首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Cellular metabolism is altered during cancer initiation and progression, which allows cancer cells to increase anabolic synthesis, avoid apoptosis and adapt to low nutrient and oxygen availability. The metabolic nature of cancer enables patient cancer status to be monitored by metabolomics and lipidomics. Additionally, monitoring metabolic status of patients or biological models can be used to greater understand the action of anticancer therapeutics.

Objectives

Discuss how metabolomics and lipidomics can be used to (i) identify metabolic biomarkers of cancer and (ii) understand the mechanism-of-action of anticancer therapies. Discuss considerations that can maximize the clinical value of metabolic cancer biomarkers including case–control, prognostic and longitudinal study designs.

Methods

A literature search of the current relevant primary research was performed.

Results

Metabolomics and lipidomics can identify metabolic signatures that associate with cancer diagnosis, prognosis and disease progression. Discriminatory metabolites were most commonly linked to lipid or energy metabolism. Case–control studies outnumbered prognostic and longitudinal approaches. Prognostic studies were able to correlate metabolic features with future cancer risk, whereas longitudinal studies were most effective for studying cancer progression. Metabolomics and lipidomics can help to understand the mechanism-of-action of anticancer therapeutics and mechanisms of drug resistance.

Conclusion

Metabolomics and lipidomics can be used to identify biomarkers associated with cancer and to better understand anticancer therapies.
  相似文献   

2.
Metabolomics, a high-throughput global metabolite analysis, is a burgeoning field, and in recent times has shown substantial evidence to support its emerging role in cancer diagnosis, cancer recurrence, and prognosis, as well as its impact in identifying novel cancer biomarkers and developing cancer therapeutics. Newly evolving advances in disease diagnostics and therapy will further facilitate future growth in the field of metabolomics, especially in cancer, where there is a dire need for sensitive and more affordable diagnostic tools and an urgency to develop effective therapies and identify reliable biomarkers to predict accurately the response to a therapy. Here, we review the application of metabolomics in cancer and mitochondrial studies and its role in enabling the understanding of altered metabolism and malignant transformation during cancer growth and metastasis. The recent developments in the area of metabolic flux analysis may help to close the gap between clinical metabolomics research and the development of cancer metabolome. In the era of personalized medicine with more and more patient specific targeted therapies being used, we need reliable, dynamic, faster, and yet sensitive biomarkers both to track the disease and to develop and evolve therapies during the course of treatment. Recent advances in metabolomics along with the novel strategies to analyze, understand, and construct the metabolic pathways opens this window of opportunity in a very cost-effective manner.  相似文献   

3.
《Biomarkers》2013,18(1):5-16
Abstract

Chronic obstructive pulmonary disease (COPD), asthma and cystic fibrosis (CF) are characterized by airway obstruction and an inflammatory process. Reaching early diagnosis and discrimination of subtypes of these respiratory diseases are quite a challenging task than other chronic illnesses. Metabolomics is the study of metabolic pathways and the measurement of unique biochemical molecules generated in a living system. In the last decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and offers promises as a clinical tool. In this article, we review the current state of the metabolomics of COPD, asthma and CF with a focus on the different methods and instrumentation being used for the discovery of biomarkers in research and translation into clinic as diagnostic aids for the choice of patient-specific therapies.  相似文献   

4.
Background and aimsBreast cancer is the most common cancer in women and the second leading cause of cancer-related deaths in this population. Breast cancer related deaths have declined due to screening and adjuvant therapies, yet a driving clinical need exists to better understand the cause of the deadliest aspect of breast cancer, metastatic disease. Breast cancer metastasizes to several distant organs, the liver being the third most common site. To date, very few murine models of hepatic breast cancer exist.MethodsIn this study, a novel murine model of liver breast cancer using the MDA-MB-231 cell line is introduced as an experimental (preclinical) model.ResultsHistological typing revealed consistent hepatic breast cancer tumor foci. Common features of the murine model were vascular invasion, lung metastasis and peritoneal seeding.ConclusionsThe novel murine model of hepatic breast cancer established in this study provides a tool to be used to investigate mechanisms of hepatic metastasis and to test potential therapeutic interventions.  相似文献   

