首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
Red Queen models of host-parasite coevolution are based on genotype by genotype host-parasite interactions. Such interactions require a genotype specific host defence and, simultaneously, a genotype specific parasite infectivity. Specificity is defined here as defence or infection ability successful against only a subset of genotypes of the same species. A specific defence depends on detectable genotypic variation on the parasite side and on a host defence mechanism that differentiates between parasite genotypes. In vertebrates, the MHC-based adaptive immune system can provide such a defence mechanism, but it needs at least several days to get fully mounted. In contrast, the innate immune system is immediately ready. The trematode parasite species used here reaches the immunologically protected eye lens of its three-spined stickleback (Gasterosteus aculeatus) host within 24 h. Thus, it disappears too fast for the fully mounted MHC-based adaptive immune system. In a complete cross-infection experiment using five fish-families and five parasite-clones, we found for the first time fish-family by parasite-clone interactions in vertebrates, although the parasite was only exposed to the immune system for maximally one day. Such interactions require a fast genotype specific defence, suggesting the importance of other defence mechanisms than the too slow, fully mounted adaptive immune system in vertebrates.  相似文献   

2.
For many decades, invertebrate immunity was believed to be non-adaptive, poorly specific, relying exclusively on sometimes multiple but germ-line encoded innate receptors and effectors. But recent studies performed in different invertebrate species have shaken this paradigm by providing evidence for various types of somatic adaptations at the level of putative immune receptors leading to an enlarged repertoire of recognition molecules. Fibrinogen Related Proteins (FREPs) from the mollusc Biomphalaria glabrata are an example of these putative immune receptors. They are known to be involved in reactions against trematode parasites. Following not yet well understood somatic mechanisms, the FREP repertoire varies considerably from one snail to another, showing a trend towards an individualization of the putative immune repertoire almost comparable to that described from vertebrate adaptive immune system. Nevertheless, their antigenic targets remain unknown. In this study, we show that a specific set of these highly variable FREPs from B. glabrata forms complexes with similarly highly polymorphic and individually variable mucin molecules from its specific trematode parasite S. mansoni (Schistosoma mansoni Polymorphic Mucins: SmPoMucs). This is the first evidence of the interaction between diversified immune receptors and antigenic variant in an invertebrate host/pathogen model. The same order of magnitude in the diversity of the parasite epitopes and the one of the FREP suggests co-evolutionary dynamics between host and parasite regarding this set of determinants that could explain population features like the compatibility polymorphism observed in B. glabrata/S. mansoni interaction. In addition, we identified a third partner associated with the FREPs/SmPoMucs in the immune complex: a Thioester containing Protein (TEP) belonging to a molecular category that plays a role in phagocytosis or encapsulation following recognition. The presence of this last partner in this immune complex argues in favor of the involvement of the formed complex in parasite recognition and elimination from the host.  相似文献   

3.
The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes.  相似文献   

4.
Recent ecological studies in invertebrates show that the outcome of an infection is dependent on the specific pairing of host and parasite. Such specificity contrasts the long-held view that invertebrate innate immunity depends on a broad-spectrum recognition system. An important question is whether this specificity is due to the immune response rather than some other interplay between host and parasite genotypes. By measuring the expression of putative bumblebee homologues of antimicrobial peptides in response to infection by their gut trypanosome Crithidia bombi, we demonstrate that expression differences are associated with the specific interactions.  相似文献   

5.
6.
7.
Toll-like receptors are key participants in innate immune responses   总被引:5,自引:0,他引:5  
During an infection, one of the principal challenges for the host is to detect the pathogen and activate a rapid defensive response. The Toll-like family of receptors (TLRs), among other pattern recognition receptors (PRR), performs this detection process in vertebrate and invertebrate organisms. These type I transmembrane receptors identify microbial conserved structures or pathogen-associated molecular patterns (PAMPs). Recognition of microbial components by TLRs initiates signaling transduction pathways that induce gene expression. These gene products regulate innate immune responses and further develop an antigen-specific acquired immunity. TLR signaling pathways are regulated by intracellular adaptor molecules, such as MyD88, TIRAP/Mal, between others that provide specificity of individual TLR- mediated signaling pathways. TLR-mediated activation of innate immunity is involved not only in host defense against pathogens but also in immune disorders. The involvement of TLR-mediated pathways in auto-immune and inflammatory diseases is described in this review article.  相似文献   

