首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The results of ecological interactions depend on the costs and benefits involved in different ecological contexts. Turnera subulata is a shrubby plant with extrafloral nectaries that are associated with ants. Here, we test the hypotheses that the association between Tsubulata and ants results in: (i) positive effects on host plant growth and reproduction; (ii) plant herbivory reduction and (iii) inhibition of the host plant visitation by beneficial organisms. Thirty experimental plots were established in northeastern Brazil, either in association with ants or without ants (N = 15 plots/treatment), with four plants each (total 120 plants). Vegetative growth (plant height and number of leaves), reproductive investment (flowers and fruits), herbivory rates and numbers of beneficial visitors were quantified during all phenological stages of the host plant. Data were analysed using generalized linear mixed models. At the host plant maturation stage, we found a trade‐off between growth and reproduction. Plants with ants had lower mean height; however, they invested more in reproduction (a higher number of flowers and fruits) compared to plants without ants. During the flowering stage, the abundance of sucking herbivores was higher in plots without ants but chewing herbivore abundance increased in the maturation stage in plots with ants. The cumulative proportion of leaves with herbivore damage did not differ between treatments, and the presence of ants reduced the number of beneficial visitors (e.g. pollinators and natural enemies) to the host plants. Our results show that association with ants results in some costs for the host plant, however, these costs appear to be offset by the defensive role of ants, which favours plant reproductive investment. In general, our results help to elucidate mechanisms involved in trophic interactions within the complex network of interactions involving ants and plants.  相似文献   

2.
F. F. Xu  J. Chen 《Insectes Sociaux》2010,57(3):343-349
In facultative ant–plant interactions, ants may compete with each other for food provided by extrafloral nectar (EFN) plants. We studied resource competition and plant defense in a guild of ants that use the same EFN resource provided by two species of Passiflora in a seasonal rain forest in tropical China. At least 22 ant species were recorded using the EFN resource, although some of those species were rare. Among these ants, Paratrechina sp.1 and Dolichoderus thoracicus were more aggressive than other species. Ant aggressiveness measured as ant behavioral dominance index (BDI) was positively correlated with ant abundance on the Passiflora species studied. Ant BDI was also positively correlated to the protection that ants provided against herbivory. In Passiflora siamica, the number of workers patrolling on the plants did negatively correlate with average leaf loss per plant. We conclude that in this facultative Passiflora–ant system, plant defense upon herbivore was indeed influenced by the total number of ants present on plant and the aggressiveness of these ants.  相似文献   

3.
The microhabitat in which plants grow affects the outcome of their interactions with animals, particularly non-specialist consumers. Nevertheless, as most research on this topic has dealt with either mutualists or antagonists, little is known about the indirect effects of plant microhabitats on the outcome of tripartite interactions involving plants and both mutualists (e.g. seed dispersers) and antagonists (e.g. granivores). During three consecutive years, we analysed small-scale variations in the interaction of a perennial myrmecochore, Helleborus foetidus, with its seed dispersers and consumers as a function of the intensity of plant cover. Most seeds were released during the day and were rapidly removed by ants. Nevertheless, the proportion of ant-removed seeds was higher for plants located in open microhabitats than for plants surrounded by dense vegetation and rocky cover. Ant sampling revealed that seed removers were equally abundant, irrespective of the level of cover. By contrast, a few tiny ant species that feed on the reward without transporting the seeds were more abundant in highly covered microhabitats, irrespective of hellebore diaspore availability. These “cheaters” decrease the chance of removal by removers and increase the probability of seeds remaining on the ground until night, when granivore mice Apodemus sylvaticus become active. Mice also preferred foraging in covered microhabitats, where they consumed a larger proportion of seeds. Therefore, the density of cover indirectly increased seed predation risk by attracting more seed predators and cheater ants that contribute to increase seed availability for seed predators. Our results emphasize the importance of considering the indirect effects of plant microhabitat on their dispersal success. They highlight the indirect effect of cheaters that are likely to interfere in mutualisms and may lead to their collapse unless external factors such as spatio-temporal heterogeneity in seed availability constrain their effect. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
One possible function of extrafloral nectaries is to attract insects, particularly ants, which defend plants from herbivores. We determined whether ants visiting saplings of the tree Stryphnodendronmicrostachyum (Leguminosae) provide protection (decreased plant damage due to ant molestation or killing of herbivores) and benefit (increased plant growth and reproduction associated with ant presence) to the plant. We compared ant and herbivore abundance, herbivore damage and growth of ant-visited plants and ant-excluded plants grown in sun and shade microhabitats of a 6-ha plantation in Costa Rica over a 7-month period. Results show that ants provided protection to plants not by reducing herbivore numbers but by molesting herbivores. Ants also reduced the incidence of pathogen attack on leaves. Protection was greater in the shade than in the sun, probably due to lower herbivore attack in the sun. Protection was also variable within sun and shade habitats, and this variability appeared to be related to variable ant visitation. Results also indicate that ant presence benefits the plant: ant-visited plants grew significantly more in height than ant-excluded plants. The cultivation of ants may serve as an important natural biological control in tropical forestry and agroforestry systems, where increased plant density can otherwise lead to increased herbivore attack. Received: 4 May 1998 / Accepted: 6 October 1998  相似文献   

