首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zeng X  Ni Z  Shi X  Wei J  Shen Y 《Photosynthesis research》2005,83(3):307-315
The previous work in our lab showed that the spinach chloroplast ATP synthase ε mutant with 3 amino acid residues deleted from the N-terminus had much lower ability to inhibit ATP hydrolysis and block proton leakage in comparison to a mutant with 1 or 2 residues deleted from the N-terminus. The present study aimed at determining whether there is special importance in the structure and function of the N-terminal third residue of the chloroplast ε subunit. The leucine residue at the N-terminal third site (Leu3) of the spinach chloroplast ε subunit was replaced with Ile, Phe, Thr, Arg, Glu or Pro by site-directed mutagenesis, forming mutants εL3I, εL3F, εL3T, εL3R, εL3E and εL3P, respectively. These ε variants all showed lower abilities to inhibit ATP hydrolysis and to block proton leakage, as compared to the wild type ε subunit (εWT). The abilities of mutants εL3I and εL3F to restore the ATP synthesis activity of reconstituted membranes were higher than those of εWT, but the abilities of the other ε variants were lower than that of εWT. These results indicate that the hydrophobic and neutral characteristics of Leu3 of the chloroplast ε subunit are very important for its ability to inhibit ATP hydrolysis and block proton leakage, and for the ATP synthesis ability of ATP synthase.  相似文献   

2.
3.
4.
    
The bacterial ATP synthase (FOF1) of Escherichia coli has been the prominent model system for genetics, biochemical and more recently single‐molecule studies on F‐type ATP synthases. With 22 total polypeptide chains (total mass of ∼529 kDa), E. coli FOF1 represents nature's smallest rotary motor, composed of a membrane‐embedded proton transporter (FO) and a peripheral catalytic complex (F1). The ATPase activity of isolated F1 is fully expressed by the α3β3γ `core', whereas single δ and ɛ subunits are required for structural and functional coupling of E. coli F1 to FO. In contrast to mitochondrial F1‐ATPases that have been determined to atomic resolution, the bacterial homologues have proven very difficult to crystallize. In this paper, we describe a biochemical strategy that led us to improve the crystallogenesis of the E. coli F1‐ATPase catalytic core. Destabilizing the compact conformation of ɛ's C‐terminal domain with a phosphomimetic mutation (ɛS65D) dramatically increased crystallization success and reproducibility, yielding crystals of E. coli F1 that diffract to ∼3.15 Å resolution.  相似文献   

5.
    
The discovery of J147 represented a significant milestone in the treatment of age‐related disorders, which was further augmented by the recent identification of mitochondrial ATP synthase as the therapeutic target. However, the underlying molecular events associated with the modulatory activity of J147 have remained unresolved till date. Herein, we present, for the first time, a dynamical approach to investigate the allosteric regulation of mATP synthase by J147, using a reliable human αγβ protein model. The highlight of our findings is the existence of the J147‐bound protein in distinct structural associations at different MD simulation periods coupled with concurrent open?close transitions of the β catalytic and α allosteric (ATP5A) sites as defined by Cα distances (d), TriCα (Θ) and dihedral (φ) angular parameters. Firstly, there was an initial pairing of the αγ subunits away from the β subunit followed by the formation of the ‘non‐catalytic’ αβ pair at a distance from the γ subunit. Interestingly, J147‐induced structural arrangements were accompanied by the systematic transition of the β catalytic site from a closed to an open state, while there was a concurrent transition of the allosteric site from an open αE conformation to a closed state. Consequentially, J147 reduced the structural activity of the whole αγβ complex, while the unbound system exhibited high atomistic deviations and structural flexibility. Furthermore, J147 exhibited favorable binding at the allosteric site of mATP synthase with considerable electrostatic energy contributions from Gln215, Gly217, Thr219, Asp312, Asp313, Glu371 and Arg406. These findings provide details on the possible effects of J147 on mitochondrial bioenergetics, which could facilitate the structure‐based design of novel small‐molecule modulators of mATP synthase in the management of Alzheimer's disease and other neurodegenerative disorders.  相似文献   

6.
    
