首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Groman, Neal B. (University of Washington, Seattle), and Grace Suzuki. Effect of spermine on lysis and reproduction by bacteriophages phiX174, lambda, and f(2). J. Bacteriol. 92:1735-1740. 1966.-A test was made of the hypothesis that lysis by all bacteriophages shares as a common and critical step an alteration in the osmotic stability of the infected cell. This was done by examining the effect of spermine on lysis. Spermine is one of a number of compounds which can stabilize spheroplasts and protoplasts to lysis in distilled water. Spermine stabilized both phiX174- and f(2)-infected cells at concentrations ranging from 2 x 10(-3) to 4 x 10(-2)m, but failed to stabilize lambda-infected cells at concentrations up to 8 x 10(-2)m. Stabilization was reflected both in optical density measurements and in the retention of mature phage in structures sedimentable at low speeds. At optimal concentration, over 90% of the phage was retained in these structures. These data suggest that the mechanism of lysis by phiX174 and f(2) differs sharply from that caused by lambda, and other observations suggest that there are differences in the lytic process of phiX174 and f(2) as well. Spermine also displayed a differential effect on phage reproduction. The reproduction of lambda and f(2) was inhibited by spermine, though the data do indicate that maturation occurs in its presence. The reproduction of phiX174 was enhanced by spermine.  相似文献   

2.
Williams NM 《Oecologia》2003,134(2):228-237
If trade-offs between flexibility to use a range of host species and efficiency on a limited set underlie the evolution of diet breadth, one resulting prediction is that specialists ought to be more restricted than generalists in their ability to use novel resource species. I used foraging tests and feeding trials to compare the ability of a generalist and a specialist solitary mason bee species to collect and develop on two pollen species that are not normally used in natural populations (novel pollens). Osmia lignaria (Hymenoptera: Megachilidae) is a generalist pollen feeder; O. californica, is more specialized. Adults of the specialist were more limited in use of novel hosts, but only in some contexts. Both bee species refused to collect one novel pollen. The specialist accepted a second novel pollen only when it was presented along with its normal pollen, whereas the generalist collected novel pollen whether presented alone or with normal pollen. Surprisingly, larvae of the specialist were more flexible than were generalists. The specialist grew well on mixtures of normal and novel pollen species, in some cases better than on its normal host alone. Larvae of the generalist grew more poorly on all diets containing novel pollens than on their normal host. Data on these two species of bees suggest that specialization by itself need not reduce flexibility on novel hosts. The findings also provide information about mechanisms of specialization in bees. Similar to some folivores, specific cues of the pollen host and the bee's interpretation of these contribute, along with foraging economics, to pollen choice by adults. The ability of the larvae to cope with specific components of one pollen species need not interfere with its ability to use others.  相似文献   

3.
Optimality models constitute one of the simplest approaches to understanding phenotypic evolution. Yet they have shortcomings that are not easily evaluated in most organisms. Most importantly, the genetic basis of phenotype evolution is almost never understood, and phenotypic selection experiments are rarely possible. Both limitations can be overcome with bacteriophages. However, phages have such elementary life histories that few phenotypes seem appropriate for optimality approaches. Here we develop optimality models of two phage life history traits, lysis time and host range. The lysis time models show that the optimum is less sensitive to differences in host density than suggested by earlier analytical work. Host range evolution is approached from the perspective of whether the virus should avoid particular hosts, and the results match optimal foraging theory: there is an optimal "diet" in which host types are either strictly included or excluded, depending on their infection qualities. Experimental tests of both models are feasible, and phages provide concrete illustrations of many ways that optimality models can guide understanding and explanation. Phage genetic systems already support the perspective that lysis time and host range can evolve readily and evolve without greatly affecting other traits, one of the main tenets of optimality theory. The models can be extended to more general properties of infection, such as the evolution of virulence and tissue tropism.  相似文献   

