首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of temperature, pH, free [Mg(2+)], and ionic strength on the apparent equilibrium constant of arginine kinase (EC 2.7.3.3) was determined. At equilibrium, the apparent K' was defined as [see text] where each reactant represents the sum of all the ionic and metal complex species. The K' at pH 7.0, 1.0 mM free [Mg(2+)], and 0. 25 M ionic strength was 29.91 +/- 0.59, 33.44 +/- 0.46, 35.44 +/- 0. 71, 39.64 +/- 0.74, and 45.19 +/- 0.65 (n = 8) at 40, 33, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy (DeltaH degrees') is -8.19 kJ mol(-1), and the corresponding standard apparent entropy of the reaction (DeltaS degrees') is + 2. 2 J K(-1)mol(-1) in the direction of ATP formation at pH 7.0, free [Mg(2+)] =1.0 mM, ionic strength (I) =0.25 M at 25 degrees C. We further show that the magnitude of transformed Gibbs energy (DeltaG degrees ') of -8.89 kJ mol(-1) is mostly comprised of the enthalpy of the reaction, with 7.4% coming from the entropy TDeltaS degrees' term (+0.66 kJ mol(-1)). Our results are discussed in relation to the thermodynamic properties of its evolutionary successor, creatine kinase.  相似文献   

2.
The thermodynamics of the hydrolysis of lactose to glucose and galactose have been investigated using both high pressure liquid chromatography and heat-conduction microcalorimetry. The reaction was carried out over the temperature range 282-316 K and in 0.1 M sodium acetate buffer at a pH of 5.65 using the enzyme beta-galactosidase to catalyze the reaction. For the process lactose(aq) + H2O(liq) = glucose(aq) + galactose(aq), delta G0 = -8.72 +/- 0.20 kJ.mol-1, K0 = 34 +/- 3, delta H0 = 0.44 +/- 0.11 kJ.mol-1, delta S0 = 30.7 +/- 0.8 J.mol-1.K-1, and delta Cop = 9 +/- 20 J.mol-1.K-1 at 298.15 K. The standard state is the hypothetical ideal solution of unit molality. Thermochemical cycle calculations using enthalpies of combustion and solution, entropies, solubilities, activity coefficients, and apparent molar heat capacities have also been performed. These calculations indicate large discrepancies which are attributable primarily to errors in literature data on the enthalpies of combustion and/or third law entropies of the crystalline forms of the substrates.  相似文献   

3.
The thermodynamics of the equilibria between aqueous ribose, ribulose, and arabinose were investigated using high-pressure liquid chromatography and microcalorimetry. The reactions were carried out in aqueous phosphate buffer over the pH range 6.8-7.4 and over the temperature range 313.15-343.75 K using solubilized glucose isomerase with either Mg(NO3)2 or MgSO4 as cofactors. The equilibrium constants (K) and the standard state Gibbs energy (delta G degrees) and enthalpy (delta H degrees) changes at 298.15 K for the three equilibria investigated were found to be: ribose(aq) = ribulose(aq) K = 0.317, delta G degrees = 2.85 +/- 0.14 kJ mol-1, delta H degrees = 11.0 +/- 1.5 kJ mol-1; ribose(aq) = arabinose(aq) K = 4.00, delta G degrees = -3.44 +/- 0.30 kJ mol-1, delta H degrees = -9.8 +/- 3.0 kJ mol-1; ribulose(aq) = arabinose(aq) K = 12.6, delta G degrees = -6.29 +/- 0.34 kJ mol-1, delta H degrees = -20.75 +/- 3.4 kJ mol-1. Information on rates of the above reactions was also obtained. The temperature dependencies of the equilibrium constants are conveniently expressed as R in K = -delta G degrees 298.15/298.15 + delta H degrees 298.15[(1/298.15)-(1/T)] where R is the gas constant (8.31441 J mol-1 K-1) and T the thermodynamic temperature.  相似文献   