A geranylgeranyl pyrophosphate synthase (GGPPS) gene from Capsicum annuum (bell pepper) was cloned. The nucleotide sequence shows that this gene, like the capsanthin/capsorubin gene but unlike the phytoene synthase gene from C. annuum, is not interrupted by an intron. Southern blot analysis of C. annuum genomic DNA suggests the presence of a single gene highly similar to the cDNA and also of additional related sequences. The present data suggest that this cloned gene is functional.  相似文献   

7.
8.
    
Recovery from weight loss after stress is important for all organisms, although the recovery mechanisms are not fully understood. We are working to clarify these mechanisms. Here, we recorded enhanced feeding activity of Drosophila melanogaster larvae from 2 to 4 h after heat stress at 35°C for 1 h. During the post‐stress period, expression levels of sweet taste gustatory receptor genes (Grs), Gr5a, Gr43a, Gr64a, and Gr64f, were elevated, whereas bitter taste Grs, Gr66a, and Gr33a, were decreased in expression and expression of a non‐typical taste receptor Gr, Gr68a, was unchanged. Similar upregulation of Gr5a and downregulation of Gr66a was recorded after cold stress at 4°C. Expression levels of tropomyosin and ATP synthase ß subunit were significantly increased in larval mouth parts around 3 to 5 h after the heat stress. We infer that up‐regulation of post‐stress larval feeding activity, and weight recovery, is mediated by increasing capacity for mouth part muscular movements and changes in taste sensing physiology. We propose that Drosophila larvae, and likely insects generally, express an efficient mechanism to recover from weight loss during post‐stress periods.  相似文献   

9.
  总被引:3,自引:1,他引:3  
  相似文献   

10.
    
Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P‐glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood‐brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP‐containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post‐translationally regulated at the BBB. The goal of the current study was to identify proteins that co‐localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co‐localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co‐fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post‐translational regulation of PgP activity at the BBB.

  相似文献   


11.
Summary. A novel natural peptide ergot alkaloid γ-ergokryptinine containing norleucine has been isolated from ergot sclerotia of the field-growing parasitic fungus Claviceps purpurea CCM 8059. Its structure was deduced from the NMR and mass spectral data. The final structural proof was provided by the crystal structure determination, which is the first X-ray structure of a natural Nle-containing secondary metabolite. The conformations of three ergopeptinines: γ-ergokryptinine, ergoladinine, and α-ergokryptinine were compared.  相似文献   

12.
Bittner S  Win T  Gupta R 《Amino acids》2005,28(4):343-356
Summary. The discovery of the dipeptide γ-glutamyltaurine (γ-GT; glutaurine, Litoralon) in the parathyroid in 1980 and later in the brain of mammals gave rise to studies on intrinsic and synthetic taurine peptides of this type. It was suggested that γ-glutamyltransferase (GGT; γ-glutamyltranspeptidase) in the brain is responsible for the in vivo formation of this unusual dipeptide. γ-GT has been prepared by both synthetic and enzymatic methods. The chemical syntheses included the use of protecting groups and coupling methods. A wide spectrum of analytical and spectroscopic methods was used to confirm the structure of the synthetic compounds and to elucidate the position of the peptide bond. Enzymatic preparation of γ-GT from taurine takes advantage of the selective transpeptidation action of GGT on L-glutamine, glutathione, γ-glutamyl-p-nitroanilide or other glutamine donors. Although the functional roles of γ-GT in the brain are only poorly understood, many of its established CNS effects have been reported in the last 25 years. Its effect on emotional arousal and its anti-conflict potencies are synergistic with the anxiolytic drug diazepam. γ-GT exhibits anti-conflict potency, which is exerted by reducing aversion or phobia and/or the anxiety levels. γ-GT also acts as endogenous modulator in excitatory aminoacidergic neurotransmission. It is suggested that such acidic peptides through N-methyl-D-aspartic acid receptors could be part of the neurochemical substrate underlying self-stimulation of the medial prefrontal cortex. Other γ-GT effects in neural systems include: effects on the monoamine concentration in the brain; effects on aggressive behavior in the cat; effects on thyroid hormones in the rat; amelioration of electroshock-induced amnesia; potent and long-lasting antiepileptic action (on intra-amygdaloid injection); affect the glutamatergic system in schizophrenic disorders. Roles for γ-GT in non-neural systems have also been reported, e.g., effects on the metamorphosis of amphibians; on plasma rennin regulation; on radiation protection; on uric acid levels; on human antibody-dependent cell-mediated cytotoxicity (ADCC) and many more.  相似文献   