5.
Metabolomics is a powerful new technology that allows for the assessment of global metabolic profiles in easily accessible biofluids and biomarker discovery in order to distinguish between diseased and nondiseased status information. Deciphering the molecular networks that distinguish diseases may lead to the identification of critical biomarkers for disease aggressiveness. However, current diagnostic methods cannot predict typical Jaundice syndrome (JS) in patients with liver disease and little is known about the global metabolomic alterations that characterize JS progression. Emerging metabolomics provides a powerful platform for discovering novel biomarkers and biochemical pathways to improve diagnostic, prognostication, and therapy. Therefore, the aim of this study is to find the potential biomarkers from JS disease by using a nontarget metabolomics method, and test their usefulness in human JS diagnosis. Multivariate data analysis methods were utilized to identify the potential biomarkers. Interestingly, 44 marker metabolites contributing to the complete separation of JS from matched healthy controls were identified. Metabolic pathways (Impact-value≥0.10) including alanine, aspartate, and glutamate metabolism and synthesis and degradation of ketone bodies were found to be disturbed in JS patients. This study demonstrates the possibilities of metabolomics as a diagnostic tool in diseases and provides new insight into pathophysiologic mechanisms.  相似文献   

6.
BackgroundMetabolomics is a well-established rapidly developing research field involving quantitative and qualitative metabolite assessment within biological systems. Recent improvements in metabolomics technologies reveal the unequivocal value of metabolomics tools in natural products discovery, gene-function analysis, systems biology and diagnostic platforms.Scope of reviewWe review here some of the prominent metabolomics methodologies employed in data acquisition and analysis of natural products and disease-related biomarkers.Major conclusionsThis review demonstrates that metabolomics represents a highly adaptable technology with diverse applications ranging from environmental toxicology to disease diagnosis. Metabolomic analysis is shown to provide a unique snapshot of the functional genetic status of an organism by examining its biochemical profile, with relevance toward resolving phylogenetic associations involving horizontal gene transfer and distinguishing subgroups of genera possessing high genetic homology, as well as an increasing role in both elucidating biosynthetic transformations of natural products and detecting preclinical biomarkers of numerous disease states.General significanceThis review expands the interest in multiplatform combinatorial metabolomic analysis. The applications reviewed range from phylogenetic assignment, biosynthetic transformations of natural products, and the detection of preclinical biomarkers.  相似文献   

7.
Zhang A  Sun H  Wang P  Han Y  Wang X 《Journal of Proteomics》2012,75(4):1079-1088
Metabolomics, one of the ‘omic’ sciences in systems biology, is the global assessment and validation of endogenous small-molecule metabolites within a biologic system. Analysis of these key metabolites in body fluids has become an important role to monitor the state of biological organisms and is a widely used diagnostic tool for disease. A majority of these metabolites are being applied to metabolic profiling of the biological samples, for example, plasma and whole blood, serum, urine, saliva, cerebrospinal fluid, synovial fluid, semen, and tissue homogenates. However, the recognition of the need for a holistic approach to metabolism led to the application of metabolomics to biological fluids for disease diagnostics. A recent surge in metabolomic applications which are probably more accurate than routine clinical practice, dedicated to characterizing the biological fluids. While developments in the analysis of biofluid samples encompassing an important impediment, it must be emphasized that these biofluids are complementary. Metabolomics provides potential advantages that classical diagnostic approaches do not, based on following discovery of a suite of clinically relevant biomarkers that are simultaneously affected by the disease. Emerging as a promising biofocus, metabolomics will drive biofluid analyses and offer great benefits for public health in the long-term.  相似文献   

8.
ABSTRACT

Introduction: Metabolomics opens up new avenues for biomarker discovery in different branches of medicine, including perinatology. Chromosomal aberration, preterm delivery (PTD), congenital heart defects, spina bifida, chorioamnionitis, and low birth weight are the main perinatal pathologies. Investigations using untargeted metabolomics have found the candidate metabolites for diagnostic biomarkers.

Areas covered: This review describes areas of prenatal diagnosis in which untargeted metabolomics has been used. Data on the disease, type of sample, techniques used, number of samples used in the study, and metabolites obtained including the sign of their regulation are summarized.

