首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exponentially growing cultures of the chlorophyta Tetraedronminimum were allowed to photoadapt to low (50µmole quantam–2s–1) and high (500µmole quanta m–2–1)irradiance levels. In these cultures, various aspects of theorganization of the photosynthetic apparatus and related differencesin its performance were studied. In this organism, the observed five-fold increase in pigmentationof low-light adapted cells was due to increases in the numbersof PSU's, while their sizes remained constant. Using radioimmunoassay technique, we found that high-light adaptedalgae had over five times more Rubisco per PSU than their low-lightadapted counterparts. The high-light adapted algae also exhibited far higher (x2.3)light saturated photosynthetic rates per chl a. This increasewas the result of a reduction of tau, , the turnover time ofPS II reaction centers. We propose that the increase in Rubisco per PSU in high-lightadapted algae explains the reduction in , which results in thehigher Pmax rates per chl a in these algae. The relationship is non linear, since the increase in Rubiscoper PSU was x5.3 whereas that in PmM per chl a was only x2.3. (Received July 30, 1988; Accepted December 2, 1988)  相似文献   

2.
Photoinhibition is a central problem for the understanding of plasticity in photosynthesis vs. irradiance response. It effectively reduces the photosynthetic rate. In this contribution, we present a mechanistic model of algal photoinhibition induced by photodamage to photosystem-II. Photosystem-IIs (PSIIs) are assumed to exist in three states: open, closed and inhibited. Photosynthesis is closely associated with the transitions between the three states. The present model is defined by four parameters: effective cross section of PSII, number of PSIIs, turnover time of electron transfer chains and the ratio of rate constant of damage to that of repair of D1 proteins in PSIIs. It gives a photosynthetic response curve of phytoplankton to irradiance (PI-curve). Without photoinhibition, the PI-curve is in hyperbola with the first three parameters. The PI-curve with photoinhibition can be simplified to the same form as the hyperbola by replacing either the number of PSIIs with the number of functional PSIIs or the turnover time of electron transfer chains with the average turnover time.  相似文献   

3.
Models describing the light response of photosynthetic electron transport rate (ETR) are routinely used to determine how light absorption influences energy, reducing power and yields of primary productivity; however, no single model is currently able to provide insight into the fundamental processes that implicitly govern the variability of light absorption. Here we present development and application of a new mechanistic model of ETR for photosystem II based on the light harvesting (absorption and transfer to the core ‘reaction centres’) characteristics of photosynthetic pigment molecules. Within this model a series of equations are used to describe novel biophysical and biochemical characteristics of photosynthetic pigment molecules and in turn light harvesting; specifically, the eigen-absorption cross-section and the minimum average lifetime of photosynthetic pigment molecules in the excited state, which describe the ability of light absorption of photosynthetic pigment molecules and retention time of excitons in the excited state but are difficult to be measured directly. We applied this model to a series of previously collected fluorescence data and demonstrated that our model described well the light response curves of ETR, regardless of whether dynamic down-regulation of PSII occurs, for a range of photosynthetic organisms (Abies alba, Picea abies, Pinus mugo and Emiliania huxleyi). Inherent estimated parameters (e.g. maximum ETR and the saturation irradiance) by our model are in very close agreement with the measured data. Overall, our mechanistic model potentially provides novel insights into the regulation of ETR by light harvesting properties as well as dynamical down-regulation of PSII.  相似文献   

4.
Measured profiles of photosynthetic capacity in plant crowns typically do not match those of average irradiance: the ratio of capacity to irradiance decreases as irradiance increases. This differs from optimal profiles inferred from simple models. To determine whether this could be explained by omission of physiological or physical details from such models, we performed a series of thought experiments using a new model that included more realism than previous models. We used ray‐tracing to simulate irradiance for 8000 leaves in a horizontally uniform canopy. For a subsample of 500 leaves, we simultaneously optimized both nitrogen allocation (among pools representing carboxylation, electron transport and light capture) and stomatal conductance using a transdermally explicit photosynthesis model. Few model features caused the capacity/irradiance ratio to vary systematically with irradiance. However, when leaf absorptance varied as needed to optimize distribution of light‐capture N, the capacity/irradiance ratio increased up through the crown – that is, opposite to the observed pattern. This tendency was counteracted by constraints on stomatal or mesophyll conductance, which caused chloroplastic CO2 concentration to decline systematically with increasing irradiance. Our results suggest that height‐related constraints on stomatal conductance can help to reconcile observations with the hypothesis that photosynthetic N is allocated optimally.  相似文献   

