首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
IFN-gamma facilitates NGF-induced neuronal differentiation in PC12 cells   总被引:1,自引:0,他引:1  
Natural or recombinant murine interferon-gamma causes a reversible arrest of proliferation of PC12 cells. Treatment with other antimitotics (AraC, colchicine, mitomycin C, hydroxyurea) or removal of serum, on the contrary, leads to mitotic arrest followed by cell death. IFN-gamma-treated PC12 cells respond more rapidly to NGF in terms of speed of neuronal outgrowth. On the other hand, NGF potentiates the action of IFN-gamma in stimulating the enzyme 2',5'-A synthetase which shifts from an average of 4.4-fold stimulation at 48 h with IFN-gamma alone to increments varying between 5- and 18-fold when PC12 cells are treated for 48 h with IFN-gamma and NGF. NGF alone, on the contrary, does not exert any detectable effect on this enzyme. From the findings we propose the use of a combined treatment of PC12 cells with NGF and IFN-gamma for a more rapid induction of neuronal differentiation.  相似文献   

2.
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.  相似文献   

3.
Cells of the rat pheochromocytoma line PC12 cease proliferation and develop neurites in response to nerve growth factor (NGF). Quantification of beta and gamma isoforms of nonmuscle actin in extracts of these differentiating cells showed that the beta:gamma ratio decreased from 1.30 +/- 0.05 to 0.99 +/- 0.05 after 6 days of NGF treatment. Cells treated with N6,O2-dibutyryl cyclic AMP (dbcAMP) also showed a shift in the ratio of beta:gamma isoforms, although few of these cells extended neurites. Administration of dbcAMP or both NGF and dbcAMP to cells accelerated the decrease in the beta:gamma actin isoform ratio relative to treatment with NGF alone. Those cells treated with both NGF and dbcAMP also showed an accelerated rate of neurite outgrowth. Suspension-grown PC12 cells treated with NGF showed neither an isoform ratio decrease nor neurite development. Our results suggest that either cyclic AMP may be a "second messenger" for NGF or it may effect the isoform ratio change by an independent mechanism. In addition, our data demonstrate an alteration in actin isoform expression, which accompanies the morphological differentiation of PC12 cells.  相似文献   

4.
We have established a subline of PC12 cells (PC12D) that extend neurites very quickly in response not only to nerve growth factor (NGF) but also to cyclic AMP (cAMP) in the same way as primed PC12 cells (NGF-pretreated cells). When phosphorylation of brain microtubule proteins by extracts of these cells was monitored, two distinct kinase activities were found to be increased [from three- to eightfold in terms of phosphorylation of microtubule-associated protein (MAP) 2] by a brief exposure of cells to NGF or to dibutyryl cAMP(dbcAMP). The effect of the combined stimulation with both NGF and dbcAMP was additive in terms of the phosphorylation of MAP2. The apparent molecular mass of the kinase activated by dbcAMP was 40 kDa, and this kinase appears to be cAMP-dependent protein kinase. The molecular mass of the kinase activated by NGF was 50 kDa. The latter was activated to a measurable extent after 5 min of exposure of cells to NGF; it required Mg2+ for activity but not Mn2+ or Ca2+. This kinase appears to be distinct from previously reported kinases in PC12 cells, and it has been designated as NGF-dependent MAP kinase, although its physiological substrates are not known at present. An inhibitor of protein kinases, K-252a, selectively inhibited the outgrowth of neurites from PC12D cells in response to NGF but not to dbcAMP. When this inhibitor was added to the incubation medium of cells exposed simultaneously to NGF or dbcAMP, the increase in activity of the NGF-dependent MAP kinase was selectively abolished. We isolated several mutant clones of PC12D cells that were deficient in the ability to induce neurites in response to either of the two stimulators. In these variant cells, the activity of the relevant protein kinase was decreased, in parallel with the deficiency in the neurite response to NGF or dbcAMP. These observations suggest that the NGF-dependent MAP kinase may play an important role in the outgrowth of neurites from PC12 cells in response to NGF.  相似文献   

