. This study constitutes a major step toward producing a phylogeny of the Crinoidea and documenting crinoid diversity dynamics. In addition, it will serve as a framework for subsequent phylogeny‐based investigations of macroevolutionary questions.  相似文献   

7.
Paleontologists frequently contrast clade rank (i.e., nodal or patristic distance from the base of a cladogram) with age rank (i.e., relative first known appearances of the analyzed taxa) to measure the degree of congruence between the estimated phylogeny and the fossil record. Although some potential biases of these methods have been examined (e.g., the effect of tree imbalance), other properties of age rank/clade rank (ARCR) comparisons have not been studied in detail. A basic premise of ARCR metrics is that outgroup taxa diverged earlier than ingroups and thus should first appear in older strata. For example, given phylogeny (A,(B,C)), then taxon A should be sampled before either taxon B or taxon C. We examine this premise in the context of (1) phylogenetic theory, (2) taxonomic practice, (3) sampling intensity (R), and (4) factors other than sampling intensity (including cladogram accuracy). Simulations combining clade evolution and sampling over time indicate a poor relationship between ARCR metrics and R when all taxa are apomorphy-based monophyletic groups. However, a good relationship exists when taxa are either stem-based monophyletic groups or if workers include taxa without a priori decisions about monophyly or paraphyly. These results are not surprising because cladograms predict the order in which lineages diverged (which applies to stem-based monophyletic taxa) and the order in which morphologic grades appeared (which applies to paraphyletic taxa relative to derived monophyletic groups). Other factors that increase ARCR metrics when the average R stays the same include high temporal variation in R, budding instead of bifurcating speciation patterns, low extinction rates, cladogram inaccuracy, and (to a much lesser extent) large clade size. These results suggest several plausible explanations for patterned differences in ARCR metrics among clades, thereby compromising their validity as measures of the quality of the fossil record.  相似文献   

8.
Snake diversity varies by at least two orders of magnitude among extant lineages, with numerous groups containing only one or two species, and several young clades exhibiting exceptional richness (>700 taxa). With a phylogeny containing all known families and subfamilies, we find that these patterns cannot be explained by background rates of speciation and extinction. The majority of diversity appears to derive from a radiation within the superfamily Colubroidea, potentially stemming from the colonization of new areas and the evolution of advanced venom-delivery systems. In contrast, negative relationships between clade age, clade size, and diversification rate suggest the potential for possible bias in estimated diversification rates, interpreted by some recent authors as support for ecologically mediated limits on diversity. However, evidence from the fossil record indicates that numerous lineages were far more diverse in the past, and that extinction has had an important impact on extant diversity patterns. Thus, failure to adequately account for extinction appears to prevent both rate- and diversity-limited models from fully characterizing richness dynamics in snakes. We suggest that clade-level extinction may provide a key mechanism for explaining negative or hump-shaped relationships between clade age and diversity, and the prevalence of ancient, species-poor lineages in numerous groups.  相似文献   

9.
Stochastic modeling of phylogenies raises five questions that have received varying levels of attention from quantitatively inclined biologists. 1) How large do we expect (from the model) the ratio of maximum historical diversity to current diversity to be? 2) From a correct phylogeny of the extant species of a clade, what can we deduce about past speciation and extinction rates? 3) What proportion of extant species are in fact descendants of still-extant ancestral species, and how does this compare with predictions of models? 4) When one moves from trees on species to trees on sets of species (whether traditional higher order taxa or clades within PhyloCode), does one expect trees to become more unbalanced as a purely logical consequence of tree structure, without signifying any real biological phenomenon? 5) How do we expect that fluctuation rates for counts of higher order taxa should compare with fluctuation rates for number of species? We present a mathematician's view based on an oversimplified modeling framework in which all these questions can be studied coherently.  相似文献   

10.
Ectolecithality is a form of oogenesis unique within Metazoa but common in Platyhelminthes, in which almost yolkless oocytes and tightly associated yolk cells are deposited together in egg capsules. Despite profound impacts on the embryogenesis and morphology of its beneficiaries, the origins of this developmental phenomenon remain obscure. Traditionally, all ectolecithal flatworms were grouped in a clade called Neoophora. However, there are also morphological arguments for multiple origins of ectolecithality and, to date, Neoophora has seen little support from molecular phylogenetic research, largely as a result of gaps in taxon sampling. Accordingly, we present a molecular phylogeny focused on resolving the deepest divergences among the free‐living Platyhelminthes. Species were chosen to completely span the diversity of all major endo‐ and ectolecithal clades, including several aberrant species of uncertain systematic affinity and, additionally, a thorough sampling of the ‘lecithoepitheliate’ higher taxa Prorhynchida and Gnosonesimida, respectively, under‐ and unrepresented in phylogenies to date. Our analyses validate the monophyly of all classical higher platyhelminth taxa, and also resolve a clade possessing distinct yolk‐cell and oocyte generating organs (which we name Euneoophora new taxon ). Furthermore, implied‐weights parsimony and Bayesian mixture model analyses suggest common ancestry of this clade with the lecithoepitheliates, implying that these taxa may retain a primitive form of ectolecithality. This topology thus corroborates the classical hypothesis of homology between yolk cells and oocytes in all Neoophora, and should serve to guide future evolutionary research on this unique developmental innovation in Platyhelminthes. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 570–588.  相似文献   