5.
谢君魔芋(Amorphophallus xiei)是起源于云南西南地区热带雨林的典型喜阴植物,近年来得到了广泛种植和推广,在种植过程中,谢君魔芋需要采用遮荫栽培模式。为了揭示谢君魔芋对光照强度的适应策略,该研究探讨了生长在不同光照强度下(透光率为50%、29%、17%、7%)谢君魔芋叶片的光合作用特征、光合诱导特征、光合色素含量以及叶片氮素(N)含量和N分配。结果表明:随着生长环境光照强度的降低,单位叶面积和单位叶质量最大净光合速率、光合色素含量、最大羧化速率、最大电子传递速率及比叶面积均增大,而暗呼吸和光补偿点均减小。在光合诱导过程中,生长在透光率为17%光环境中的谢君魔芋完成50%光合诱导所需的时间最短,约为81.4 s;在光诱导进行10 min时,诱导状态最高,为87.3%。完成50%和90%光合诱导所需的时间与低光下初始气孔导度呈负相关关系。随着生长光照强度降低,叶片中的N分配到羧化组分和生物能转化组分中的比例先增大后减小,在透光率为17%的光环境下具有最大值;而叶片中的N分配到捕光色素组分中的比例随着生长环境光照强度降低而增加。该研究结果表明,喜阴植物谢君魔芋通过加强对低光和动态光源的利用能力及有效的N资源分配策略来适应低光照环境。  相似文献   

6.
Mark Honti 《Hydrobiologia》2007,592(1):315-328
A mechanistic model was formulated that describes the rate of photosynthesis based on an analogy with queuing systems of operational research. The parallel electron processing capacity of the plastoquinone pool was hypothesized to be the key element in the photosynthetic electron transport chain, determining the process of light saturation for phytoplankton. The state of the plastoquinone pool was described mathematically by a continuous-time Markov chain. The model assumes that traditional photosynthesis measurements using incubation under constant irradiance can be regarded as stochastic equilibria. The model was tested on a set of photosynthesis–irradiance measurements taken in Lake Balaton (Hungary). It clearly outperformed the two most common empirical photosynthesis–irradiance models used in limnology by delivering the best-fit in most cases. Thus, the traditional limnological practice of choosing the right empirical, two-parameter photosynthesis–irradiance model that produces the best-fit can be replaced by simple calibration of three parameters, including a new one describing the degree of parallelism in the photosynthetic units. This parameter was found to specify the curvature of the photosynthesis–irradiance function. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: L. Naselli-Flores  相似文献   

7.
Photoacclimation of photosynthesis was investigated in a tropical population of C. glomerata (S?o Paulo State, southeastern Brazil, 20 degrees 48' 24" S and 49 degrees 22' 24" W) by chlorophyll fluorescence parameters and chlorophyll a content. Plants were acclimated to two levels of irradiance: low (65 +/- 5 micromol.m(-2).s(-1)) and high (300 +/- 10 micromol.m(-2).s(-1)) and exposed short-term (4 days) and long-term (28 days) under a light-dark cycle of 12:12 hours. Photosynthesis-irradiance (PI) curves revealed distinct strategies of photoacclimation. In long-term exposure, plants acclimated by altering the photosynthetic units (PSU) number and keeping fixed the PSU size, revealed by increased rates of maximum photosynthesis (Pmax), lower photosynthetic efficiency (alpha) and higher values of the saturation parameter (Ik) under high irradiance. The short-term acclimation strategy consisted of changing the PSU size, with a fixed number of PSUs, as revealed by similar Pmax but higher alpha and lower Ik under low irradiance. Chlorophyll a contents followed the general pattern reported in green algae of higher concentrations under lower irradiance. Dark/light induction curves revealed consistently higher values of potential quantum yield under low irradiance. Initial and final values showed a higher recovery capacity in the short (84.4-90.6%) term exposure than in the long-term case (81.4-81.5%). ETR (electron transport rate) and NPQ (non-photochemical quenching) values were consistently higher under low irradiance. ETR showed a continuous and steady increase along the light exposure period in the short and long-term experiments, whereas NPQ values revealed a rapid increase after 15 seconds of light exposure, kept a slightly increasing trend and stabilized in most treatments. Lower photosynthetic performance (ETR) and recovery capacity of potential quantum yield were observed, particularly in long-term exposure, suggesting that this population is constrained by the typical high light environment of tropical regions.  相似文献   