4.
The thermodynamics of the enzymatic hydrolysis of cellobiose, gentiobiose, isomaltose, and maltose have been studied using both high pressure liquid chromatography and microcalorimetry. The hydrolysis reactions were carried out in aqueous sodium acetate buffer at a pH of 5.65 and over the temperature range of 286 to 316 K using the enzymes beta-glucosidase, isomaltase, and maltase. The thermodynamic parameters obtained for the hydrolysis reactions, disaccharide(aq) + H2O(liq) = 2 glucose(aq), at 298.15 K are: K greater than or equal to 155, delta G0 less than or equal to -12.5 kJ mol-1, and delta H0 = -2.43 +/- 0.31 kJ mol-1 for cellobiose; K = 17.9 +/- 0.7, delta G0 = -7.15 +/- 0.10 kJ mol-1 and delta H0 = 2.26 +/- 0.48 kJ mol-1 for gentiobiose; K = 17.25 +/- 0.7, delta G0 = -7.06 +/- 0.10 kJ mol-1, and delta H0 = 5.86 +/- 0.54 kJ mol-1 for isomaltose; and K greater than or equal to 513, delta G0 less than or equal to -15.5 kJ mol-1, and delta H0 = -4.02 +/- 0.15 kJ mol-1 for maltose. The standard state is the hypothetical ideal solution of unit molality. Due to enzymatic inhibition by glucose, it was not possible to obtain reliable values for the equilibrium constants for the hydrolysis of either cellobiose or maltose. The entropy changes for the hydrolysis reactions are in the range 32 to 43 J mol-1 K-1; the heat capacity changes are approximately equal to zero J mol-1 K-1. Additional pathways for calculating thermodynamic parameters for these hydrolysis reactions are discussed.  相似文献   

5.
The temperature induced unfolding of barstar wild-type of bacillus amyloliquefaciens (90 residues) has been characterized by differential scanning microcalorimetry. The process has been found to be reversible in the pH range from 6.4 to 8.3 in the absence of oxygen. It has been clearly shown by a ratio of delta HvH/delta Hcal near 1 that denaturation follows a two-state mechanism. For comparison, the C82A mutant was also studied. This mutant exhibits similar reversibility, but has a slightly lower transition temperature. The transition enthalpy of barstar wt (303 kJ mol-1) exceeds that of the C82A mutant (276 kJ mol-1) by approximately 10%. The heat capacity changes show a similar difference, delta Cp being 5.3 +/- 1 kJ mol-1 K-1 for the wild-type and 3.6 +/- 1 kJ mol-1 K-1 for the C82A mutant. The extrapolated stability parameters at 25 degrees C are delta G0 = 23.5 +/- 2 kJ mol-1 for barstar wt and delta G0 = 25.5 +/- 2 kJ mol-1 for the C82A mutant.  相似文献   

6.
Thermodynamics of isomerization reactions involving sugar phosphates have been studied using heat-conduction microcalorimetry. For the process glucose 6-phosphate2-(aqueous) = fructose 6-phosphate2- (aqueous), K = 0.285 +/- 0.004, delta Go = 3.11 +/- 0.04 kJ.mol-1, delta Ho = 11.7 +/- 0.2 kJ.mol-1, and delta Cop = 44 +/- 11 J.mol-1.K-1 at 298.15 K. For the process mannose 6-phosphate2- (aqueous) = fructose 6-phosphate2- (aqueous), K = 0.99 +/- 0.05, delta Go = 0.025 +/- 0.13 kJ.mol-1, delta Ho = 8.46 +/- 0.2 kJ.mol-1, and delta Cop = 38 +/- 25 J.mol-1.K-1 at 298.15 K. The standard state is the hypothetical ideal solution of unit molality. An approximate result (-14 +/- 5 kJ.mol-1) was obtained for the enthalpy of isomerization of ribulose 5-phosphate (aqueous) to ribose 5-phosphate (aqueous). The data from the literature on isomerization reactions involving sugar phosphates have been summarized, adjusted to a common reference state, and examined for trends and relationships to each other and to other thermodynamic measurements. Estimates are made for thermochemical parameters to predict the state of equilibrium of the several isomerizations considered herein.  相似文献   

