首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
The plant hormone auxin plays a crucial role in lateral root development. To better understand the molecular mechanisms underlying lateral root formation,an auxin-responsive gene OsCYP2(Os02g0121300) was characterized from rice. Compared to the wild type,OsCYP2-RNAi(RNA interference) lines exhibited distinctive defects in lateral root development. Yeast two-hybrid and glutathione S-transferase pull-down results confirmed that OsCYP2 interacted with a C2HC-type zinc finger protein(OsZFP, Os01g0252900) which is located in the rice nucleus. T_2 OsZFP-RNAi lines had significantly fewer lateral roots than did wild-type plants, which suggests a role for OsCYP2 and OsZFP in regulating lateral root development.Quantitative real-time polymerase chain reaction showed that the expression of certain Aux/IAA(auxin/indole-3-acetic acid) genes was altered in OsCYP2-and Os ZFP-RNAi lines in response to IAA. These findings imply that OsCYP2 and OsZFP participate in IAA signal pathways controlling lateral root development. More importantly, OsIAA11 showed functional redundancy not only in OsCYP2-RNAi lines but also in Os ZFP-RNAi lines, which provides important clues for the elucidation of mechanisms controlling lateral root development in response to auxin.  相似文献   

2.
3.
Heterologous expression systems based on tobacco BY‐2 cells, Arabidopsis cell cultures, Xenopus oocytes, Saccharomyces cerevisiae, and human HeLa cells have been used to express and characterize PIN, ABCB (PGP), and AUX/LAX auxin transporters from Arabidopsis. However, no single system has been identified that can be used for effective comparative analyses of these proteins. We have developed an accessible Schizosaccharomyces pombe system for comparative studies of plant transport proteins. The system includes knockout mutants in all ABC and putative auxin transport genes and Gateway®‐compatible expression vectors for functional analysis and subcellular localization of recombinant proteins. We expressed Arabidopsis ABCB1 and ABCB19 in mam1pdr1 host lines under the inducible nmt41 promoter. ABCB19 showed a higher 3H‐IAA export activity than ABCB1. Arabidopsis PIN proteins were expressed in a mutant lacking the auxin effluxer like 1 (AEL1) gene. PIN1 showed higher activity than PIN2 with similar protein expression levels. Expression of AUX1 in a permease‐deficient vat3 mutant resulted in increased net auxin uptake activity. Finally, ABCB4 expressed in mam1pdr1 displayed a concentration‐dependent reversal of 3H‐IAA transport that is consistent with its observed activity in planta. Structural modelling suggests that ABCB4 has three substrate interaction sites rather than the two found in ABCB19, thus providing a rationale for the observed substrate activation. Taken together, these results suggest that the S. pombe system described here can be employed for comparative analyses and subsequent structural characterizations of plant transport proteins.  相似文献   

4.
2,4‐Dichlorophenoxyacetic acid (2,4‐D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole‐3‐acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4‐D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4‐D‐specific mutants suggested that 2,4‐D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4‐D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4‐D but not IAA altered the actin structure in long‐term and short‐term assays. Analysis of the 2,4‐D‐specific mutant aar1‐1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4‐D‐induced depolymerization of actin. The ubiquitin proteasome mutants tir1‐1 and axr1‐12, which show enhanced resistance to 2,4‐D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4‐D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4‐D on the organization of actin filaments. Roots of the double mutant aar1‐1 tir1‐1 also showed enhanced resistance to 2,4‐D‐induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4‐D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCFTIR1 ubiquitin proteasome components.  相似文献   

5.
6.
7.
8.
Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole‐3‐pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole‐3‐acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin‐related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.  相似文献   

9.
10.
11.
12.
13.
Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin‐deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole‐3‐pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole‐3‐acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin‐containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4‐biphenylboronic acid (BBo) and 4‐phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild‐type Arabidopsis seedlings. Co‐treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki) of BBo and PPBo were 67 and 56 nm , respectively. In addition, PPBo did not interfere with the auxin response of auxin‐marker genes when it was co‐treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function.  相似文献   

14.
15.
16.
Nine phosphatidylinositol‐specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin‐defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole‐3‐acetic acid (IAA) content, as well as the responses of a set of auxin‐related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1‐naphthaleneacetic acid or the auxin transport inhibitor N‐1‐naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin‐mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.  相似文献   

17.
The role of auxin in plant development is well known; however, its possible function in root response to abiotic stress is poorly understood. In this study, we demonstrate a novel role of auxin transport in plant tolerance to oxidative stress caused by arsenite. Plant response to arsenite [As(III)] was evaluated by measuring root growth and markers for stress on seedlings treated with control or As(III)‐containing medium. Auxin transporter mutants aux1, pin1 and pin2 were significantly more sensitive to As(III) than the wild type (WT). Auxin transport inhibitors significantly reduced plant tolerance to As(III) in the WT, while exogenous supply of indole‐3‐acetic acid improved As(III) tolerance of aux1 and not that of WT. Uptake assays using H3‐IAA showed As(III) affected auxin transport in WT roots. As(III) increased the levels of H2O2 in WT but not in aux1, suggesting a positive role for auxin transport through AUX1 on plant tolerance to As(III) stress via reactive oxygen species (ROS)‐mediated signalling. Compared to the WT, the mutant aux1 was significantly more sensitive to high‐temperature stress and salinity, also suggesting auxin transport influences a common element shared by plant tolerance to arsenite, salinity and high‐temperature stress.  相似文献   

18.
19.
20.
Root galls of Brassicaceae caused by Plasmodiophora brassicae are dependent on increased auxin and cytokinin formation. In this study we investigated whether indole glucosinolates are involved in indole‐3‐acetic acid (IAA) biosynthesis in root galls, by using a genetic approach. The cytochrome P450 enzymes, CYP79B2 and CYP79B3, convert tryptophan to indole‐3‐acetaldoxime (IAOx), which is a precursor for indole glucosinolates and the phytoalexin camalexin in Arabidopsis thaliana. Root galls of the Arabidopsis ecotypes Wassilewskija (WS) and Columbia (Col) accumulated camalexin, WS at levels up to 320 μg/g dry weight. By contrast, camalexin was absent in root galls of cyp79b2/b3 double mutants. Infection rate and disease index as a measure of club development in mutant and wild‐type plants of the two ecotypes were investigated and no differences were found in gall formation. This demonstrates that camalexin is an ineffective inhibitor of P. brassicae and indole glucosinolates are not the source of elevated levels of IAA in galls, because free IAA levels in mutant galls were comparable with those in wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号