8.
9.
Carbohydrates on parasite surfaces have been shown to play an important role in host–parasite coevolution, mediating host non-self recognition and parasite camouflage. Parasites that switch hosts can change their surface molecules to remain undetected by the diverse immune systems of their different hosts. However, the question of individual variation in surface sugar composition and its relation to infectivity, virulence, immune evasion and growth of a parasite in its different hosts is as yet largely unexplored. We studied such fitness consequences of variation in surface sugars in a sympatric host–parasite system consisting of the cestode Schistocephalus solidus and its intermediate hosts, a copepod and the three-spined stickleback. Using lectins to analyse the sugar composition, we show that the tapeworm changes its surface according to the invertebrate or vertebrate host. Importantly, sugar composition seems to be genetically variable, as shown by differences among tapeworm sibships. These differences are related to variation in parasite fitness in its second intermediate host, i.e. infectivity and growth. Surface sugar composition may thus be a proximate correlate of the evolutionarily relevant variability in infectivity and virulence of parasites in different hosts.  相似文献   

10.
The cestode Schistocephalus solidus is a frequent parasite of three-spined sticklebacks and has a large impact on its host's fitness. Selection pressure should therefore be high on stickleback defence mechanisms, like an efficient immune system, and also on parasite strategies to overcome these. Even though there are indications for manipulation of the immune system of its specific second intermediate host by the cestode, nothing is yet known about the chronology of specific interactions of S. solidus with the stickleback immune system. We here expected sticklebacks to first mount an innate immune response directly post-exposure to the parasite to clear the infection at an early stage and after an initial lag phase to upregulate adaptive immunity. Most interestingly, we did not find any upregulation of the specific lymphocyte-mediated immune response. Also, the pattern of activation of the innate immune system did not match our expectations: the proliferation of monocytes followed fluctuating kinetics suggesting that the parasite repeatedly installs a new surface coat not immunogenic to the host. Furthermore, the respiratory burst activity, which has the potential to clear an early S. solidus infection, was upregulated very late during infection, when the parasite was too big to be cleared but ready for transmission to its final host. We here suggest that the late activation of the innate immune system interferes with the neuroendocrine system, which mediates reduced predation avoidance behaviour and so facilitates the transmission to the final host.  相似文献   

11.
Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host–parasite interactions.  相似文献   

12.
Genes of the major histocompatibility complex (MHC) have been studied for several decades because of their pronounced allelic polymorphism. Structural allelic polymorphism is, however, not the only source of variability subjected to natural selection. Genetic variation may also exist in gene expression patterns. Here, we show that in a natural population of three-spined sticklebacks (Gasterosteus aculeatus) the expression of MHC class IIB genes was positively correlated with parasite load, which indicates increased immune activation of the MHC when infections are frequent. To experimentally study MHC expression, we used laboratory-bred sticklebacks that were exposed to three naturally occurring species of parasite. We found strong differences in MHC class IIB expression patterns among fish families, which were consistent over two generations, thus demonstrating a genetic component. The average number of MHC class IIB sequence variants within families was negatively correlated to the MHC expression level suggesting compensatory up-regulation in fish with a low (i.e. suboptimal) MHC sequence variability. The observed differences among families and the negative correlation with individual sequence diversity imply that MHC expression is evolutionary relevant for the onset and control of the immune response in natural populations.  相似文献   

13.
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite ‘susceptibility alleles’ were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.  相似文献   