4.
A novel single-stranded DNA phage, phiMH2K, of Bdellovibrio bacteriovorus was isolated, characterized, and sequenced. This phage is a member of the Microviridae, a family typified by bacteriophage phiX174. Although B. bacteriovorus and Escherichia coli are both classified as proteobacteria, phiMH2K is only distantly related to phiX174. Instead, phiMH2K exhibits an extremely close relationship to the Microviridae of Chlamydia in both genome organization and encoded proteins. Unlike the double-stranded DNA bacteriophages, for which a wide spectrum of diversity has been observed, the single-stranded icosahedral bacteriophages appear to fall into two distinct subfamilies. These observations suggest that the mechanisms driving single-stranded DNA bacteriophage evolution are inherently different from those driving the evolution of the double-stranded bacteriophages.  相似文献   

5.
Vole dynamics in northern Europe exhibit a well-defined geographical gradient, with oscillatory populations being confined to high latitudes. It has been proposed that oscillations in northern vole populations are driven by their interaction with specialist predators (weasels), while the more southern rodent populations are relatively stable because of regulation by generalist predators. We tested this generalist/specialist predation hypothesis by constructing an empirically based model for vole population dynamics, estimating its parameters, and making predictions about the quantitative pattern of the latitudinal shift in vole dynamics. Our results indicated that the model accurately predicted the latitudinal shift in the amplitude and periodicity of population fluctuations. Moreover, the model predicted that vole dynamics should shift from stable to chaotic as latitude is increased, a result in agreement with nonlinear time-series analysis of the data. The striking success of the model at predicting the shifts in amplitude and stability along the geographical gradient in northern Europe provides strong support for the key role of specialist and generalist predators in vole population dynamics.  相似文献   

6.
Escape from enemies in the native range is often assumed to contribute to the successful invasion of exotic species. Following optimal defence theory, which assumes a trade‐off between herbivore resistance and plant growth, some have predicted that the success of invasive species could be the result of the evolution of lower resistance to herbivores and increased allocation of resources to growth and reproduction. Lack of evidence for ubiquitous costs of producing plant toxins, and the recognition that invasive species may escape specialist, but not generalist enemies, has led to a new prediction: invasive species may escape ecological trade‐offs associated with specialist herbivores, and evolve increased, rather than decreased, production of defensive compounds that are effective at deterring generalist herbivores in the introduced range. We tested the performance of two generalist lepidopteran herbivores, Trichoplusia ni and Orgyia vetusta, when raised on diets of native and invasive populations of the California poppy, Eschscholzia californica. Pupae of T. ni were significantly larger when reared on native populations. Similarly, caterpillars of O. vetusta performed significantly better when raised on native populations, indicating that invasive populations of the California poppy are more resistant to herbivores than native populations. The chance of successful establishment of some non‐indigenous plant species may be increased by retaining resistance to generalist herbivores, and in some cases, invasive species may be able to escape ecological trade‐offs in their new range and evolve, as we observed, even greater resistance to generalist herbivores than native plants.  相似文献   

7.
Chad E. Brassil 《Oikos》2007,116(3):524-532
This work details theory in which selection favors generalists in a more variable environment. Specifically, in a two-host-one-parasitoid model, temporal variation in host abundances alters the optimal searching strategy and leads to the evolution of more generalist parasitoid strategies. Consistent with empirical observations, parasitoids learn host/plant odors, and use them as a cue to search for oviposition sites. The amount of unsuccessful search time required before a parasitoid alters its searching cues (the "giving-up time") is modeled in order to understand the evolutionarily optimal giving-up times under a variety of conditions. When host abundances vary across time, a generalist parasitoid strategy evolves with short giving-up times as it is likely that the host initially favored by a parasitoid will now have a low abundance. In contrast, when populations reach stable dynamics across time, giving-up times typically evolve to longer times, i.e. parasitoids remain specialized longer. The effect of temporal fluctuations is consistent across variation caused by endogenous population interactions and, to some degree, by environmental stochasticity. The conclusions are robust in that there is a strong degree of concordance between the results of a stochastic, individual-based model and a deterministic, numerical model. As an extension, spatial variation in hosts that leads to unequal tradeoffs between generalist parasitoids and specialist parasitoids may also result in the evolution of reduced giving-up times.  相似文献   