7.
Thermodynamics of the enzyme-catalyzed (alkaline phosphatase, EC 3.1.3.1) hydrolysis of glucose 6-phosphate, mannose 6-phosphate, fructose 6-phosphate, ribose 5-phosphate, and ribulose 5-phosphate have been investigated using microcalorimetry and, for the hydrolysis of fructose 6-phosphate, chemical equilibrium measurements. Results of these measurements for the processes sugar phosphate2- (aqueous) + H2O (liquid) = sugar (aqueous) + HPO2++-(4) (aqueous) at 25 degrees C follow: delta Ho = 0.91 +/- 0.35 kJ.mol-1 and delta Cop = -48 +/- 18 J.mol-1.K-1 for glucose 6-phosphate; delta Ho = 1.40 +/- 0.31 kJ.mol-1 and delta Cop = -46 +/- 11 J.mol-1.dK-1 for mannose 6-phosphate; delta Go = -13.70 +/- 0.28 kJ.mol-1, delta Ho = -7.61 +/- 0.68 kJ.mol-1, and delta Cop = -28 +/- 42 J.mol-1.K-1 for fructose 6-phosphate; delta Ho = -5.69 +/- 0.52 kJ.mol-1 and delta Cop = -63 +/- 37 J.mol-1.K-1 for ribose 5-phosphate; and delta Ho = -12.43 +/- 0.45 kJ.mol-1 and delta Cop = -84 +/- 30 J.mol-1.K-1 for the hydrolysis of ribulose 5-phosphate. The standard state is the hypothetical ideal solution of unit molality. Estimates are made for the equilibrium constants for the hydrolysis of ribose and ribulose 5-phosphates. The effects of pH, magnesium ion concentration, and ionic strength on the thermodynamics of these reactions are considered.  相似文献   

8.
K Takahashi  H Fukada 《Biochemistry》1985,24(2):297-300
The binding of Streptomyces subtilisin inhibitor (SSI) to subtilisin of Bacillus subtilis strain N' (subtilisin BPN', EC 3.4.21.14) was studied by isothermal calorimetry at pH 7.0 and at various temperatures ranging from 5 to 30 degrees C. Thermodynamic quantities for the binding reaction were derived as a function of temperature by combining the data reported for the dissociation constant with the present calorimetric results. At 25 degrees C, the values are delta G degrees = -57.9 kJ mol-1, delta H = -19.8 kJ mol-1, delta S degree = 0.13 kJ K-1 mol-1, and delta Cp = -1.02 kJ K-1 mol-1. The entropy and the heat capacity changes are discussed in terms of the contributions from the changes in vibrational modes and in hydrophobic interactions.  相似文献   

9.
The thermodynamics of the enzymatic conversion (penicillin acylase) of aqueous penicillin G to phenylacetic acid and 6-aminopenicillanic acid have been studied using both high-pressure liquid-chromatography and microcalorimetry. The reaction was carried out in aqueous phosphate buffer over the pH range 6.0-7.6, at ionic strengths from 0.10 to 0.40 mol kg-1, and at temperatures from 292 to 322 K. The data have been analyzed using a chemical equilibrium model with an extended Debye-Hückel expression for the activity coefficients. For the reference reaction, penicillin G- (aq) + H2O(l) = phenylacetic acid-(aq) + 6-aminopenicillanic acid-(aq) + H+ (aq), the following parameters have been obtained: K = (7.35 +/- 1.5) X 10(-8) mol kg-1, delta G0 = 40.7 +/- 0.5 kJ mol-1, delta H0 = 29.7 +/- 0.6 kJ mol-1, and delta C0p = -240 +/- 50 J mol-1 K-1 at 298.15 K and at the thermochemical standard state. The extent of reaction for the overall conversion is highly dependent upon the pH.  相似文献   