5.
Defensive mutualisms mediated by extrafloral nectaries are particularly variable; their net results may change with seasons, communities and environmental contexts. Particularly, an environmental factor that can promote changes in outcomes of ant‐plant interactions is elevation in mountainous regions. We tested whether (1) the interaction between the cactus Opuntia sulphurea and ant visitors of extrafloral nectaries is a defensive mutualism; and (2) ant‐plant interaction outcomes vary with elevation as a result of changes in herbivory rate and ant activity. To evaluate if the outcome of interactions was consistent at two extremes of the range distribution of O. sulphurea, we performed an ant‐exclusion experiment with plants at two growth conditions (natural or potted) in two sites with contrasting elevation (1235–1787 m asl) in a temperate region (Villavicencio Nature Reserve, Mendoza, Argentina), and in a tropical region (Huajchilla, La Paz, Bolivia). Although herbivory rate and ant visitation frequency increased with elevation, herbivore damage, plant reproductive success, and cladode growth rate were similar between plants excluded and non‐excluded from ants among sites, geographic regions and growth conditions. These results do not support the hypotheses that the interaction between O. sulphurea and ants is a defensive mutualism, and that elevation affects the net outcome of this ant‐plant interaction.  相似文献   

6.
1. Understanding the degree to which populations and communities are limited by both bottom‐up and top‐down effects is still a major challenge for ecologists, and manipulation of plant quality, for example, can alter herbivory rates in plants. In addition, biotic defence by ants can directly influence the populations of herbivores, as demonstrated by increased rates of herbivory or increased herbivore density after ant exclusion. The aim of this study was to evaluate bottom‐up and top‐down effects on herbivory rates in a mutualistic ant‐plant. 2. In this study, the role of Azteca alfari ants as biotic defence in individuals of Cecropia pachystachya was investigated experimentally with a simultaneous manipulation of both bottom‐up (fertilisation) and top‐down (ant exclusion) factors. Four treatments were used in a fully factorial design, with 15 replicates for each treatment: (i) control plants, without manipulation; (ii) fertilised plants, ants not manipulated; (iii) unfertilised plants and excluded ants and (iv) fertilised plants and ants excluded. 3. Fertilisation increased the availability of foliar nitrogen in C. pachystachya, and herbivory rates by chewing insects were significantly higher in fertilised plants with ants excluded. 4. Herbivory, however, was more influenced by bottom‐up effects – such as the quality of the host plant – than by top‐down effects caused by ants as biotic defences, reinforcing the crucial role of leaf nutritional quality for herbivory levels experienced by plants. Conditionality in ant defence under increased nutritional quality of leaves through fertilisation might explain increased levels of herbivory in plants with higher leaf nitrogen.  相似文献   