8.
Viral lysis of specific bacterial populations has been suggested to be an important factor for structuring marine bacterioplankton communities. In the present study, the influence of bacteriophages on the diversity and population dynamics of four marine bacterial phage-host systems was studied experimentally in continuous cultures and theoretically by a mathematical model. By use of whole genome DNA hybridization toward community DNA, we analyzed the dynamics of individual bacterial host populations in response to the addition of their specific phage in continuous cultures of mixed bacterial assemblages. In these experiments, viral lysis had only temporary effects on the dynamics and diversity of the individual bacterial host species. Following the initial lysis of sensitive host cells, growth of phage-resistant clones of the added bacteria resulted in a distribution of bacterial strains in the phage-enriched culture that was similar to that in the control culture without phages after about 50-60 h incubation. Consequently, after a time frame of 5-10 generations after lysis, it was the interspecies competition rather than viral lysis of specific bacterial strains that was the driving force in the regulation of bacterial species composition in these experiments. The clonal diversity, on the other hand, was strongly influenced by viral activity, since the clonal composition of the four species in the phage-enriched culture changed completely from phage-sensitive to phage-resistant clones. The model simulation predicted that viral lysis had a strong impact on the population dynamics, the species composition, and the clonal composition of the bacterial community over longer time scales (weeks). However, according to the model, the overall density of bacteria in the system was not affected by phages, since resistant clones complemented the fluctuations caused by viral lysis. Based on the model analysis, we therefore suggest that viral lysis can have a strong influence on the dynamics of bacterial populations in planktonic marine systems.  相似文献   

9.
The large pyrimidine oligonucleotides from the DNAs of the two related bacteriophages phiX174 and S13 have been sequenced. The largest pyrimidine oligonucleotide present is unique to S13 DNA and is the undecanucleotide C5T6, sequence C-T-T-C-C-T-C-T-T-C-T. Considerable sequence homology has been found between the pyrimidine oligonucleotides of the two phage DNAs. Out of 14 oligonucleotide sequences from S13 DNA (120 bases) at least ten are identical with sequences of oligonucleotides from phiX174 DNA (92 bases) and two are closely related (17 bases), the only difference being a single thymine to cytosine transition in each sequence (a total of 107 identical bases). The pyrimidine oligonucleotides of each phage DNA show extensive internal sequence homology among each other with up to eight bases identical in sequence in pairs of different oligonucleotides. Another interesting observation is the occurrence of symmetrical sequences (true palindromes) which read the same forwards as backwards. The longest symmetrical sequence is the nonanucleotide C4T5 sequence, C-T-C-T-T-T-C-T-C, present in both S13 and phiX174 DNAs. The extensive sequence homology observed between the pyrimidine oligonucleotides of S13 and phiX174 supports the close relationship of the two phages and provides further evidence that they were derived from recent common ancestors.  相似文献   

10.
Specialist herbivores are predicted to have evolved biotransformation pathways that can process large doses of secondary compounds from the plant species on which they specialize. It is hypothesized that this physiological specialization results in a trade-off such that specialists may be limited in ability to ingest novel plant secondary compounds (PSCs). In contrast, the generalist foraging strategy requires that herbivores alternate consumption of plant species and PSC types to reduce the possibility of over-ingestion of any particular PSC. The ability to behaviorally regulate is a key component of this strategy. These ideas underpin the prediction that in the face of novel PSCs, generalists should be better able to maintain body mass and avoid toxic consequences compared to specialists. We explored these predictions by comparing the feeding behavior of two herbivorous rodents: a juniper specialist, Neotoma stephensi, and a generalist, Neotoma albigula, fed diets with increasing concentrations of phenolic resin extracted from the creosote bush (Larrea tridentata), which produces a suite of PSCs novel to both species. The specialist lost more mass than the generalist during the 15-day trial. In addition, although the specialist and generalist both regulated phenolic resin intake by reducing meal size while on the highest resin concentration (4%), the generalist began to regulate intake on the 2% diet. The ability of the generalist to regulate intake at a lower PSC concentration may be the source of the generalist’s performance advantage over the specialist. These data provide evidence for the hypothesis that the specialist’s foraging strategy may result in behavioral as well as physiological trade-offs in the ability to consume novel PSCs.  相似文献   