8.
A basic requirement of all photosynthetic organisms is a balance between overall energy supply through temperature-independent photochemical reactions and energy consumption through the temperature-dependent biochemical reactions of photosynthetic electron transport and contiguous metabolic pathways. Since the turnover of photosystem II (PSII) reaction centers is a limiting step in the conversion of light energy into ATP and NADPH, any energy imbalance may be sensed through modulation of the redox state of PSII. This can be estimated in vivo by chlorophyll a fluorescence as changes in the redox state of PSII, or photosystem II excitation pressure, which reflects changes in the redox poise of intersystem electron transport carriers. Through comparisons of photosynthetic adjustment, we show that growth at low temperature mimics growth at high light. We conclude that terrestrial plants, green algae and cyanobacteria do not respond to changes in growth temperature or growth irradiance per se, but rather, respond to changes in the redox state of intersystem electron transport as reflected by changes in PSII excitation pressure, We suggest that this chloroplastic redox sensing mechanism may be an important component for sensing abiotic stresses in general. Thus, in addition to its role in energy transduction, the chloroplast may also be considered a primary sensor of environmental change through a redox sensing/signalling mechanism that acts synergistically with other signal transduction pathways to elicit the appropriate molecular and physiological responses.  相似文献   

9.
Light Harvesting and Utilization by Phytoplankton   总被引:14,自引:0,他引:14  
In this study we use a model based on target theory to analyzesteady-state photosynthesis-irradiance relationships in continuouslight. From the average turnover time () of photosynthetic units(PSUO2), numerical analyses of the model coefficients, and measurementsof the light field and cell absorptivity, apparent absorptioncrosssections of photosystem II (PSII) were determined for three species of marine unicellular algaegrown at different irradiance levels. These cross-sections generally,but not always, increased with decreased growth irradiance.Additionally, the ratios of photosystem I/photosystem II reactioncenters were calculated from measurements of oxygen flash yieldsand chlorophyll/P700 ratios. From the ratios of the reactioncenters, cell absorptivity and the apparent absorption cross-sectionof photosystem II, the apparent absorption cross-sections ofphotosystem I (PSI) were also calculated. Finally, on the basis of our calculated absorptioncross-sections, we estimated the minimum quantum requirementsfor O2 evolution. Our results suggest that the absorption cross-sectionsof PS I and PS II vary independently and the minimum quantumrequirements for O2 vary by more than twofold, increasing from9.1 to 20.6 quanta/O2, as growth irradiance increases. The increasein quantum requirement corresponds to larger apparent cross-sectionsfor photosystem I and higher carotenoid/chlorophyll ratios. (Received October 15, 1985; Accepted July 17, 1986)  相似文献   