7.
Summary The hypothesis that ants (Pheidole minutula) associated with the myrmecophytic melastome Maieta guianensis defend their host-plant against herbivores was investigated in a site near Manaus, Amazonas, Brazil. M. guianensis is a small shrub that produces leaf pouches as ant domatia. Plants whose ants were experimentally removed suffered a significant increase in leaf damage compared with control plants (ants maintained). Ants patrol the young and mature leaves of Maieta with the same intensity, presumably since leaves of both ages are equally susceptible to herbivore attack. The elimination of the associated ant colony, and consequent increase in herbivory, resulted in reduced plant fitness. Fruit production was 45 times greater in plants with ants than in plants without ants 1 year after ant removal.  相似文献   

8.
The effects of herbivory on plant fitness are integrated over a plant??s lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant?Cplant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant??s growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.  相似文献   

9.
Studies of ant–plant relationships elucidate how top-down effects of the third trophic level can affect the biomass, richness, and/or species composition of plants. Although widespread in the neotropics, few studies have so far examined the direct effects of ants on plant fitness. Here, through experimental manipulation (ant-exclusion) under natural conditions, we examined the effect of ant visitation to extrafloral nectaries on leaf herbivory and fruit set in Chamaecrista debilis in the Brazilian savanna. As opposed to other Chamaecrista species, our results showed that visiting ants (15 species) significantly reduce herbivory and increase fruit set by more than 50% compared to plants from which ants were excluded. This mutualistic system is facultative in nature, and corroborates the potential beneficial role of exudate-feeding ants as anti-herbivore agents of tropical plants.  相似文献   

10.
Current evidence suggests that ant–plant relationships may influence species composition, abundance, and interactions at the community scale. The main resource that plants offer to ants is extrafloral nectar (EFN) and the major part of published studies shown benefits from ants to plants possessing EFNs. However, the complementary question of whether and how ants benefit from EFNs is rarely addressed. Here, we present the results of a long-term study to demonstrate whether EFN has a positive effect on ant colony fitness. We quantified colony growth rate, survival and the final weight of individuals as measures of benefit derived from EFN. Our results provide clear evidence that EFN can have a significant positive impact on the survivorship, growth and reproduction of the Myrmicinae Cephalotes pusillus. In fact, a diet rich in EFN (providing at least 30 cal per day) resulted in five times more individuals per colony, greater body weights, and more eggs. These results have shed new light on the relationships between ants and EFN-bearing plants such as in tropical and temperate systems. The ant C. pusillus is the first case in which we have firm evidence that EFN improves colony growth and development, corroborating more than 100 years of experimental evidence of benefits to plants in these widespread relationships.  相似文献   

11.
Ants co‐occur with herbivorous thrips in several tropical plants, but their interactions are largely unexplored. Should thrips be deterred by ants, a positive effect of ants on plant fitness might be expected. Here, by using an experimental study design with ant‐present and ant‐excluded treatments, we investigated the influence of Camponotus blandus on Pseudophilothrips obscuricornis abundance and herbivory in three extrafloral nectaried species: Banisteriopsis malifolia, B. laevifolia and B. stellaris. In addition, we examined the effect of thrips herbivory on flower set and fruit development and dispersion. Thrips abundance and herbivory were higher on ant‐present stems of B. malifolia and B. laevifolia, where thrips managed to escape from ants by hiding in between clusters of flower buds (thygmotaxis behaviour). In B. stellaris the results were the opposite, as flower bud clusters did not offer hiding places, so thrips were unable to hide from ants; thus both thrips abundance and herbivory were lower on ant‐present stems. Thrips herbivory had no significant effect on flower and fruit set, but samaras (V‐shaped winged fruits of Malpighiaceae) attacked by thrips presented severe distortions and asymmetries. This caused damaged fruits to be dispersed closer to the mother plant, whereas uninjured fruits were dispersed further away. This study is evidence that ant–plant–herbivore systems have variable outcomes depending on the species involved, their behaviour and the plant structure under consideration. Unlike other herbivores, thrips negatively influence the very last stage of plant reproduction. The minute and furtive herbivorous thrips have long been ignored in natural systems, but because of their wide host range, they may be important herbivores even in extrafloral nectaried plants, which are usually fiercely protected by ants.  相似文献   