13.
14.
15.
    
The proteins encoded by the Streptococcus pyogenes broad‐host range and low copy‐number plasmid pSM19035 form a toxin–antitoxin module that secures stable maintenance by causing the death of plasmid‐free segregants. The ɛζ protein complex was crystallized in four different forms at pH 5.0 and pH 7.0 using the vapour‐diffusion method with PEG 3350 and ethylene glycol as precipitants. Three of the crystal forms were obtained in the same droplet under identical conditions at pH 5.0. One form belongs to the enantiomorphic space groups P43212 or P41212. For the other two, the X‐­ray reflection conditions match those of space group P212121, one representing a superlattice of the other. A crystal form growing at pH 7.0 also belongs to space group P212121, but there is no indication of a structural relationship to the other orthorhombic forms. Initially, the crystals diffracted to 2.9 Å resolution and diffracted to 1.95 Å after soaking at pH 7.0. A preparation of selenomethionyl ɛζ protein complex yielded single crystals suitable for X‐ray diffraction experiments using synchrotron sources.  相似文献   

16.
    
Human tau‐protein kinase I (TPK I; also known as glycogen synthase kinase 3β; GSK3β) is a serine/threonine protein kinase that participates in Alzheimer's disease. Here, binary complex structures of full‐length TPK I/GSK3β with the ATP analogues ADP and AMPPNP solved by the X‐ray diffraction method at 2.1 and 1.8 Å resolution, respectively, are reported. TPK I/GSK3β is composed of three domains: an N‐terminal domain consisting of a closed β‐barrel structure, a C‐terminal domain containing a `kinase fold' structure and a small extra‐domain subsequent to the C‐terminal domain. The catalytic site is between the two major domains and has an ATP‐analogue molecule in its ATP‐binding site. The adenine ring is buried in the hydrophobic pocket and interacts specifically with the main‐chain atoms of the hinge loop. The overall structure and substrate‐binding residues are similar to those observed in other Ser/Thr protein kinases, while Arg141 (which is not conserved among other Ser/Thr protein kinases) is one of the key residues for specific ATP/ADP recognition by TPK I/GSK3β. No residues are phosphorylated, while the orientation of the activation loop in TPK I/GSK3β is similar to that in phosphorylated CDK2 and ERK2, suggesting that TPK I/GSK3β falls into a conformation that enables it to be constitutively active.  相似文献   

17.
Two separate unrefined models for the secondary structure of two subfamilies of the 6-phospho-β-D -galactosidase superfamily were independently constructed by examining patterns of variation and conservation within homologous protein sequences, assigning surface, interior, parsing, and active site residues to positions in the alignment, and identifying periodicities in these. A consensus model for the secondary structure of the entire superfamily was then built. The prediction tests the limits of an unrefined prediction made using this approach in a large protein with substantial functional and sequence divergence within the family. The protein belongs to the (α–β class), with the core β strands aligned parallel. The supersecondary structural elements that are readily identified in this model is a parallel β sheet built by strands C, D, and E, with helices 2 and 3 connecting strands (C + D) and (D + E), respectively, and an analogous α–β unit (strand G and helix 7) toward the end of the sequence. The resemblance of the supersecondary model to the tertiary structure formed by 8-fold α–β barrel proteins is almost certainly not coincidental. © 1995 Wiley-Liss, Inc.  相似文献   