5.
Treatment of rat pheochromocytoma cell line PC12 with Vipera lebetina (snake) nerve growth factor (NGF) induces a rapid increase (from 5 to 25-fold) in the level of (2'-5')oligo(A) synthetase activity and a simultaneous decrease (from 2 to 5-fold) in the activity of 2'-5' A degrading enzymes--2'-phosphodiesterases (2'-PDE). These changes in the enzyme activities led to the significant increase in the intracellular concentration of 2'-5' A. We have found that the serum starvation of PC12 cells causes a 1.5 to 2.0-fold increase in the level of 2'-5' A-synthetase activity, but the activities of 2'-PDE and the intracellular concentration of 2'-5' A remain unaltered. These results show that NGF modulates the activity of (2'-5')oligo(A) enzymes and intracellular concentration of 2'-5' A during the neural differentiation of PC12 cells.  相似文献   

6.
Nerve growth factor (NGF) has been shown to increase cyclic AMP in PC12 cells and to potentiate the actions of other agents that raise cyclic AMP. In our studies, NGF causes over 50% loss of PDE 2 activity (cyclic GMP-stimulated cyclic nucleotide phosphodiesterase) in PC12 cells within 24 h. After 72 h of NGF treatment, cyclic AMP hydrolysis in PC12 extracts is no longer cyclic GMP-stimulated. NGF deprivation increases the phosphodiesterase activity of treated cells. NGF does not decrease either PDE 2 mRNA or immunoreactivity of PDE 2A2 protein. Incubation of whole cells with micromolar Na(3)VO(4) mimics NGF treatment, reducing PDE 2 activity in PC12 cells by over 50% after 24 h, suggesting a phosphoprotein-mediated regulation of PDE 2 activity. Protein kinase inhibitor effects were difficult to assess due to their direct interaction with the PDE in cell lysates. To study phosphorylation in PDE 2 regulation, PDE 2A2 was epitope-tagged, and stable clonal PC12 cell transfectants were isolated (PC12B cells). When combined with metabolically labeled (32)P-phosphoproteins in vivo or in vitro, phosphoproteins of 108, 90, 64, 43, 33 and 19 kDa coprecipitated with epitope-tagged PDE 2A2 in an NGF sensitive manner. A 23-kDa phosphoprotein containing immunoreactive phosphoserine associated with the complex in an NGF independent manner. Phosphothreonine plus phosphotyrosine immunoreactivity at 23, 24, and 64 kDa as well as the phosphotyrosine immunoreactivity at 108, 90, 64, 43, 33, and 19 kDa required NGF or orthovanadate treatment. These proteins are hypothesized to be part of an NGF-regulated complex controlling PDE 2A2 activity.  相似文献   

7.
Recently, the presence of 2',5'-linked oligoadenylates and a high 2',5'-oligoadenylate synthetase activity were discovered in a lower invertebrate, the marine sponge Geodia cydonium. It has been demonstrated that mammalian 2-5A synthetase isozymes require a dsRNA cofactor for their enzymatic activity. Our results show that, unlike mammalian 2-5A synthetases, the 2-5A synthetase from the sponge acts in a dsRNA-independent manner in vitro. A prolonged incubation of the G. cydonium extract with a high concentration of a micrococcal nuclease had no effect on the activity of the 2-5A synthetase. At the same time, the micrococcal nuclease was effective within 30 min in degrading dsRNA needed for the enzymatic activity in IFN-induced PC12 cells. These results indicate that the 2-5A synthetase from G. cydonium may be active per se or is activated by some other mechanism. The sponge enzyme is capable of synthesizing a series of 2-5A oligomers ranging from dimers to octamers. The accumulation of a dimer in the predominant proportion during the first stage of the reaction was observed, followed by a gradual increase in longer oligoadenylates. By its product profile and kinetics of formation, the sponge 2-5A synthetase behaves like a specific isoform of enzymes of the 2-5A synthetase family.  相似文献   