12.
1. Some interactions previously described as mutualistic were revealed to be commensal or parasitic in subsequent investigations. Ant‐mediated seed dispersal has been described as a mutualism for more than a century; however, recent research suggests that it may be commensal or parasitic. Plants demonstrably benefit from ant‐mediated seed dispersal, although there is little evidence available to demonstrate that the interaction benefits long‐term ant fitness. 2. Field experiments were conducted in temperate North America focused on a key seed‐dispersing ant. All herbaceous plants were removed from a forest understorey for 13 years, and supplemented ant colonies with large elaiosome‐bearing seeds aiming to examine potential long‐ and short‐term myrmecochorous plant benefits for the ants. 3. If elaiosome‐bearing seeds benefit ants, suggesting a mutualistic relationship, it is expected that there would be greater worker and/or alate abundance and greater fat reserves (colony lipid content) with seed supplementation (short‐term) and in areas with high understorey herb abundance. 4. Short‐term seed supplementation of ant colonies did not result in an increase with respect to numbers or fat stores, although it did prompt the production of colony sexuals, which is a potential fitness benefit. In the long term, however, there was no positive effect on the ants and, instead, there were negative effects because the removal of elaiosome‐bearing plants corresponded with greater colony health. 5. The data obtained in the present study suggest that the ant–plant interaction ranged from occasionally beneficial to neutral to overall negative for the ant partner. Such results did not support considering the interaction as a mutualism. Collectively, the data suggest the need to reconsider the nature of the relationship between these ants and plants.  相似文献   

13.
1. The consequences to plants of ant–aphid mutualisms, particularly those involving invasive ants, are poorly studied. Ant–aphid mutualisms may increase or decrease plant fitness depending on the relative cost of herbivory by ant‐tended aphids versus the relative benefit of increased ant suppression of other (non‐aphid) herbivores. 2. We conducted field and greenhouse experiments in which we manipulated the presence and absence of cotton aphids (Aphis gossypii) on cotton plants to test the hypothesis that a mutualism between cotton aphids and an invasive ant, the red imported fire ant (Solenopsis invicta), benefits cotton plants by increasing fire ant suppression of caterpillars. We also manipulated caterpillar abundance to test whether the benefit of the mutualism varied with caterpillar density. 3. We found that more fire ants foraged on plants with cotton aphids than on plants without cotton aphids, which resulted in a significant reduction in caterpillar survival and caterpillar herbivory of leaves, flower buds, and bolls on plants with aphids. Consequently, cotton aphids indirectly increased cotton reproduction: plants with cotton aphids produced 16% more bolls, 25% more seeds, and 10% greater seedcotton mass than plants without aphids. The indirect benefit of cotton aphids, however, varied with caterpillar density: the number of bolls per plant at harvest was 32% greater on plants with aphids than on plants without aphids at high caterpillar density, versus just 3% greater at low caterpillar density. 4. Our results highlight the potential benefit to plants that host ant–hemipteran mutualisms and provide the first experimental evidence that the consequences to plants of an ant–aphid mutualism vary at different densities of non‐aphid herbivores.  相似文献   