10.
光合电子流对光响应的机理可以揭示植物光合电子流与光强、植物捕光色素分子物理特性之间的关系。该文讨论了光合电子流对光响应的机理模型的特性以及捕光色素分子的物理性质, 并利用此模型拟合了山莴苣(Lagedium sibiricum)、一年蓬(Erigeron annuus)和紫菀(Aster tataricus)的光合电子流对光响应的曲线。由此模型不仅可以得到植物的最大光合电子流、饱和光强、初始斜率等参数, 还可以获得捕光色素分子有效光能吸收截面和处于最低激发态的捕光色素分子数对光的响应关系。结果表明: 随光强的增加, 山莴苣的捕光色素分子的有效光能吸收截面下降最快, 紫苑的下降速度最慢; 山莴苣处于最低激发态的捕光色素分子数增长速度最快, 紫苑的增长速度最小。捕光色素分子的有效光能吸收截面随光强增加而下降、处于最低激发态的捕光色素分子数随光强增加而增加的特性将减少其光能的吸收和激子的传递, 因而有利于减少强光对植物产生的光伤害。  相似文献   

11.
《BBA》1987,891(3):205-215
The minimal turnover time, τ, for in vivo electron transport from water to CO2, was calculated from oxygen flash yields and steady-state light-saturated photosynthetic rates in the marine chlorophyte, Dunaliella tertiolecta, cultured at different growth irradiance levels. As cells adapted to lower growth irradiance levels, τ increased from 3.5 to 14.5 ms, in parallel with increases in the contents of chlorophyll a, Photosystem II, PQ, cytochrome b6f, Photosystem I and thylakoid surface density. Thus, at all growth irradiance levels examined, the relative proportion of these membrane-bound electron-transport components remained constant. However, the cellular pool size of ribulose-1,5-bisphosphate carboxylase/oxygenase, determined by radioimmunoassay, was independent of growth irradiance. Hence the ratio of the enzyme to electron-transport chain components varied between 4.8 and 1.2 as a function of growth irradiance levels. The change in this ratio was related quantitatively to the minimal turnover time of electron transport from water to carbon dioxide. Taking into account thylakoid surface density, cellular contents of electron-transport components and diffusion coefficient of plastoquinol, a diffusion time of 2.3 ms was calculated for transport of PQH2 from Photosystem II to cytochrome b6f. This rate is 1.5- to 13-times faster than τ. The data strongly suggest that under nutrient saturated conditions the absolute rate of light-saturated photosynthesis is limited by carbon fixation rather than electron transport. It is predicted, however, that in cells grown above 3000 μmol quanta per m2 per s, electron transport rather than carbon fixation would become the rate-limiting step of light saturated photosynthesis.  相似文献   

12.
Three moss species [ Tortula ruraliformis (Besch.) Grout. Bryum pseudotriquetrum (Hedw.) Schaegr and Dicranella palustris (Dicks.) Crund. ex. E. F. Warb. ( D. squarrosa (Starke) Schp.] collected from a range of habitats differing in water availability were desiccated in controlled conditions. All species became photosynthetically inactive when dried below a water content of 100–200% dry weight. Only Tortula ruraliformis , a moss from arid sand dunes. was able to recover fully to pre-desiccated rates of photosynthetic electron transport during subsequent rehydration. The rate of recovery was influenced by irradiance during desiccation. Mosses from hydric habitats showed some resumption of photosynthetic electron transport (following rehydration) if dried in the dark. but did not do so if dried even in low light. In these circumstances the mosses showed evidence of lasting photoinhibition of photosynthesis after rehydration. The desiccation-tolerant T. ruraliformis became significantly photoinhibited only when continually exposed to high irradiance (1200 μmol m−2 s−1) in the hydrated state. If allowed to desiccate whilst exposed to high irradiance this species showed less evidence of photoinhibition after rehydration, and was not at all affected by desiccation in low irradiance. Photon flux absorption in dry moss was 50–60% less than that in hydrated moss as a result of leaf curling. However, the reduction in absorption of photosynthetically active radiation cannot account for the total loss of photosynthetic oxygen evolution and variable chlorophyll fluorescence observed in the desiccated mosses.  相似文献   