8.
Tests have been made of the action of the methyltransferase inhibitors 5'-S-methyl adenosine, 5'-S-(2-methyl-propyl)-adenosine, and 3-deaza- adenosine +/- L-homocysteine thiolactone, on nerve growth factor (NGF)- dependent events in the rat pheochromocytoma line PC12. Each of these agents inhibited NGF-dependent neurite outgrowth at concentrations of the order of millimolar. Slow initiation of neurite outgrowth over several days and more rapid regeneration of neurites (congruent to 1 d) were blocked, as was the priming mechanism necessary for genesis of neurites. The inhibitions were reversible in that PC12 cells maintained for several days in the presence of inhibitors grew neurites normally after washout of these agents. Other NGF-dependent responses of the PC12 line (i.e., induction of ornithine decarboxylase activity [over 4 h], enhancement of tyrosine hydroxylase phosphorylation [over 1 h], and rapid changes in cell surface morphology [30 s onward]) were inhibited by each of the agents. In contrast, corresponding epidermal growth factor-dependent responses in ornithine decarboxylase activity, phosphorylation, and cell surface morphology were not blocked, but instead either unaffected or enhanced, by the methylation inhibitors. These inhibitors did not act by blockade of binding of NGF to high- or low-affinity cell surface receptors, though they partially inhibited internalization of [125I]NGF. The inhibition of rapidly-induced NGF- dependent events and the differential inhibition of responses to NGF and epidermal growth factor imply that the methyltransferase inhibitors specifically block one of the first steps in the mechanistic pathway for NGF.  相似文献   

9.
10.
Possible roles of coexisting cells in inducing neurite growth from a nerve cell were studied. Nerve growth factor (NGF)-inducing neurite growth from PC12h-R (a cell line derived from cultured nerve cells) was investigated at various cell densities. At the cell density 102104 cells/ml neurites appeared even without NGF. In contrast, no neurite appeared without NGF in single cell culture. The neurite growth observed in plural cell culture without NGF was only partially inhibited by antibody to NGF receptor (Ab-NGFR). However, the effect of the used medium alone was mostly inhibited by Ab-NGFR. These results suggest that the neurite inducing potency of coexisting cells is via different sites than the NGF receptor.Abbreviations Ab-IgG-FITC anti-mouse-IgG labeled with fluorescein isothiocyanate - Ab-NF monoclonal antibody to neurofilament 160 kD - Ab-NGFR monoclonal antibody to NGF receptor - BDNF brain-derived neurotrophic factor - D-medium medium for differentiation culture - DMEM Dulbecco's modified Eagle's medium - M-medium medium for multiplication culture - NGF nerve growth factor - NGFR NGF receptor - NT-3 neurotrophin-3 - PC12 pheochromocytoma cell line - PC12h-R subclone of PC12 - Sup-D supernatant of D-medium  相似文献   

11.
12.
The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
14.
We report here the possible involvement of a new protease in neurite initiation by PC12h cells. Addition of a leupeptin analogue (Ac-Leu-Leu-Nle-al, ALLNal) to PC12h cells on culture plates coated with collagen type I caused de novo neurite outgrowth. Other protease inhibitors (Ac-Leu-Leu-Met-al, leupeptin, E64c, E64d, soybean trypsin inhibitor, hirudin, aprotinin, diisofluorophosphate, 6-aminocapric acid, and pepstatin A) could not mimic this neurite-initiating action. ALLNal induced the initiation of one or two long neurites from the cell body, and increased the cellular level of acetylcholinesterase to an extent similar to nerve growth factor (NGF). However, ALLNal-induced neuritogenesis is different from that induced by NGF, in which many neurites are induced from a single cell body. In addition, in contrast to neurons induced by NGF, which survive for a long time, ALLNal-induced differentiation was transient, and after 48 h percentage of cells bearing neurites started to decrease. After about 120 h exposure to ALLNal, neurites had mostly disappeared and the acetylcholinesterase activity level was not as great as that produced by NGF. These results provide evidence that ALLNal and NGF elicit neurite initiation by different mechanisms, and suggest the existence of a regulatory system of neuronal differentiation through specific protease-protease inhibitor interaction.  相似文献   