14.
Parasites often manipulate host immunity for their own benefit, either by exacerbating or suppressing the immune response and this may directly affect the expression of parasite virulence. However, genetic variation in immunodepression, which is a prerequisite to its evolution, and the relationship between immunodepression and virulence, have rarely been studied. Here, we investigated the variation among sibships of the acanthocephalan parasite, Pomphorhynchus laevis, in infecting and in immunodepressing its amphipod host, Gammarus pulex. We also assessed the covariation between infectivity, parasite-induced immune depression and host mortality (parasite virulence). We found that infectivity, the intensity of immunodepression and virulence were variable among parasite sibships. Infectivity and the level of immunodepression were not correlated across parasite sibships. Whereas infectivity was unrelated to host mortality, we found that gammarids that were exposed to the parasite sibships that immunodepressed their hosts the most survived better. This positive covariation between host survival and immunodepression suggests that gammarids exposed to the less immunodepressive parasites could suffer from damage imposed by a higher activity of the phenoloxidase.  相似文献   

15.
Staphylococcus aureus has emerged as a significant pathogen causing severe invasive disease in otherwise healthy people. Despite considerable advances in understanding the epidemiology, resistance mechanisms, and virulence factors produced by the bacteria, there is limited knowledge of the in vivo host immune response to acute, invasive S. aureus infections. Herein, we report that peripheral blood mononuclear cells from patients with severe S. aureus infections demonstrate a distinctive and robust gene expression profile which is validated in a distinct group of patients and on a different microarray platform. Application of a systems-wide modular analysis framework reveals significant over-expression of innate immunity genes and under-expression of genes related to adaptive immunity. Simultaneous flow cytometry analyses demonstrated marked alterations in immune cell numbers, with decreased central memory CD4 and CD8 T cells and increased numbers of monocytes. CD14+ monocyte numbers significantly correlated with the gene expression levels of genes related to the innate immune response. These results demonstrate the value of applying a systems biology approach that reveals the significant alterations in the components of circulating blood lymphocytes and monocytes in invasive S. aureus infections.  相似文献   

16.
Specific immune priming enables an induced immune response upon repeated pathogen encounter. As a functional analogue to vertebrate immune memory, such adaptive plasticity has been described, for instance, in insects and crustaceans. However, towards the base of the metazoan tree our knowledge about the existence of specific immune priming becomes scattered. Here, we exposed the invasive ctenophore Mnemiopsis leidyi repeatedly to two different bacterial epitopes (Gram-positive or -negative) and measured gene expression. Ctenophores experienced either the same bacterial epitope twice (homologous treatments) or different bacterial epitopes (heterologous treatments). Our results demonstrate that immune gene expression depends on earlier bacterial exposure. We detected significantly different expression upon heterologous compared with homologous bacterial treatment at three immune activator and effector genes. This is the first experimental evidence for specific immune priming in Ctenophora and generally in non-bilaterian animals, hereby adding to our growing notion of plasticity in innate immune systems across all animal phyla.  相似文献   

17.
Vertebrate hosts often defend themselves against several co-infecting parasite genotypes simultaneously. This has important implications for the ecological dynamics and the evolution of host defence systems and parasite strategies. For example, it can drive the specificity of the adaptive immune system towards high genotype-specificity or cross-reactivity against several parasite genotypes depending on the sequence and probability of re-infections. However, to date, there is very little evidence on these interactions outside mammalian disease literature. In this study we asked whether genotype-specific or cross-reactive responses dominate in the adaptive immune system of a fish host towards a common macroparasite. In other words, we investigated if the infection success of a parasite genotype is influenced by the immunization genotype. We reciprocally immunized and re-exposed rainbow trout (Oncorhynchus mykiss) to a range of genotypes of the trematode eye fluke Diplostomum pseudospathaceum, and measured infection success of the parasite. We found that the infection success of the parasite genotypes in the re-exposure did not depend on the immunization genotype. While immunization reduced average infection success by 31%, the reduction was not larger against the initial immunization genotype. Our results suggest significant cross-reactivity, which may be advantageous for the host in genetically diverse re-exposures and have significant evolutionary implications for parasite strategies. Overall, our study is among the first to demonstrate cross-reactivity of adaptive immunity against genetically diverse macroparasites with complex life cycles.  相似文献   