11.
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.  相似文献   

12.
Animal taxa show remarkable variability in species richness across phylogenetic groups. Most explanations for this disparity postulate that taxa with more species have phenotypes or ecologies that cause higher diversification rates (i.e., higher speciation rates or lower extinction rates). Here we show that clade longevity, and not diversification rate, has primarily shaped patterns of species richness across major animal clades: more diverse taxa are older and thus have had more time to accumulate species. Diversification rates calculated from 163 species-level molecular phylogenies were highly consistent within and among three major animal phyla (Arthropoda, Chordata, Mollusca) and did not correlate with species richness. Clades with higher estimated diversification rates were younger, but species numbers increased with increasing clade age. A fossil-based data set also revealed a strong, positive relationship between total extant species richness and crown group age across the orders of insects and vertebrates. These findings do not negate the importance of ecology or phenotype in influencing diversification rates, but they do show that clade longevity is the dominant signal in major animal biodiversity patterns. Thus, some key innovations may have acted through fostering clade longevity and not by heightening diversification rate.  相似文献   

13.
Extinction risk in the modern world and extinction in the geological past are often linked to aspects of life history or other facets of biology that are phylogenetically conserved within clades. These links can result in phylogenetic clustering of extinction, a measurement comparable across different clades and time periods that can be made in the absence of detailed trait data. This phylogenetic approach is particularly suitable for vertebrate taxa, which often have fragmentary fossil records, but robust, cladistically‐inferred trees. Here we use simulations to investigate the adequacy of measures of phylogenetic clustering of extinction when applied to phylogenies of fossil taxa while assuming a Brownian motion model of trait evolution. We characterize expected biases under a variety of evolutionary and analytical scenarios. Recovery of accurate estimates of extinction clustering depends heavily on the sampling rate, and results can be highly variable across topologies. Clustering is often underestimated at low sampling rates, whereas at high sampling rates it is always overestimated. Sampling rate dictates which cladogram timescaling method will produce the most accurate results, as well as how much of a bias ancestor–descendant pairs introduce. We illustrate this approach by applying two phylogenetic metrics of extinction clustering (Fritz and Purvis's D and Moran's I) to three tetrapod clades across an interval including the Permo‐Triassic mass extinction event. These groups consistently show phylogenetic clustering of extinction, unrelated to change in other quantitative metrics such as taxonomic diversity or extinction intensity.  相似文献   

14.
Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species) and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family) and thus to maximize diversity (diversified sampling). So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent) diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa). The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa). Furthermore, model selection by means of Akaike''s Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model). Finally, I applied six different diversification rate models – ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models – on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species). All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear to be violated.  相似文献   

15.
The disparity in species richness across the tree of life is one of the most striking and pervasive features of biological diversity. Some groups are exceptionally diverse, whereas many other groups are species poor. Differences in diversity among groups are frequently assumed to result from primary control by differential rates of net diversification. However, a major alternative explanation is that ecological and other factors exert primary control on clade diversity, such that apparent variation in net diversification rates is a secondary consequence of ecological limits on clade growth. Here, I consider a likelihood framework for distinguishing between these competing hypotheses. I incorporate hierarchical modeling to explicitly relax assumptions about the constancy of diversification rates across clades, and I propose several statistics for a posteriori evaluation of model adequacy. I apply the framework to a recent dated phylogeny of ants. My results reject the hypothesis that net diversification rates exert primary control on species richness in this group and demonstrate that clade diversity is better explained by total time-integrated speciation. These results further suggest that it may not possible to estimate meaningful speciation and extinction rates from higher-level phylogenies of extant taxa only.  相似文献   

16.
Whether there are ecological limits to species diversification is a hotly debated topic. Molecular phylogenies show slowdowns in lineage accumulation, suggesting that speciation rates decline with increasing diversity. A maximum‐likelihood (ML) method to detect diversity‐dependent (DD) diversification from phylogenetic branching times exists, but it assumes that diversity‐dependence is a global phenomenon and therefore ignores that the underlying species interactions are mostly local, and not all species in the phylogeny co‐occur locally. Here, we explore whether this ML method based on the nonspatial diversity‐dependence model can detect local diversity‐dependence, by applying it to phylogenies, simulated with a spatial stochastic model of local DD speciation, extinction, and dispersal between two local communities. We find that type I errors (falsely detecting diversity‐dependence) are low, and the power to detect diversity‐dependence is high when dispersal rates are not too low. Interestingly, when dispersal is high the power to detect diversity‐dependence is even higher than in the nonspatial model. Moreover, estimates of intrinsic speciation rate, extinction rate, and ecological limit strongly depend on dispersal rate. We conclude that the nonspatial DD approach can be used to detect diversity‐dependence in clades of species that live in not too disconnected areas, but parameter estimates must be interpreted cautiously.  相似文献   