15.
Structural changes in proteoglycans (PGs) were examined during the neuritogenesis of PC12 cells induced by nerve growth factor (NGF). (1) A heparan sulfate (HS) PG and a chondroitin sulfate (CS) PG were synthesized by PC12 cells, irrespective of the presence of NGF or the duration of culture. PGs released from PC12 cells into the culture medium were mostly CSPGs. (2) In the absence of NGF, the apparent molecular mass of HSPG prepared from PC12 cells after 3 days of culture was in the range of 90-190 kDa for the intact form (Kav = 0.38 on Sepharose CL-6B), 12 kDa for HS, and 61 kDa for the core protein. In the presence of NGF, these values were 90-190 kDa, 10 kDa, and 51 kDa and 61 kDa, respectively. The intact forms of cell-associated CSPG had apparent molecular mass ranges of 120-150 kDa and 120-190 kDa (Kav = 0.38 and 0.34), with CSs of 15 kDa and 20 kDa in the presence and absence of NGF, respectively. The apparent molecular mass of the core protein of cell-associated CSPG was 92 kDa, irrespective of the presence of NGF. The molecular sizes of cell-associated PGs and their glycosaminoglycans remained unchanged during culture. (3) CSPGs released by PC12 cells into the culture medium were separated into two peaks (I and II) by column chromatography on DEAE-cellulose. The peak II fraction prepared from the medium with NGF after 3 days of culture consisted of CSPG with Kav = 0.22 on Sephacryl S-300 [40-84 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
19.
Extracellular proteolysis is considered to be required during neuritic outgrowth to control the adhesiveness between the growing neurite membrane and extracellular matrix proteins. In this work, PC12 nerve cells were used to study the modulation of proteolytic activity during neuronal differentiation. PC12 cells were found to contain and release a 70-75-kDa tissue-type plasminogen activator (tPA) and a much less abundant 48-kDa urokinase-type plasminogen activator. A plasminogen activator inhibitor (PAI) activity with molecular sizes of 54 and 58 kDa was also detected in PC12 cell conditioned medium and formed high-molecular-mass complexes with released tPA. Release of PAI activity was dependent on treatment with nerve growth factor (NGF), whereas tPA synthesis and release were under control of a cyclic AMP-dependent mechanism and increased on treatment with dibutyryl-cyclic AMP [(But)2cAMP] or cholera toxin. Simultaneous treatment with NGF and (But)2cAMP resulted in increases of both tPA and PAI release and enhancement of tPA-PAI complex formation. The resulting plasminogen activator activity in conditioned medium was high in (But)2cAMP-treated cultures with short neuritic outgrowth but remained low in NGF- or NGF plus (But)2cAMP-treated cultures, where neurite extension was, respectively, large and very large. These results suggest that excess proteolytic activity may be detrimental to neuritic outgrowth and that not only PAI release but also tPA-PAI complex formation is associated with production of large and stable neuritic outgrowth. This can be understood as an involvement of PAI in the protection against neurite-destabilizing proteolytic activity.  相似文献   

20.
The outgrowth of neurites from rat PC12 cells stimulated by combined treatment of nerve growth factor (NGF) with cAMP is significantly more rapid and extensive than the outgrowth induced by either factor alone. We have compared the responses of PC12 cells under three different growth conditions, NGF alone, cAMP alone, and combined treatment, with respect to surface morphology, rapidity of neurite outgrowth, and stability of neurite microtubules, to understand the synergistic action of NGF and cAMP on PC12. Surface events at early times in these growth conditions varied, suggesting divergent pathways of action of NGF and cAMP. This suggestion is strongly supported by the finding that cells exposed to saturating levels of dibutyryl cAMP without substantial neurite outgrowth initiated neurites within 5 min of NGF. This response has been adopted as a convenient assay for NGF. Neurites that regenerated in the three growth conditions showed marked differences in stability to treatments that depolymerize microtubules. The results indicate that microtubules in cells treated with both NGF and cAMP are significantly more stable than in either growth factor alone. We suggest that a shift of the assembly equilibrium favoring tubulin assembly is a necessary prerequisite for the initiation of neurites by PC12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号