首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The dinoflagellate Alexandrium catenella causes recurrent harmful algal blooms in southern Chile. This species belongs to the “Alexandrium tamarense/catenella/fundyense species complex” (the “tamarensis complex”), defined by morphological attributes. Ribosomal sequences serve to differentiate five evolutionary lineages (clades) in this species complex. These distinctions reflect the geographic distribution and toxicity of the populations rather than their morphological designations. Despite the social and economic impact that harmful blooms produce in Chile, few strains of A. catenella have been isolated. Moreover, physiological and/or genetic studies of the group are scarce. The aim of this work was to examine possible physiological and genetic variability among populations of A. catenella having different geographical origins but isolated from the same toxic event. Seven strains of A. catenella were isolated and established from phytoplankton samples collected in the Aysén and Los Lagos regions of southern Chile during a recent outbreak (February–March 2009). Growth, toxicity, and ITS sequences were compared among these strains. All the strains included in this study were grouped with strains belonging to the previously described “North America” clade. The genetic diversity detected among Chilean strains was 3%, a much higher value than those reported for comparisons among strains from other parts of the world. In addition, a remarkable variability of growth parameters and toxicity was detected among strains. Strain PFB45 showed the highest PSP toxin content, whereas strain PFB41 had the lowest value of this parameter but had the highest maximum cell density. In strains PFB38, PFB42, and PFB37, more than 98% of the total PSP toxin content occurred in the form of gonyautoxins (primarily GTX-4,1 and GTX-3,2). In strains PFB39, PFB36, and PFB45, neoSTX, and STX toxins were detected. These results demonstrated remarkable variability at the genetic and physiological level among strains of A. catenella isolated from the same outbreak. No correlations were found between the phenotypic traits (growth and toxicity) and the genetic affiliation of the strains studied.  相似文献   

2.
A fragment of the large-subunit ribosomal DNA gene (LSU rDNA) from Chilean Alexandrium catenella clones isolated from two different geographic regions (XI and XII) was amplified by PCR and the products cloned and sequenced. Based on the analysis of the PCR products it is possible to distinguish two strains of A. catenella, denominated strain type 1 (a single PCR product band) and strain type 2 (two PCR product bands). These two strains proliferate in both, the XI and XII regions. Only in the XI region, there is evidence that they bloom simultaneously. The LSU rDNA sequence analysis indicate that the Chilean A. catenella isolated clones are more related to the North American ribotype-Western subribotype.  相似文献   

3.
The toxigenic genus Alexandrium includes ∼30 species, but information about its biogeography at a regional scale is limited. In this study, we explored the diversity of Alexandrium along the coast of China by incubating resting cysts collected from 7 sites. A total of 231 strains of Alexandrium belonging to 7 morphospecies were found. Among them, Alexandrium andersonii, Alexandrium fraterculum, Alexandrium leei, Alexandrium pseudogonyaulax, and Alexandrium tamutum were recorded from the China Sea for the first time. Partial large subunit (LSU) and/or internal transcribed spacer region (ITS1, ITS2, and 5.8S rDNA) sequences revealed two ribotypes of Alexandrium andersonii, Alexandrium leei, and Alexandrium tamarense: Atama complex Group I and IV. Atama complex Group I was exclusively distributed in the Yellow Sea and the Bohai Sea, whereas Group IV was restricted to the East China Sea and South China Sea. Atama complex Group I produced mainly N-sulfocarbamoyl toxins (C1/C2, 61–79% of total toxins) and gonyautoxins (GTX1/4, 17–37%). Alexandrium ostenfeldii strain ASBH01 produced NEO and STX exclusively (65% and 35%, respectively). Our results support the premise that Atama complex Group I is endemic to the Asian Pacific and includes cold water species, whereas Atama complex Group IV tends to inhabit warmer waters.  相似文献   

4.
The 5.8S ribosomal RNA (rDNA) gene and flanking internal transcribed spacers (ITS1 and ITS2)from 9 isolates of Alexandrium catenella (Whedon and Kofoid) Taylor, 11 isolates of A. tamarense (Lebour) Taylor, and single isolates of A. affine (Inoue et Fukuyo) Balech, A. insuetum Balech, and A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov. from various locations in Japan were amplified using the polymerase chain reaction (PCR) and subjected to restriction fragment-length polymorphism (RFLP) analysis. PCR products from all strains were approximately 610 bp, inclusive of a limited region of the 18S and 28S rRNA coding regions. RFLP analysis using four restriction enzymes revealed six distinct classes of rDNA (“ITS types”). Restriction patterns of A. catenella were uniform at the intra-specific level and clearly distinguishable from those of A. tamarense. The patterns associated with A. tamarense (“tamarense group”) were also uniform except for one strain, WKS-1. Some restriction fragments from WKS-1 were in common with those of A. catenella or A. tamarense, whereas some were distinct from all Alexandrium species tested. Alexandrium affine, A. insuetum, and A. pseudogonyaulax carry unique ITS types. The ITSs of the “tamarense group” exhibit sequence heterogeneity. In contrast, the ITSs of all other isolates (including WKS-1) appear homogeneous. RFLP analysis of the 5.8S rDNA and flanking ITSs regions from Alexandrium species reveals useful taxonomic and genetic markers at the species and/or population levels.  相似文献   

5.
The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella, Alexandrium affine, Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.  相似文献   