10.
The intrinsic enthalpy changes (corrected for hydration of D-glyceraldehyde 3-phosphate) for the reactions catalyzed by the alpha and beta 2 subunits of tryptophan synthase from Escherichia coli have been determined calorimetrically. Cleavage of indoleglycerol phosphate (alpha reaction) was found to be associated with a delta H value of 54.0 +/- 2.5 kJ mol-1, while condensation of indole with L-serine (beta reaction) involved -80.3 +/- 4.6 kJ mol-1'. By direct determination of the enthalpy concomitant with the overall synthesis of tryptophan from indoleglycerol phosphate and L-serine an enthalpy value of -13.4 +/- 5.6 kJ mol-1 was observed. In view of the uncertainties of the literature data used for calculation of the hydration contribution, the agreement between the directly measured delta H value of the overall reaction and the sum of the enthalpies of the alpha and beta reactions is fair. Deamination of L-serine, a side reaction catalyzed preferentially by the isolated beta 2 pyridoxal 5'-phosphate2 subunit, was shown to be associated with an enthalpy change of -7.3 +/- 0.4 kJ mol-1.  相似文献   

11.
The bicyclic colchicine analogue 2-methoxy-5-(2',3',4'-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-on e (MTC) has been used to study the thermodynamics of specific ligand binding to the colchicine site of tubulin, employing isothermal reaction microcalorimetry. The binding of MTC to purified calf brain tubulin, in 10 mM sodium phosphate buffer, pH 7.0, is characterized by delta H degree = -19 +/- 1 kJ.mol-1, delta G degree = -31.8 +/- 0.6 kJ.mol-1, and delta S degree = 43 +/- 5 J.mol-1.K-1 at 298 K, with a slight variation in the temperature range from 283 to 308 K. The binding thermodynamics of colchicine and allocolchicine are similar to MTC under the conditions examined, suggesting related molecular interactions of the three ligands with the protein binding site. The standard enthalpy changes of binding of colchicine and MTC at 308 K coincide within experimental error. Therefore the more favorable free energy change of binding of colchicine must come from a larger binding entropy change (by about 20 J.mol-1.K-1). This difference could be attributed to the presence of the middle ring of colchicine, which is absent in MTC. Consistently, a similar entropy change is observed by the comparison of allocolchicine to MTC binding at several temperatures. In addition, allocolchicine binding is about 6 kJ.mol-1 less exothermic than MTC binding, which could be attributed to the presence in allocolchicine of a substituted phenyl ring instead of the colchicine-MTC tropolone ring. The present results and analysis are fully compatible with the previously proposed bifunctional binding of colchicine and MTC (through their trimethoxybenzene and tropolone moieties) to a bifocal protein binding site, and also with a partial immobilization of intramolecular rotation of MTC upon binding, which in colchicine is already constrained by its middle ring (Andreu, J. M., Gorbunoff, M. J., Lee, J. C., and Timasheff, S. (1984) Biochemistry 23, 1742-1752).  相似文献   

12.
The alpha beta-methylene analogues of ATP and ADP, [alpha beta CH2]ATP and [alpha beta CH2]ADP, are substrates for creatine kinase. However, the rate of the phosphoryl transfer reaction catalysed is about 10(-5)-times lower than that with normal ATP. The affinities of the analogues (especially [alpha beta CH2]ADP) for the enzyme are lower than those of the normal substrates. The equilibrium constant at 25 degrees C, measured using 31P NMR, for the reaction Mg[alpha beta CH2]ATP + creatine in equilibrium Mg[alpha beta CH2]ADP + phosphocreatine + H+ is 2.2 X 10(-12) M compared with a value of 2.5 X 10(-10) M for the same reaction with the normal substrates, corresponding to a difference in delta G0 values of 11.7 kJ X mol-1. It follows that delta G0 for the hydrolysis of the terminal phosphate group of Mg[alpha beta CH2]ATP is less favourable by 11.7 kJ X mol-1 than that for MgATP.  相似文献   