11.
A parasite's host range essentially defines its niche breadth, which, as foraging theory predicts, is influenced by resource availability. For parasites, the interaction of infection and transmission characteristics with host population dynamics determines host availability. An epidemiological model, involving two host types and describing competition between a "generalist" parasite strain and a related "specialist" strain, is used to examine the interplay among host range, relative host availabilities, and adaptational compromises engendered by increased host range. Results show that the generalist can predominate even when it cannot maintain itself in either host alone, but that the specialist can persist if its reproductive rate attains some threshold relative to either of the generalist's respective rates in its two hosts. The model is in rough, qualitative agreement with observed dynamics of two Leishmania parasite-host systems, and overall results suggest that infection of two species with a common parasite can lead to complex, indirect coevolutionary dynamics.  相似文献   

12.
K K Holder  J J Bull 《Genetics》2001,159(4):1393-1404
The related bacteriophages phiX174 and G4 were adapted to the inhibitory temperature of 44 degrees and monitored for nucleotide changes throughout the genome. Phage were evolved by serial transfer at low multiplicity of infection on rapidly dividing bacteria to select genotypes with the fastest rates of reproduction. Both phage showed overall greater fitness effects per substitution during the early stages of adaptation. The fitness of phiX174 improved from -0.7 to 5.6 doublings of phage concentration per generation. Five missense mutations were observed. The earliest two mutations accounted for 85% of the ultimate fitness gain. In contrast, G4 required adaptation to the intermediate temperature of 41.5 degrees before it could be maintained at 44 degrees. Its fitness at 44 degrees increased from -2.7 to 3.2, nearly the same net gain as in phiX174, but with three times the opportunity for adaptation. Seventeen mutations were observed in G4: 14 missense, 2 silent, and 1 intergenic. The first 3 missense substitutions accounted for over half the ultimate fitness increase. Although the expected pattern of periodic selective sweeps was the most common one for both phage, some mutations were lost after becoming frequent, and long-term polymorphism was observed. This study provides the greatest detail yet in combining fitness profiles with the underlying pattern of genetic changes, and the results support recent theories on the range of fitness effects of substitutions fixed during adaptation.  相似文献   

13.
The fitness consequences of deleterious mutations are sometimes greater when individuals are parasitized, hence parasites may result in the more rapid purging of deleterious mutations from host populations. The significance of host deleterious mutations when hosts and parasites antagonistically coevolve (reciprocal evolution of host resistance and parasite infectivity) has not previously been experimentally investigated. We addressed this by coevolving the bacterium Pseudomonas fluorescens and a parasitic bacteriophage in laboratory microcosms, using bacteria with high and low mutation loads. Directional coevolution between bacterial resistance and phage infectivity occurred in all populations. Bacterial population fitness, as measured by competition experiments with ancestral genotypes in the absence of phage, declined with time spent coevolving. However, this decline was significantly more rapid in bacteria with high mutation loads, suggesting the cost of bacterial resistance to phage was greater in the presence of deleterious mutations (synergistic epistasis). As such, resistance to phage was more costly to evolve in the presence of a high mutation load. Consistent with these data, bacteria with high mutation loads underwent less rapid directional coevolution with their phage populations, and showed lower levels of resistance to their coevolving phage populations. These data suggest that coevolution with parasites increases the rate at which deleterious mutations are purged from host populations.  相似文献   

14.
Bacteriophages have been widely used as surrogates for human enteric viruses in many studies on virus transport and fate. In this investigation, the fates of three bacteriophages, MS2, R17, and phiX174, were studied in a series of dynamic batch experiments. Both MS2 and R17 readily underwent inactivation in batch experiments where solutions of each phage were percolated through tubes packed with varying ratios of glass and Teflon beads. MS2 and R17 inactivation was the result of exposure to destructive forces at the dynamic air-water-solid interface. phiX174, however, did not undergo inactivation in similar studies, suggesting that this phage does not accumulate at air-water interfaces or is not affected by interfacial forces in the same manner. Other batch experiments showed that MS2 and R17 were increasingly inactivated during mixing in polypropylene tubes as the ionic strength of the solution was raised (phiX174 was not affected). By the addition of Tween 80 to suspensions of MS2 and R17, phage inactivation was prevented. Our data suggest that viral inactivation in simple dynamic batch experiments is dependent upon (i) the presence of a dynamic air-water-solid interface (where the solid is a hydrophobic surface), (ii) the ionic strength of the solution, (iii) the concentration of surface active compounds in the solution, and (iv) the type of virus used.  相似文献   