13.
The application of recent developments of EPR oximetry to photosynthetic systems is described and used to study rapid processes in isolated thylakoid membranes from spinach and in intact photoautotrophic soybean cells. Using the peak heights of 15N perdeuterated Tempone and two microwave power levels oxygen evolution and consumption were measured. The method measured time-resolved oxygen concentration changes in the micromolar range. Oxygen evolution was linearly proportionate to the chlorophyl concentration of thylakoid membrane over the range studied (0-2 mg/ml). Oxygen evolution associated with single turnover light pulses was consistent with the four state model. The time (t1/2) to reach equilibrium of oxygen concentrations after a single turnover pulse was 0.4-0.5 ms, indicating that the evolution of oxygen coupled to the S4-S0 transition may be shorter than reported previously. The time for equilibrium of oxygen after single turnover pulses in soybean cells was relatively long (400 ms), which suggests that there are significant barriers to the free diffusion of oxygen in this system. The method also was used to study oxygen consumption by the electron transport chain of photosystem I and photosystem II. We conclude that EPR oximetry can provide quantitative and time-resolved data on oxygen concentrations with a sensitivity that is useful for studies of such systems.  相似文献   

14.
A model to evaluate photon transport within leaves and the implications for photosynthesis are investigated. A ray tracing model, Raytran, was used to produce absorption profiles within a virtual dorsiventral plant leaf oriented in two positions (horizontal/vertical) and illuminated on one of its two faces (adaxial/abaxial). Together with chlorophyll profiles, these absorption profiles feed a simple photosynthesis model that calculates the gross photosynthetic rate as a function of the incident irradiance. The differences observed between the four conditions are consistent with the literature: horizontal‐adaxial leaves, which are commonly found in natural conditions, have the greatest light use efficiency. The absorption profile obtained with horizontal‐abaxial leaves lies below this, but above those obtained for vertical leaves. The latter present similar gross photosynthetic rates when irradiated on either the adaxial or abaxial surfaces. Vertical profiles of photosynthetic rates across the leaf confirm that carbon fixation occurs mainly in the palisade parenchyma, that the leaf anatomy is integral to its function and that leaves cannot be considered as a single homogeneous unit. Finally, the relationships between leaf structure, orientation and photosynthesis are discussed.  相似文献   

15.
Coupling of phosphorylation to electron transport was examined by measuring the photosynthetic control ratio for broken wheat plastids isolated from seedlings at different greening stages. The photosynthetic control ratio progressively increased during greening and tight coupling was noted after granal stacking and thylakoid elongation. ADP impaired nonphosphorylating (state 2) electron transport rates of plastids at extremely early stages of greening and interfered with photosynthetic control measurements. Partially developed plastids exhibited low nonphosphorylating electron flow rates but did not exhibit high phosphorylating or uncoupled electron transport rates to the same extent as nearly developed plastids. Prolamellar body dispersal, primary thylakoid production, and the development of photosynthetic control were stimulated equally by 48 minutes of low irradiance, in cycles of 2 minutes every 2 hours, or by 9 hours of continuous light of moderate irradiance. Wheat plastids that greened for 6 hours in continuous light of moderate intensity did not exhibit photosynthetic control or much differentiation beyond the etioplast stage. It is concluded that plastid differentiation and the development of photosynthetic control early in greening under continuous light were limited by developmental time (dark time) rather than by either light intensity or duration.  相似文献   

16.
Purple non‐sulfur bacteria (Rhodospirillaceae) have been extensively employed for studying principles of photosynthetic and respiratory electron transport phosphorylation and for investigating the regulation of gene expression in response to redox signals. Here, we use mathematical modeling to evaluate the steady‐state behavior of the electron transport chain (ETC) in these bacteria under different environmental conditions. Elementary‐modes analysis of a stoichiometric ETC model reveals nine operational modes. Most of them represent well‐known functional states, however, two modes constitute reverse electron flow under respiratory conditions, which has been barely considered so far. We further present and analyze a kinetic model of the ETC in which rate laws of electron transfer steps are based on redox potential differences. Our model reproduces well‐known phenomena of respiratory and photosynthetic operation of the ETC and also provides non‐intuitive predictions. As one key result, model simulations demonstrate a stronger reduction of ubiquinone when switching from high‐light to low‐light conditions. This result is parameter insensitive and supports the hypothesis that the redox state of ubiquinone is a suitable signal for controlling photosynthetic gene expression.  相似文献   