13.
D K Blumenthal  J T Stull 《Biochemistry》1982,21(10):2386-2391
The reversible association of Ca42+-calmodulin with the inactive catalytic subunit of myosin light chain kinase results in the formation of the catalytically active holoenzyme complex [Blumenthal, D. K., & Stull, J. T. (1980) Biochemistry 19, 5608--5614]. The present study was undertaken in order to determine the effects of pH, temperature, and ionic strength on the processes of activation and catalysis. The catalytic activity of myosin light chain kinase, when fully activated by calmodulin, exhibited a broad pH optimum (greater than 90% of maximal activity from pH 6.5 to pH 9.0), showed only a slight inhibition by moderate ionic strengths (less than 20% inhibition at mu = 0.22), and displayed a marked temperature dependence (Q10 congruent to 2; Ea = 10.4 kcal mol-1). Thermodynamic parameters calculated from Arrhenius plots indicate that the Gibb's energy barrier associated with the rate-limiting step of catalysis is primarily enthalpic. The process of kinase activation by calmodulin had a narrower pH optimum (pH 6.0--7.5) than did catalytic activity, was markedly inhibited by increasing ionic strength (greater than 70% inhibition at mu = 0.22), and exhibited nonlinear van't Hoff plots. Between 10 and 20 degrees C, activation was primarily entropically driven (delta S degrees congruent to 40 cal mol-1 deg-1; delta H degrees = -900 cal mol-1), but between 20 and 30 degrees C, enthalpic factors predominated in driving the activation process (delta S degrees congruent to 10 cal mol-1 deg-1; delta H degrees = -9980 cal mol-1). The apparent change in heat capacity (delta Cp) accompanying activation was estimated to be -910 cal mol-1 deg-1. On the basis of these data we propose that although hydrophobic interactions between calmodulin and the kinase are necessary for the activation of the enzyme, other types of interactions such as hydrogen bonding, ionic, and van der Waals interactions also make significant and probably obligatory contributions to the activation process.  相似文献   

14.
Thermodynamics of the Ca2+ binding to bovine alpha-lactalbumin   总被引:1,自引:0,他引:1  
Bovine alpha-lactalbumin contains one strong Ca2+-binding site. The free energy (delta G0), enthalpy (delta H0), and entropy (delta S0) of binding of Ca2+ to this site have been calculated from microcalorimetric experiments. The enthalpy of binding was dependent on the metal-free bovine alpha-lactalbumin concentration. At 0.8 mg ml-1, metal-free bovine alpha-lactalbumin delta H0 was -110 +/- 6 kJ mol-1. At this concentration the binding constant was estimated from a mathematical analysis of the titration curves to be greater than 10(7) M-1. This means that delta G0 is smaller than -40 kJ mol-1 and delta S0 is less negative than -235 J.K-1 mol-1. The binding of Ca2+ is therefore enthalpy-driven. From binding experiments as a function of temperature, a delta Cp value of -4.1 kJ.K-1 mol-1 was calculated. This value is dependent on the protein concentration. A tentative explanation for this large value is given.  相似文献   