15.
Foraging theory predicts that generalist foragers should switch resources more readily, while specialist foragers should remain constant to preferred food resources. Plant‐pollinator interactions provide a convenient system to test such predictions because floral resources are often temporally patchy, thus requiring long‐lived pollinators to switch resources seasonally. Furthermore, flowering phenologies range from ‘steady‐state’ (low‐rewarding but highly reliable) to ‘big‐bang’ (high‐rewarding but ephemeral) plant species. We assessed how nectarivorous Old World bats respond to this temporally variable floral environment by examining their diets throughout the year. Over 15 months of fieldwork in southern Thailand, we simultaneously: (1) recorded the flowering phenologies of six bat‐pollinated plant taxa; and (2) assessed the diets of seven common flower‐visiting bat species. As predicted, the generalist nectarivore (Eonycteris spelaea) frequently switched diets and utilized both big‐bang and steady‐state resources, while the specialist nectarivores (Macroglossus minimus and M. sobrinus) foraged on one or two steady‐state plant species year‐round. Our results suggest that larger and faster bat species are able to fly longer distances in search of big‐bang resources, while smaller bat species rely on highly predictable food resources. This study supports the theory that generalist foragers have flexible diets, while specialist species restrict foraging to preferred floral resources even when other floral resources are more abundant. Moreover, these findings demonstrate how plant flowering phenology and pollinator diet breadth can shape the frequency and constancy of pollinator visits; we further discuss how such interactions can influence the potential extent of gene flow within a patchy floral environment.  相似文献   

16.
Many generalist populations may actually be composed of relatively specialist individuals. This 'individual specialization' may have important ecological and evolutionary implications. Although this phenomenon has been documented in more than one hundred taxa, it is still unclear how individuals within a population actually partition resources. Here we applied several methods based on network theory to investigate the intrapopulation patterns of resource use in the gracile mouse opossum Gracilinanus microtarsus . We found evidence of significant individual specialization in this species and that the diets of specialists are nested within the diets of generalists. This novel pattern is consistent with a recently proposed model of optimal foraging and implies strong asymmetry in the interactions among individuals of a population.  相似文献   

17.
Specialist individuals within animal populations have shown to be more efficient foragers and/or to have higher reproductive success than generalist individuals, but interspecific reproductive consequences of the degree of diet specialisation in vertebrate predators have remained unstudied. Eurasian pygmy owls (hereafter POs) have less vole-specialised diets than Tengmalm's owls (TOs), both of which mainly subsist on temporally fluctuating food resources (voles). To test whether the specialist TO is more limited by the main prey abundance than the generalist PO, we studied breeding densities and reproductive traits of co-existing POs and TOs in central-western Finland during 2002–2019. Breeding densities of POs increased with augmenting densities of voles in the previous autumn, whereas breeding densities of TOs increased with higher vole densities in both the previous autumn and the current spring. In years of vole scarcity, PO females started egg-laying earlier than TOs, whereas in years of vole abundance TO females laid eggs substantially earlier than PO females. The yearly mean clutch size and number of fledglings produced of both POs and TOs increased with abundance of voles in the current spring. POs laid large clutches and produced large broods in years of both high and low vole abundance, whereas TOs were able to do so only in years of high vole abundance. POs were able to raise on average 73% of the eggs to fledglings whereas TOs only 44%. The generalist foraging strategy of POs including flexible switching from main prey to alternative prey (small birds) appeared to be more productive than the strictly vole-specialized foraging strategy of TOs. In contrast to earlier studies at the individual-level, specialist predators at the species level (in this case TOs) appear to be less effective than generalists (POs), but diet specialisation was particularly costly under conditions when scarcity of main foods limited offspring production.  相似文献   