Expert commentary: Untargeted metabolomics is a powerful tool which can shed a new light on prenatal diagnostics. It helps to discover affected metabolic pathways what may help to reveal disease pathogenesis and propose potential biomarkers. Among others, glycerol and 2- and 3-hydroxybutyrate were proposed as markers of chromosomal aberration. Serum metabolic signature of PTD was characterized by increased lipids and decreased levels of hypoxanthine, tryptophane, and pyroglutamic acid. Lower level lipids and vitamin D3 metabolites together with increased bilirubin level in maternal serum were associated with macrosomia. However, to give a real value to those assays and allow their clinical application multicenter, large cohort validation studies are necessary.  相似文献   

9.
10.
Circadian clocks play a significant role in the correct timing of physiological metabolism, and clock disruption might lead to pathological changes of metabolism. One interesting method to assess the current state of metabolism is metabolomics. Metabolomics tries to capture the entirety of small molecules, i.e. the building blocks of metabolism, in a given matrix, such as blood, saliva or urine. Using mass spectrometric approaches we and others have shown that a significant portion of the human metabolome in saliva and blood exhibits circadian modulation; independent of food intake or sleep/wake rhythms. Recent advances in mass spectrometry techniques have introduced completely non-invasive breathprinting; a method to instantaneously assess small metabolites in human breath. In this proof-of-principle study, we extend these findings about the impact of circadian clocks on metabolomics to exhaled breath. As previously established, our method allows for real-time analysis of a rich matrix during frequent non-invasive sampling. We sampled the breath of three healthy, non-smoking human volunteers in hourly intervals for 24 hours during total sleep deprivation, and found 111 features in the breath of all individuals, 36–49% of which showed significant circadian variation in at least one individual. Our data suggest that real-time mass spectrometric "breathprinting" has high potential to become a useful tool to understand circadian metabolism, and develop new biomarkers to easily and in real-time assess circadian clock phase and function in experimental and clinical settings.  相似文献   

11.
Introduction: Metabolomics is a chemical process, involving the characterization of metabolites and cellular metabolism. Recent studies indicate that numerous metabolic pathways are altered in bladder cancer (BLCA), providing potential targets for improved detection and possible therapeutic intervention. We review recent advances in metabolomics related to BLCA and identify various metabolites that may serve as potential biomarkers for BLCA.

Areas covered: In this review, we describe the latest advances in defining the BLCA metabolome and discuss the possible clinical utility of metabolic alterations in BLCA tissues, serum, and urine. In addition, we focus on the metabolic alterations associated with tobacco smoke and racial disparity in BLCA.

Expert commentary: Metabolomics is a powerful tool which can shed new light on BLCA development and behavior. Key metabolites may serve as possible markers of BLCA. However, prospective validation will be needed to incorporate these markers into clinical care.  相似文献   


12.
ObjectiveThrough metabolomics method, the objective of the paper is to differentially screen serum metabolites of GDM patients and healthy pregnant women, to explore potential biomarkers of GDM and analyze related pathways, and to explain the potential mechanism and biological significance of GDM.MethodsThe serum samples from 30 GDM patients and 30 healthy pregnant women were selected to conduct non-targeted metabolomics study by liquid chromatography-mass spectrometry. The differential metabolites between the two groups were searched and the metabolic pathway was analyzed by KEGG database.ResultsMultivariate statistical analysis found that serum metabolism in GDM patients was different significantly from healthy pregnant women, 36 differential metabolites and corresponding metabolic pathways were identified in serum, which involved several metabolic ways like, fatty acid metabolism, butyric acid metabolism, bile secretion, and amino acid metabolism.ConclusionThe discovery of these biomarkers provided a new theoretical basis and experimental basis for further study of the early diagnosis and pathogenesis of GDM. At the same time, LC-MS-based serum metabolomics methods also showed great application values in disease diagnosis and mechanism research.  相似文献   