15.
High-pressure liquid chromatography and microcalorimetry have been used to study the thermodynamics of the hydrolysis reactions of a series of disaccharides. The enzymes used to bring about the hydrolyses were: beta-galactosidase for lactulose and 3-o-beta-D-galactopyranosyl-D-arabinose; beta-glucosidase for alpha-D-melibiose; beta-amylase for D-trehalose; isomaltase for palatinose; and alpha-glucosidase for D-turanose. The buffer used was sodium acetate (0.02-0.10 M and pH 4.44-5.65). For the following processes at 298.15 K: lactulose(aq) + H2O(liq) = D-galactose(aq) + D-fructose(aq), K0 = 128 +/- 10 and delta H0 = 2.21 +/- 0.10 kJ mol-1; alpha-D-melibiose(aq) + H2O(liq) = D-galactose(aq) + D-glucose(aq), K0 = 123 +/- 42 and delta H0 = -0.88 +/- 0.50 kJ mol-1; palatinose(aq) + H2O(liq) = D-glucose(aq) + D-fructose(aq), delta H0 = -4.44 +/- 1.1 kJ mol-1; D-trehalose(aq) + H2O(liq) = 2 D-glucose(aq), K0 = 119 +/- 10 and delta H0 = 4.73 +/- 0.41 kJ mol-1; D-turanose(aq) + H2O(liq) = D-glucose(aq) + D-fructose(aq), delta H0 = -2.68 +/- 0.75 kJ mol-1; and 3-o-beta-D-galactopyranosyl-D-arabinose(aq) + H2O(liq) = D-galactose(aq) + D- arabinose(aq),0H0 = 107 +/- 10 and delta H0 = 2.97 +/- 0.10 kJ mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Thermodynamic study of yeast phosphoglycerate kinase   总被引:2,自引:0,他引:2  
Enthalpies of binding of MgADP, MgATP, and 3-phosphoglycerate to yeast phosphoglycerate kinase have been determined by flow calorimetry at 9.95-32.00 degrees C. Combination of these data with published dissociation constants [Scopes, R.K. (1978) Eur. J. Biochem. 91, 119-129] yielded the following thermodynamic parameters for the binding of 3-phosphoglycerate at 25 degrees C: delta Go = -6.76 +/- 0.11 kcal mol-1, delta H = 3.74 +/- 0.08 kcal mol-1, delta So = 35.2 +/- 0.6 cal K-1 mol-1, and delta Cp = 0.12 +/- 0.32 kcal K-1 mol-1. The thermal unfolding of phosphoglycerate kinase in the absence and presence of the ligands listed above was studied by differential scanning calorimetry. The temperature of half-completion, t 1/2, of the denaturation and the denaturational enthalpy are increased by the binding of the ligands, the increase in t 1/2 being a manifestation of Le Chatelier's principle and that in enthalpy reflecting the enthalpy of dissociation of the ligand. Only one denaturational peak was observed under all conditions, and in contrast with the case of yeast hexokinase [Takahashi, K., Casey, J.L., & Sturtevant, J.M. (1981) Biochemistry 20, 4693-4697], no definitive evidence for the unfolding of more than one domain was obtained.  相似文献   