17.
Interest in methods that estimate speciation and extinction rates from molecular phylogenies has increased over the last decade. The application of such methods requires reliable estimates of tree topology and node ages, which are frequently obtained using standard phylogenetic inference combining concatenated loci and molecular dating. However, this practice disregards population‐level processes that generate gene tree/species tree discordance. We evaluated the impact of employing concatenation and coalescent‐based phylogeny inference in recovering the correct macroevolutionary regime using simulated data based on the well‐established diversification rate shift of delphinids in Cetacea. We found that under scenarios of strong incomplete lineage sorting, macroevolutionary analysis of phylogenies inferred by concatenating loci failed to recover the delphinid diversification shift, while the coalescent‐based tree consistently retrieved the correct rate regime. We suggest that ignoring microevolutionary processes reduces the power of methods that estimate macroevolutionary regimes from molecular data.  相似文献   

18.
Despite considerable progress in unravelling the phylogenetic relationships of microhylid frogs, relationships among subfamilies remain largely unstable and many genera are not demonstrably monophyletic. Here, we used five alternative combinations of DNA sequence data (ranging from seven loci for 48 taxa to up to 73 loci for as many as 142 taxa) generated using the anchored phylogenomics sequencing method (66 loci, derived from conserved genome regions, for 48 taxa) and Sanger sequencing (seven loci for up to 142 taxa) to tackle this problem. We assess the effects of character sampling, taxon sampling, analytical methods and assumptions in phylogenetic inference of microhylid frogs. The phylogeny of microhylids shows high susceptibility to different analytical methods and datasets used for the analyses. Clades inferred from maximum‐likelihood are generally more stable across datasets than those inferred from parsimony. Parsimony trees inferred within a tree‐alignment framework are generally better resolved and better supported than those inferred within a similarity‐alignment framework, even under the same cost matrix (equally weighted) and same treatment of gaps (as a fifth nucleotide state). We discuss potential causes for these differences in resolution and clade stability among discovery operations. We also highlight the problem that commonly used algorithms for model‐based analyses do not explicitly model insertion and deletion events (i.e. gaps are treated as missing data). Our results corroborate the monophyly of Microhylidae and most currently recognized subfamilies but fail to provide support for relationships among subfamilies. Several taxonomic updates are provided, including naming of two new subfamilies, both monotypic.  相似文献   

19.
The phylogeny of the genus Picea was investigated by sequencing three loci from the paternally inherited chloroplast genome (trnK, rbcL and trnTLF) and the intron 2 of the maternally transmitted mitochondrial gene nad1 for 35 species. Significant topological differences were found between the trnK tree and the rbcL and trnTLF phylogenetic trees, and between cpDNA and mtDNA phylogenies. None of the phylogenies matched morphological classifications. The mtDNA phylogeny was geographically more structured than cpDNA phylogenies, reflecting the different inheritance of the two cytoplasmic genomes in the Pinaceae and their differential dispersion by seed only and seed and pollen, respectively. Most North American taxa formed a monophyletic group on the mtDNA tree, with topological patterns suggesting geographic speciation by range fragmentation or by dispersal and isolation. Similar patterns were also found among Asian taxa. Such a trend towards geographic speciation is anticipated in other Pinaceae genera with similar life history, autecology and reproductive system. Incongruences between organelle phylogenies suggested the occurrence of mtDNA capture by invading cpDNA. Incongruences between cpDNA partitions further suggested heterologous recombination presumably also linked to ancient reticulate evolution. Whilst cpDNA appears potentially valuable for molecular taxonomy and systematics purposes, these results emphasize the reduced value of cpDNA to infer vertical descent and the speciation history for plants with paternal transmission and high dispersal of their chloroplast genome.  相似文献   

20.
A quarter of all lagomorphs (pikas, rabbits, hares and jackrabbits) are threatened with extinction, including several genera that contain only one species. The number of species in a genus correlates with extinction risk in lagomorphs, but not in other mammal groups, and this is concerning because the non‐random extinction of small clades disproportionately threatens genetic diversity and phylogenetic history. Here, we use phylogenetic analyses to explore the properties of the lagomorph phylogeny and test if variation in evolution, biogeography and ecology between taxa explains current patterns of diversity and extinction risk. Threat status was not related to body size (and, by inference, its biological correlates), and there was no phylogenetic signal in extinction risk. We show that the lagomorph phylogeny has a similar clade‐size distribution to other mammals, and found that genus size was unrelated to present climate, topography, or geographic range size. Extinction risk was greater in areas of higher human population density and negatively correlated with anthropogenically modified habitat. Consistent with this, habitat generalists were less likely to be threatened. Our models did not predict threat status accurately for taxa that experience region‐specific threats. We suggest that pressure from human populations is so severe and widespread that it overrides ecological, biological, and geographic variation in extant lagomorphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号