17.
Nonlinear dynamics in photon capture and uptake at the photosystem level may have a strong effect on photosynthetic yield. However, the magnitude of such effects is difficult to estimate theoretically because nonlinear systems often cannot be represented accurately using equations. A nonanalytical simulation was developed that used a simple decision tree and Monte Carlo methods, instead of equations, to model how a population of photosystems absorbs and utilizes photons from an ambient light field. This simulation replicated realistic kinetics in the closure and variable fluorescence yield of PSII on the single‐turnover timescale, as well as the saturating behavior in light‐driven electron flow that is observed in nature with increasing irradiance. This simulation indicated that the transfer of absorbed photon energy among PSII units can introduce strong nonlinear enhancement in light‐driven electron flow. However, this effect was seen only in populations with particular photosynthetic states as determined by physiological properties of PSII. Other populations with the same degree of energy transfer but with different photosynthetic states exhibited little enhancement in electron flow and, in some cases, a reduction. This nonanalytical approach provides a simple means to quantify theoretically how nonlinear dynamics in photosynthesis arise at the photosystem level and how these dynamics may act to enhance or constrain photosynthetic rates and yields. Such simulations can provide quantitative insight into different physiological bases of nonlinear light‐harvesting dynamics and identify those that would have the strongest theoretical influence and thus warrant closer experimental examination.  相似文献   

18.
Photoreduction of oxygen by the photosynthetic electron transport chain has been suggested to be an important process in protecting leaves from excess light under conditions of stress; however, there is little evidence that this process occurs significantly except when plants are exposed to conditions outside their normal tolerance range. We have examined the oxygen dependency of photosynthetic electron transport in the two vascular plants found growing in Antarctica – Colobanthus quitensis and Deschampsia antarctica. Photosynthetic electron transport in C. quitensis is insensitive to changes in oxygen concentration under non-photorespiratory conditions, indicating that electron transport to oxygen is negligible; however, it has a substantial capacity for non-photochemical quenching (NPQ) of chlorophyll fluorescence. In contrast, D. antarctica has up to 30% of its photosynthetic electron transport being linked to oxygen, but has a substantially lower capacity for NPQ. Thus, these plants rely on contrasting photoprotective mechanisms to cope with the Antarctic environment. Both plants seem to use cyclic electron flow associated with PSI, however, this is activated at a lower irradiance in C. quitensis than in D. antarctica.  相似文献   

19.
Dynamic Light Regulation of Photosynthesis (A Review)   总被引:9,自引:7,他引:2  
Regulatory reactions providing the photosynthetic apparatus with the ability to respond to variations of irradiance by changes in activities of the light and the dark stages of photosynthesis within a time range of seconds and minutes are considered in the review. At the light stage, such reactions are related to the changes in both distribution of light energy between two photosystems and probability of nonphotochemical dissipation of absorbed quanta in PSI and PSII. These regulatory reactions operate in a negative feedback mode, thus avoiding overreduction of electron transport chain and minimizing the probability of generation of reactive oxygen species. The crucial role in preventing the generation of reactive oxygen species belongs to dynamic regulation of electron transport activity despite the presence of complex system of their detoxification in chloroplasts. In dark reactions of Calvin cycle, the regulatory responses involve a positive feedback principle being related to redox regulation of activities of several enzymes, which is sensitive to the reduction status of PSI acceptor side. The complex of regulatory reactions based on negative and positive feedback principles provides prolonged functioning of a chloroplast and high stability of photosynthetic activity under various light conditions.  相似文献   

20.
Role of ascorbic acid in photosynthesis   总被引:1,自引:0,他引:1  
Experimental data concerning the role of ascorbic acid in both the maintenance of photosynthesis and in the protection of the photosynthetic apparatus against reactive oxygen species and photoinhibition are reviewed. The function of ascorbic acid as an electron donor in the “Krasnovsky reaction”, as well as its physiological role as a donor to components of the photosynthetic electron transport chain, which was first studied by A. A. Krasnovsky in the 1980s, is discussed. Data on the content and transport of ascorbic acid in plant cells and chloroplasts are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号