17.
Arginine dihydrolase pathway in Lactobacillus buchneri: a review   总被引:1,自引:0,他引:1  
The arginine dihydrolase system was studied in homo- and hetero-fermentative lactic acid bacteria. This system is widely distributed in Betabacteria lactobacilli subgroup (group II in Bergey's Manual). It is generally absent in the Thermobacterium lactobacilli subgroup (group IA in Bergey's Manual) and also in the Streptobacterium subgroup (group IB in Bergey's Manual). It is present in some species of the genus Streptococcus (groups II, III and IV in Bergey's Manual). In Lactobacillus buchneri NCDO110 the 3 enzymes of the arginine dihydrolase pathway, arginine deiminase, ornithine transcarbamylase and carbamate kinase, were purified and characterized. Arginine deiminase was partially purified (68-fold); ornithine transcarbamylase was also partially purified (14-fold), while carbamate kinase was purified to homogeneity. The apparent molecular weight of the enzymes was 199,000, 162,000 and 97,000 for arginine deiminase, ornithine transcarbamylase and carbamate kinase respectively. For arginine deiminase, maximum enzymatic activity was observed at 50 degrees C and pH 6; for ornithine transcarbamylase it was observed at 35 degrees C and pH 8.5, and for carbamate kinase at 30 degrees C and pH 5.4. The activation energy of the reactions was determined. For arginine deiminase, delta G* values were: 8,700 cal mol-1 below 50 degrees C and 380 cal mol-1 above 50 degrees C; for ornithine transcarbamylase, the values were: 9,100 cal mol-1 below 35 degrees C and 4,300 cal mol-1 above 35 degrees C; for carbamate kinase, the activation energy was: 4,078 cal mol-1 for the reaction with Mn2+ and 3,059 cal mol-1 for the reaction with Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The enthalpy change of the binding of Ca2+ and Mn2+ to equine lysozyme was measured at 25 degrees C and pH 7.5 by batch microcalorimetry: delta H degrees Ca2+ = -76 +/- 5 kJ mol-1, delta H degrees Mn2+ = -21 +/- 10 kJ mol-1. Binding constants, log KCa2+ = 6.5 +/- 0.2 and log KMn2+ = 4.1 +/- 0.5, were calculated from the calorimetric data. Therefore, delta S degrees Ca2+ = -131 +/- 20 JK-1 mol-1 and delta S degrees Mn2+ = 8 +/- 44 JK-1 mol-1. Removal of Ca2+ induces small but significant changes in the circular dichroism spectrum, indicating the existence of a partially unfolded apo-conformation, comparable with, but different from, the apo-conformation of bovine alpha-lactalbumin.  相似文献   

19.
The thermodynamics of the conversion of aqueous fumarate to L-(-)-malate has been investigated using both heat conduction microcalorimetry and a gas chromatographic method for determining equilibrium constants. The reaction was carried out in aqueous Tris-HCl buffer over the pH range 6.3-8.0, the temperature range 25-47 degrees C, and at ionic strengths varying from 0.0005 to 0.62 mol kg-1. Measured enthalpies and equilibrium ratios have been adjusted to zero ionic strength and corrected for ionization effects to obtain the following standard state values for the conversion of aqueous fumarate 2- to malate 2- at 25 degrees C: K = 4.20 +/- 0.05, delta G degrees = -3557 +/- 30 J mol-1, delta H degrees = -15670 +/- 150 J mol-1, and delta C degrees p = -36 +/- J mol-1 K-1. Equations are given which allow one to calculate the combined effects of pH and temperature on equilibrium constants and enthalpies of this reaction.  相似文献   

20.
The effect of temperature, pH, and free [Mg(2+)] on the apparent equilibrium constant of pyruvate kinase (phosphoenol transphosphorylase) (EC ) was investigated. The apparent equilibrium constant, K', for the biochemical reaction P-enolpyruvate + ADP = ATP + Pyr was defined as K' = [ATP][Pyr]/[ADP][P-enolpyruvate], where each reactant represents the sum of all the ionic and metal complexed species in M. The K' at pH 7.0, 1.0 mm free Mg(2+) and I of 0.25 m was 3.89 x 10(4) (n = 8) at 25 degrees C. The standard apparent enthalpy (DeltaH' degrees ) for the biochemical reaction was -4.31 kJmol(-1) in the direction of ATP formation. The corresponding standard apparent entropy (DeltaS' degrees ) was +73.4 J K(-1) mol(-1). The DeltaH degrees and DeltaS degrees values for the reference reaction, P-enolpyruvate(3-) + ADP(3-) + H(+) = ATP(4-) + Pyr(1-), were -6.43 kJmol(-1) and +180 J K(-1) mol(-1), respectively (5 to 38 degrees C). We examined further the mass action ratio in rat heart and skeletal muscle at rest and found that the pyruvate kinase reaction in vivo was close to equilibrium i.e. within a factor of about 3 to 6 of K' in the direction of ATP at the same pH, free [Mg(2+)], and T. We conclude that the pyruvate kinase reaction may be reversed under some conditions in vivo, a finding that challenges the long held dogma that the reaction is displaced far from equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号