14.
15.
1. Although plant invasions often reduce insect abundance and diversity, non‐native plants that support phytophagous insects can subsidise higher trophic levels via elevated herbivore abundance. 2. Here ant–aphid interactions on non‐native fennel on Santa Cruz Island, California are examined. Fennel hosts abundant, honeydew‐producing fennel aphids. The patchiness of fennel and the relative lack of honeydew‐producing insects on other plants at our study sites suggest that assimilation of fennel‐derived honeydew would increase the abundance and decrease the trophic position of the omnivorous, aphid‐tending Argentine ant. 3. To assess the strength of the ant–aphid interaction, a comparison of ant abundance on and adjacent to fennel prior to and 3 weeks after experimental aphid removal was performed. Compared with control plants with aphids, ants declined in abundance on and around fennel plants following aphid removal. At the habitat scale, pitfall traps in fennel‐dominated habitats captured more ants than in fennel‐free scrub habitats. 4. To determine if assimilation of aphid‐produced honeydew reduces the ant's trophic position, variation in δ15N values among ants, plants and other arthropods was analysed. Unexpectedly, δ15N values for ants in fennel‐dominated habitats were higher than those of arthropod predators from the same sites and also higher than those of ants from fennel‐free habitats. 5. Our results illustrate how introduced plants that support phytophagous insects appear to transfer energy to higher trophic levels via elevated herbivore abundance. Although assimilation of fennel‐derived honeydew did not appear to reduce consumer trophic position, spatial variation in alternative food resources might obscure contributions from honeydew.  相似文献   

16.
Ant–plant mutualisms are usually regarded as driven by ants defending plants against herbivores in return for plant‐produced food rewards and housing. However, ants may provide additional services. In a review of published studies on ant–pathogen–plant interactions, we investigated whether ants’ extensive hygiene measures, including the use of ant‐produced antibiotics, extend to their host plants and reduce plant pathogen loads. From 30 reported species combinations, we found that the presence of ants lead to reduced pathogen levels in 18 combinations and to increased levels in 6. On average, ants significantly reduced pathogen incidence with 59%. This effect size did not differ significantly from effect sizes reported from meta‐analyses on herbivore protection. Thus, pathogen and herbivore protection could be of equal importance in ant–plant mutualisms. Considering the abundance of these interactions, ecological impacts are potentially high. Furthermore, awareness of this service may stimulate the development of new measures to control plant diseases in agriculture. It should be noted, though, that studies were biased toward tropical ant–plant symbioses and that the literature in the field is limited at present. Future research on plant pathogens is needed to enhance our understanding of ant–plant mutualisms and their evolution.  相似文献   

17.
Geographic variation in the outcome of interspecific interactions may influence not only the evolutionary trajectories of species but also the structure of local communities. We investigated this community consequence of geographic variation for a facultative mutualism between ants and wild cotton (Gossypium thurberi). Ants consume wild cotton extrafloral nectar and can protect plants from herbivores. We chose three sites that differed in interaction outcome, including a mutualism (ants provided the greatest benefits to plant fitness and responded to manipulations of extrafloral nectar), a potential commensalism (ants increased plant fitness but were unresponsive to extrafloral nectar), and a neutral interaction (ants neither affected plant fitness nor responded to extrafloral nectar). At all sites, we manipulated ants and extrafloral nectar in a factorial design and monitored the abundance, diversity, and composition of other arthropods occurring on wild cotton plants. We predicted that the effects of ants and extrafloral nectar on arthropods would be largest in the location with the mutualism and weakest where the interaction was neutral. A non-metric multidimensional scaling analysis revealed that the presence of ants altered arthropod composition, but only at the two sites in which ants increased plant fitness. At the site with the mutualism, ants also suppressed detritivore/scavenger abundance and increased aphids. The presence of extrafloral nectar increased arthropod abundance where mutual benefits were the strongest, whereas both arthropod abundance and morphospecies richness declined with extrafloral nectar availability at the site with the weakest ant–plant interaction. Some responses were geographically invariable: total arthropod richness and evenness declined by approximately 20% on plants with ants, and extrafloral nectar reduced carnivore abundance when ants were excluded from plants. These results demonstrate that a facultative ant–plant mutualism can alter the composition of arthropod assemblages on plants and that these community-level consequences vary across the landscape.  相似文献   