18.
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity   总被引:11,自引:2,他引:9  
Alpha/beta interferon immune defenses are essential for resistance to viruses and can be triggered through the actions of the cytoplasmic helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Signaling by each is initiated by the recognition of viral products such as RNA and occurs through downstream interaction with the IPS-1 adaptor protein. We directly compared the innate immune signaling requirements of representative viruses of the Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Reoviridae for RIG-I, MDA5, and interferon promoter-stimulating factor 1 (IPS-1). In cultured fibroblasts, IPS-1 was essential for innate immune signaling of downstream interferon regulatory factor 3 activation and interferon-stimulated gene expression, but the requirements for RIG-I and MDA5 were variable. Each was individually dispensable for signaling triggered by reovirus and dengue virus, whereas RIG-I was essential for signaling by influenza A virus, influenza B virus, and human respiratory syncytial virus. Functional genomics analyses identified cellular genes triggered during influenza A virus infection whose expression was strictly dependent on RIG-I and which are involved in processes of innate or adaptive immunity, apoptosis, cytokine signaling, and inflammation associated with the host response to contemporary and pandemic strains of influenza virus. These results define IPS-1-dependent signaling as an essential feature of host immunity to RNA virus infection. Our observations further demonstrate differential and redundant roles for RIG-I and MDA5 in pathogen recognition and innate immune signaling that may reflect unique and shared biologic properties of RNA viruses whose differential triggering and control of gene expression may impact pathogenesis and infection.  相似文献   

19.
Toxoplasma gondii is an intracellular parasite that does not differentiate among hosts and is capable of infecting nearly all warm-blooded vertebrates. Although about 30% of the human population is thought to be infected with T. gondii, it is one of the most common opportunistic infections that does not cause serious symptoms when the immune system is functioning normally. In this review, we focus on anti-T. gondii infection by host innate immunity, acquired immunity, and type II interferon-mediated cell-autonomous immunity. T. gondii has three types of secretory structures, rhoptries, dense granules, and micronemes, among which molecules released from T. gondii via rhoptries and dense granules act to inhibit host responses to eliminate. T. gondii. The molecules released by T. gondii through rhoptries and dense granules not only act to suppress host immunity, but also to control gene expression in infected cells, thereby favouring the spread of infection. T. gondii has survived to this day, and may continue to evolve by skilfully applying its own factors to the infected host.  相似文献   

20.
Bourke CD  Maizels RM  Mutapi F 《Parasitology》2011,138(2):139-159
Similarities in the immunobiology of different parasitic worm infections indicate that co-evolution of humans and helminths has shaped a common anti-helminth immune response. However, recent in vitro and immuno-epidemiological studies highlight fundamental differences and plasticity within host-helminth interactions. The 'trade-off' between immunity and immunopathology inherent in host immune responses occurs on a background of genetic polymorphism, variable exposure patterns and infection history. For the parasite, variation in life-cycle and antigen expression can influence the effector responses directed against them. This is particularly apparent when comparing gastrointestinal and tissue-dwelling helminths. Furthermore, insights into the impact of anti-helminthic treatment and co-infection on acquired immunity suggest that immune heterogeneity arises not from hosts and parasites in isolation, but also from the environment in which immune responses develop. Large-scale differences observed in the epidemiology of human helminthiases are a product of complex host-parasite-environment interactions which, given potential for exposure to parasite antigens in utero, can arise even before a parasite interacts with its human host. This review summarizes key differences identified in human acquired immune responses to nematode and trematode infections of public health importance and explores the factors contributing to these variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号