13.
BackgroundCroton crassifolius Geisel (CCG, also known as Ji-Gu-Xiang in Traditional Chinese Medicine), is traditionally prescribed for the therapy of rheumatic arthritis and gastrointestinal ulcer. However, the effect of CCG on ulcerative colitis (UC) has not been investigated.PurposeTo explore the therapeutic potential and underlying mechanism of CCG extract against UC by colonic and serum metabolomics.MethodsIn order to standardize the CCG extract, UPLC-QTOF-MS was used for quantitative and qualitative analysis of the representative terpenoids. C57BL/6J mice were divided into control, Dextran Sulfate Sodium (DSS), mesalazine (100 mg•kg−1), CCG extract (150 and 600 mg•kg−1) groups. The mice were provided 3% DSS dissolved in distilled water ad libitum for 7 days except control group. Weight change, disease activity index (DAI), colon lengths and expression of inflammatory mediators iNOS and COX-2 in colonic tissue were determined. Serum and colon metabolomics using UPLC–QTOF-MS technology coupled with multivariate data analysis were performed to reveal the underlying mechanism.ResultsThirty-five terpenoids in CCG were identified by fingerprint, in which ten representative terpenes were quantified. CCG could relieve the weight loss, the degree of bloody stool and ulcer of colon, as well as significantly lowering the expression level of iNOS and COX-2. Metabolomics analysis showed that 25 biomarkers were obviously interfered by CCG treatment and 16 of them were highly correlated with the efficacy of CCG. The analysis of metabolic pathway showed that the anti-UC effect of CCG was associated with the regulation on linoleic acid metabolism, sphingolipid metabolism, α-linolenic acid metabolism, and glycerophospholipids metabolism.ConclusionsThe oral administration of CCG significantly alleviated DSS-induced UC symptoms by reducing inflammation and rectifying the metabolic disorder. CCG may provide a new strategy for the management of UC.  相似文献   

14.
Lodi A  Ronen SM 《PloS one》2011,6(10):e26155
Targeted therapeutic approaches are increasingly being implemented in the clinic, but early detection of response frequently presents a challenge as many new therapies lead to inhibition of tumor growth rather than tumor shrinkage. Development of novel non-invasive methods to monitor response to treatment is therefore needed. Magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging are non-invasive imaging methods that can be employed to monitor metabolism, and previous studies indicate that these methods can be useful for monitoring the metabolic consequences of treatment that are associated with early drug target modulation. However, single-metabolite biomarkers are often not specific to a particular therapy. Here we used an unbiased 1H MRS-based metabolomics approach to investigate the overall metabolic consequences of treatment with the phosphoinositide 3-kinase inhibitor LY294002 and the heat shock protein 90 inhibitor 17AAG in prostate and breast cancer cell lines. LY294002 treatment resulted in decreased intracellular lactate, alanine fumarate, phosphocholine and glutathione. Following 17AAG treatment, decreased intracellular lactate, alanine, fumarate and glutamine were also observed but phosphocholine accumulated in every case. Furthermore, citrate, which is typically observed in normal prostate tissue but not in tumors, increased following 17AAG treatment in prostate cells. This approach is likely to provide further information about the complex interactions between signaling and metabolic pathways. It also highlights the potential of MRS-based metabolomics to identify metabolic signatures that can specifically inform on molecular drug action.  相似文献   

15.
Introduction: Exosomes are small extracellular vesicles of endosomal origin that are produced and released by several type of cells. These vesicles contain different macromolecules: proteins, mRNA, miRNA, mitochondrial DNA, and lipids. Exosomes play an important role in cell-to-cell communication, also promoting cancer progression.

Areas covered: Various proteomic approaches have been applied to study exosomes isolated from different human biofluids in search of possible cancer biomarkers. The results of these studies are reported, and pros and cons of each employed technique are described. Gel-free and gel-based mass spectrometry systems are discussed, giving particular emphasis on the innovative multidimensional protein identification technology (MudPIT).

Expert commentary: Proteomic studies on exosomes as candidate cancer biomarkers from urine and other body fluids in cancer have shown the potential of MS-based techniques. In particular, MudPIT is a promising tool to be applied in clinical proteomics of cancer.  相似文献   


16.
17.

Background

Biomarker identification is becoming increasingly important for the development of personalized or stratified therapies. Metabolomics yields biomarkers indicative of phenotype that can be used to characterize transitions between health and disease, disease progression and therapeutic responses. The desire to reproducibly detect ever greater numbers of metabolites at ever diminishing levels has naturally nurtured advances in best practice for sample procurement, storage and analysis. Reciprocally, since many of the available extensive clinical archives were established prior to the metabolomics era and were not processed in such an ‘ideal’ fashion, considerable scepticism has arisen as to their value for metabolomic analysis. Here we have challenged that paradigm.