18.
Bacteriophage phiX174 is an icosahedral phage which attaches to host cells without the aid of a complex tail assembly. When phiX174 was mixed with cell walls isolated from the bacterial host, the virions attached to the wall fragments and the phage deoxyribonucleic acid (DNA) was released. Attachment was prevented if the cell walls were treated with chloroform. Release of phage DNA, but not viral attachment, was prevented if the cell walls were incubated with lysozyme or if the virions were inactivated with formaldehyde. Treatment of the cell walls with lysozyme released structures which were of uniform size (6.5 by 25 nm). These structures attached phiX174 at the tip of one of its 12 vertices, but the viral DNA was not released. The virions attached to these structures were oriented with their fivefold axis of symmetry normal to the long axis of the structure. No virions were attached to these structures by more than one vertex. Freeze-etch preparations of phiX174 adsorbed to intact bacteria showed that the virions were submerged to one half their diameter into the host cell wall, and the fivefold axis of symmetry was normal to the cell surface. A second cell could not be attached to the outwardly facing vertex of the adsorbed phage and thus the phage could not cross-link two cells. When the virions were labeled with (3)H-leucine, purified, and adsorbed to Escherichia coli cells, about 15% of the radioactivity was recovered as low-molecular-weight material from spheroplasts formed by lysozyme-ethylenediaminetetraacetic acid. Other experiments revealed that about 7% of the total parental virus protein label could be recovered in newly formed progeny virus.  相似文献   

19.
Herbivorous insect species with narrow diet breadth are expected to be more prone to genetic differentiation than insect species with a wider diet breadth. However, a generalist can behave as a local specialist if a single host-plant species is locally available, while a specialist can eventually behave as a generalist if its preferred host is not available. These problems can be addressed by comparing closely related species differing in diet breadth with overlapping distributions of insect and host populations. In this work, diet breadth, genetic diversity and population differentiation of congeneric aphid species from southern beech forests in Chile were compared. While at the species level no major differences in genetic diversity were found, a general trend towards higher genetic diversity as diet breadth increased was apparent. The aphid species with wider diet breadth, Neuquenaphis edwardsi (Laing), showed the highest genetic diversity, while the specialist Neuquenaphis staryi Quednau & Remaudière showed the lowest. These differences were less distinct when the comparisons were made in the same locality and over the same host. Comparison of allopatric populations indicates that genetic differentiation was higher for the specialists, Neuquenaphis similis Hille Ris Lambers and N. staryi, than for the generalist N. edwardsi. Over the same host at different locations, genetic differentiation among populations of N. edwardsi was higher than among populations of N. similis. The results support the assumption that specialists should show more pronounced genetic structuring than generalists, although the geographical distribution of host plants may be playing an important role.  相似文献   

20.
Generalist predators are capable of selective foraging, but are predicted to feed in close proportion to prey availability to maximize energetic intake especially when overall prey availability is low. By extension, they are also expected to feed in a more frequency‐dependent manner during winter compared to the more favourable foraging conditions during spring, summer and fall seasons. For 18 months, we observed the foraging patterns of forest‐dwelling wolf spiders from the genus Schizocosa (Araneae: Lycosidae) using PCR‐based gut‐content analysis and simultaneously monitored the activity densities of two common prey: springtails (Collembola) and flies (Diptera). Rates of prey detection within spider guts relative to rates of prey collected in traps were estimated using Roualdes’ cst model and compared using various linear contrasts to make inferences pertaining to seasonal prey selectivity. Results indicated spiders foraged selectively over the course of the study, contrary to predictions derived from optimal foraging theory. Even during winter, with overall low prey densities, the relative rates of predation compared to available prey differed significantly over time and by prey group. Moreover, these spiders appeared to diversify their diets; the least abundant prey group was consistently overrepresented in the diet within a given season. We suggest that foraging in generalist predators is not necessarily restricted to frequency dependency during winter. In fact, foraging motives other than energy maximization, such as a more nutrient‐focused strategy, may also be optimal for generalist predators during prey‐scarce winters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号