18.
We report here an analysis of the expression and function of the α chain of human VLA-4 in stable mouse L cell transfectants and the requirement for the β chain in these processes. L cells were transfected with human α4 cDNA or α4 and human β1 cDNA. Unexpectedly, human α4 cDNA, when transfected alone, could induce de novo surface expression of host β7 and increased expression of host β1. Induction of mouse β7 and β1 surface expression was not due to de novo gene activation, but instead represented α4/β intracellular subunit association and transport to the cell surface. Transfection with human β1 prevented surface expression of mouse β integrins. Whereas human α4 and human β1 subunits associated very tightly in anti-α4 immunoprecipitates, human α4 and mouse β subunits were only partially associated. Furthermore, binding of human/mouse chimeric receptors to recombinant VCAM, a major ligand for α4β7 and α4β1, was very poor, whereas human α4/human β1 receptors bound strongly to VCAM. One α4 transfectant, which exhibited a tight human α4/mouse β1 association, could be induced, but only after PMA activation, to bind strongly to VCAM. These results indicate that α4 subunits have specific affinity for β7 and β1 integrins and require β subunits for surface expression as well as high affinity ligand binding activity. Our results indicate that a tight association between the α4 and β subunit appears to be critical for ligand binding, consistent with a direct as well as regulatory role for the β subunit in ligand binding. Furthermore, these studies demonstrate that expression of foreign recombinant proteins can alter host cell protein expression resulting in de novo surface protein expression. © 1996 Wiley-Liss, Inc.  相似文献   

19.
    
The β‐subunit of the human eukaryotic elongation factor 1 complex (heEF1β) plays a central role in the elongation step in eukaryotic protein biosynthesis, which essentially involves interaction with the α‐ and γ‐subunits (eEF1γ). To biophysically characterize heEF1β, we constructed 3 Escherichia coli expression vector systems for recombinant expression of the full length (FL‐heEF1β), N‐terminus (NT‐heEF1β), and the C‐terminus (CT‐heEF1β) regions of the protein. Our results suggest that heEF1β is predominantly alpha‐helical and possesses an accessible hydrophobic cavity in the CT‐heEF1β. Both FL‐heEF1β and NT‐heEF1β form dimers of size 62 and 30 kDa, respectively, but the CT‐heEF1β is monomeric. FL‐heEF1β interacts with the N‐terminus glutathione transferase‐like domain of heEF1γ (NT‐heEF1γ) to form a 195‐kDa complex or a 230‐kDa complex in the presence of oxidized glutathione. On the other hand, NT‐heEF1β forms a 170‐kDa complex with NT‐heEF1γ and a high molecular weight aggregate of size greater than 670 kDa. Surface plasmon resonance analysis confirmed that (by fitting the Langmuir 1:1 model) FL‐heEF1β associated with monomeric or dimeric NT‐heEF1γ at a rapid rate and slowly dissociated, suggesting strong functional affinity (KD = 9.6 nM for monomeric or 11.3 nM for dimeric NT‐heEF1γ). We postulate that the N‐terminus region of heEF1β may be responsible for its dimerization and the C‐terminus region of heEF1β modulates the formation of an ordered heEF1β‐γ oligomer, a structure that may be essential in the elongation step of eukaryotic protein biosynthesis.  相似文献   

20.
    
Two versions of the functional core of the rabbit voltage‐dependent calcium channel β2a subunit were expressed in Escherichia coli. These proteins were purified to homogeneity and screened for crystallization. Crystallization conditions were refined using the hanging‐drop vapour‐diffusion method and two crystal forms were pursued. Crystal form I is represented by thick rods with tetragonal symmetry, unit‐cell parameters a = b = 75, c = 165 Å and a diffraction limit of 3.4 Å which were obtained using ammonium sulfate as a precipitant. Crystal form II gives rise to plates with orthorhombic symmetry, unit‐cell parameters a = 35, b = 75, c = 165 Å and a diffraction limit of 2.3 Å which were grown using polyethylene glycol 20K as a precipitant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号