Methods

We performed proton nuclear magnetic resonance spectroscopy-based metabolomics on blood serum and urine samples from 32 patients representative of a total cohort of 1970 multiple myeloma patients entered into the United Kingdom Medical Research Council Myeloma IX trial.

Findings

Using serial paired blood and urine samples we detected metabolite profiles that associated with diagnosis, post-treatment remission and disease progression. These studies identified carnitine and acetylcarnitine as novel potential biomarkers of active disease both at diagnosis and relapse and as a mediator of disease associated pathologies.

Conclusions

These findings show that samples conventionally processed and archived can provide useful metabolomic information that has important implications for understanding the biology of myeloma, discovering new therapies and identifying biomarkers potentially useful in deciding the choice and application of therapy.  相似文献   

18.
Obesity and diabetes arise from an intricate interplay between both genetic and environmental factors. It is well recognized that obesity plays an important role in the development of insulin resistance and diabetes. Yet, the exact mechanism of the connection between obesity and diabetes is still not completely understood. Metabolomics is an analytical approach that aims to detect and quantify small metabolites. Recently, there has been an increased interest in the application of metabolomics to the identification of disease biomarkers, with a number of well-known biomarkers identified. Metabolomics is a potent approach to unravel the intricate relationships between metabolism, obesity and progression to diabetes and, at the same time, has potential as a clinical tool for risk evaluation and monitoring of disease. Moreover, metabolomics applications have revealed alterations in the levels of metabolites related to obesity-associated diabetes. This review focuses on the part that metabolomics has played in elucidating the roles of metabolites in the regulation of systemic metabolism relevant to obesity and diabetes. It also explains the possible metabolic relation and association between the two diseases. The metabolites with altered profiles in individual disorders and those that are specifically and similarly altered in both disorders are classified, categorized and summarized.  相似文献   

19.
The prevalence of type 2 diabetes continuously increases globally. A personalized strategy applied in the pre-diabetic stage is vital for diabetic prevention and management. The personalized diagnosis of Chinese Medicine (CM) may help to stratify the diabetics. Metabolomics is regarded as a potential platform to provide biomarkers for disease-subtypes. We designed an explorative study of 50 pre-diabetic males, combining GC-MS urine metabolomics with CM diagnosis in order to identify diagnostic biomarkers for pre-diabetic subtypes. Three CM physicians reached 85% diagnosis consistency resulting in the classification of 3 pre-diabetic groups. The urine metabolic patterns of groups 1 'Qi-Yin deficiency' and 2 'Qi-Yin deficiency with dampness' (subtype A) and group 3 'Qi-Yin deficiency with stagnation' (subtype B) were clearly discriminated. The majority of metabolites (51%), mainly sugars and amino acids, showed higher urine levels in subtype B compared with subtype A. This indicated more disturbances of carbohydrate metabolism and renal function in subtype B compared with subtype A. No differences were found for hematological and biochemical parameters except for levels of glucose and γ-glutamyltransferase that were significantly higher in subtype B compared with subtype A. This study proved that combining metabolomics with CM diagnosis can reveal metabolic signatures for pre-diabetic subtypes. The identified urinary metabolites may be of special clinical relevance for non-invasive screening for subtypes of pre-diabetes, which could lead to an improvement in personalized interventions for diabetics.  相似文献   

20.
A key interest in clinical diagnosis and pharmaceutical industry is to have a repertoire of noninvasive biomarkers to??individually or in combination??be able to infer or predict the degree of liver injury caused by pathological conditions or drugs. Metabolomics??a comprehensive study of global metabolites??has become a highly sensitive and powerful tool for biomarker discovery thanks to recent technological advances. An ultra-performance liquid chromatography/time-of-flight tandem mass spectrometry (UPLC/TOF MS/MS)-based metabolomics approach was employed to investigate sera from galactosamine-treated rats to find potential biomarkers for acute liver injury. Hepatic damage was quantified by determining serum transaminase activity and in situ liver histological lesions. Principal component analysis in combination with coefficient of correlation analysis was used for biomarker selection and identification. According to the data, serum levels of several metabolites including glucose, amino acids, and membrane lipids were significantly modified, some of them showing a high correlation with the degree of liver damage determined by histological examination of the livers. In conclusion, this study supports that UPLC-MS/MS based serum metabolomics in experimental animal models could be a powerful approach to search for biomarkers for drug- or disease-induced liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号