18.
Climate change is predicted to increase the risk of drought in many temperate agroecosystems. While the impact of drought on aboveground plant‐herbivore‐natural enemy interactions has been studied, little is known about its effects on belowground tritrophic interactions and root defense chemistry. We investigated the effects of low soil moisture on the interaction between maize, the western corn rootworm (WCR, Diabrotica virgifera), and soil‐borne natural enemies of WCR. In a manipulative field experiment, reduced soil moisture and WCR attack reduced plant performance and increased benzoxazinoid levels. The negative effects of WCR on cob dry weight and silk emergence were strongest at low moisture levels. Inoculation with entomopathogenic nematodes (EPNs, Heterorhabditis bacteriophora) was ineffective in controlling WCR, and the EPNs died rapidly in the warm and dry soil. However, ants of the species Solenopsis molesta invaded the experiment, were more abundant in WCR‐infested pots and predated WCR independently of soil moisture. Ant presence increased root and shoot biomass and was associated with attenuated moisture‐dependent effects of WCR on maize cob weight. Our study suggests that apart from directly reducing plant performance, drought can also increase the negative effects of root herbivores such as WCR. It furthermore identifies S. molesta as a natural enemy of WCR that can protect maize plants from the negative impact of herbivory under drought stress. Robust herbivore natural enemies may play an important role in buffering the impact of climate change on plant‐herbivore interactions.  相似文献   

19.
The presence of the exotic Argentine ant, Linepithema humile Mayr (Hymenoptera: Dolichoderinae), nitrogen enrichment, and early-season herbivory by the specialist beetle Trirhabda bacharidis (Coleoptera: Chrysomelidae) have been shown, through separate experiments, to affect the densities of insect herbivores of the coastal shrub Baccharis halimifolia (Asteraceae), in Florida. Using a fully-factorial field experiment, we examined the relative importance of all three of these factors to the six most common insect herbivore species utilizing this host plant in a West Central Florida coastal habitat. The presence of ants affected more herbivore species than either early-season herbivory by larval T. bacharidis or nitrogen enrichment. Experimental reductions of L. humile resulted in reductions of an aphid, its coccinellid predators, and adult T. bacharidis, and increases of two species of leafminers and one species of stemborer. Due to the strong negative effects of stemborer herbivory on host plant survival, the increase in stemborer abundance led to increased host plant mortality. Early-season herbivory by larval T. bacharidis only affected the abundance of aphids and their predators, both of which were more abundant on trees with reduced early-season herbivory. Nitrogen fertilization had the most limited effects and only T. bacharidis larvae achieved higher densities on fertilized trees. Our results indicate that aphid tending by the exotic L. humile affects other insects on B. halimifolia more so than herbivory by the exploitative competitor T. bacharidis or nitrogen as a limiting nutrient.  相似文献   

20.
Optimal defence theory (ODT) predicts that, whereas high risk of herbivory should select for high constitutive levels of defence, induced defences should be more advantageous in environments with a low probability of herbivory. In the present field study, conducted on the AztecaCecropia ant–plant system in a Neotropical rainforest, we evaluated whether the constitutive and induced ant defence of leaves are directly and inversely related to an estimate of herbivory risk, respectively. To assess the constitutive level of Azteca defence in Cecropia obtusifolia trees, we recorded the number of ants patrolling undamaged leaves. To evaluate the induced level of Azteca defence, the same leaves were subjected to simulated herbivory by punching circular holes in them. We recorded the maximum number of ants patrolling the damaged leaves from 2 to 15 min after damage. Past herbivory (% defoliation of old leaves) was assumed to indicate a risk of herbivory. Regression analyses showed that, whereas the constitutive level of ant patrolling was positively associated with the magnitude of herbivory on old leaves, there was a negative association between the magnitude of induced ant defence and past herbivory. These preliminary results lend support to ODT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号