6.
The Alexandrium tamarense species complex is a closely related cosmopolitan toxigenic group of morphology-based species, including A. tamarense, A. catenella and A. fundyense. This study investigated the morphology, internal transcribed spacer (ITS) sequence and protein profile of A. tamarense and A. catenella grown in the same culture conditions using a combination of scanning electronic microscope (SEM), molecular and proteomic approaches. The results showed that all Alexandrium strains had the plate formula of Po, 4′, 6″, 6C, 8S, 5″′, 2″″. The ventral pore, a key conventional morphological feature to discriminate A. tamarense and A. catenella, was usually present in the first apical plate of ten A. tamarense strains, however, it was found to be absent in some cells of one Alexandrium strain, ATGX01. A. tamarense and A. catenella shared an identical ITS sequence with a minor variation at intraspecific level. Protein profiles of A. catenella DH01 and A. tamarense DH01, isolated from the same region of the East China Sea, showed no significant difference, the similarity of protein profiles of the two species reached 99% with a few proteins unique to one or the other. The present results suggest that the ventral pore is not a consistent morphological feature in the Alexandrium genus, and that A. tamarense and A. catenella are conspecific and should be redesignated to one species.  相似文献   

7.
The planktonic phototrophic dinoflagellate Alexandrium pohangense sp. nov. isolated from the coastal waters off Korea is described from living and fixed cells by light and scanning electron microscopy (SEM). DNA sequence data were collected from the small subunit (SSU), the large subunit (LSU), internal transcribed spacer regions (ITS1 and ITS2), and 5.8S of the ribosomal DNA (rDNA). The SSU and LSU rDNA sequences of the new dinoflagellate were 4–7% and 14–17%, respectively, different from those of Alexandrium minutum, Alexandrium ostenfeldii, Alexandrium tamutum, Alexandrium margalefii, and Alexandrium pseudogonyaulax, the most closely related species. In addition, the 5.8S rDNA sequence of the new dinoflagellate was also 12% different from those of A. minutum, A. ostenfeldii, A. tamutum, and Alexandrium peruvianum. In a phylogenetic tree based on LSU rDNA sequences, A. pohangense formed a clade with A. margalefii, and this clade was clearly distinct from the clade of A. minutum, Alexandrium diversaporum, A. tamutum, Alexandrium leei, A. ostenfeldii, and Alexandirum andersoni. Moreover, in a phylogenetic tree based on SSU rDNA sequences, A. pohangense was positioned at the base of the clade containing A. leei and A. diversaporum. Morphological analysis showed that A. pohangense has a Kofoidian plate formula of Po, 4′, 6′′, 6c, 8s, 5′′′, and 2′′′′, which confirmed its assignment to the genus Alexandrium. This dinoflagellate has a wide rectangular 1′ plate, the upper left side of which is slightly bent, protruding, and touching the 2′ plate, unlike A. margalefii, which has a wide rectangular 1′ plate that does not touch the 2′ plate, or A. pseudogonyaulax and Alexandrium camurascutulum, which have a narrower elongated pentagonal 1′ plate that touches the 2′ plate. Furthermore, the 1′ plate of A. pohangense meets the 1′′ plate as a straight vertical line, whereas that of A. camurascutulum meets the 1′′ plate as an inclined line because it is lifted by the intrusion of the 1′′ plate. In addition, A. pohangense had a relatively small ventral pore whose majority was located on the 4′ plate, unlike A. margalefii or A. pseudogonyaulax, which have a relatively large ventral pore whose majority is located on the 1′ plate. Furthermore, A. pohangense had pores of two different sizes on the cell surface, unlike A. margalefii and A. pseudogonyaulax, which have similar pores of only one size. On the basis of morphological and phylogenetic criteria, it is proposed that this is a new species of the genus Alexandrium.  相似文献   

8.
The 5.8S ribosomal RNA gene (rDNA) and flanking internal transcribed spacers 1 and 2 (ITS1 and ITS2) from 7 isolates of Alexandrium catenella (Wedon et Kofoid) Taylor, 13 isolates of A. tamarense (Lebour) Balech, 2 isolates of A. affine (Fukuyo et Inoue) Balech, and single isolates of A. fundyense Balech, A. insuetum Balech, and A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov. from Japan, Thailand, and the United States were amplified using the polymerase chain reaction (PCR), sequenced, and subjected to phylogenetic analysis. The sequences ranged from 518 to 535 base pairs (bp) exclusive of the 18S and 28S rDNA coding regions. Sequence comparisons revealed seven divergent “ITS types” designated as follows: 1) catenella type, 2) tamarense type, 3) WKS-1 type, 4) Thai type, 5) affine type, 6) insuetum type, and 7) pseudogonyaulax type. Isolates of the tamarense type from various locations in Japan and the United States and of A. fundyense from the United States were closely related to each other and were clearly divergent from isolates of A. tamarense WKS-1 (WKS-I type) or A. tamarense CU-15 (Thai type). These latter two strains carried unique ITS types, although they were not distinguishable from isolates of the tamarense type by morphological criteria. Distance values between isolates of the tamarense type and the WKS-1 or Thai type were quite high (about 0.21 and 0.39, respectively). Seven isolates of A. catenella from Japan (catenella type) clearly diverged from the other ITS types already mentioned. Distance values between isolates of the catenella type were extremely low (<0.01), whereas distance values of ITS between the catenella type and the tamarense, WKS-1, or Thai type were 0.17, 0.18, and 0.40, respectively. Isolates of A. affine, A. insuetum, and A. pseudogonyaulax all carried unique ITS types. The ITSs of the tamarense type exhibited two distinct ITS sets, the “A gene” and the “B gene.” The two sequences occurred in a 1:1 ratio in PCR products. In contrast, the ITSs of all other isolates appeared homogeneous. Sequence comparisons also showed that the variations in the 3′ end of ITS1 (150-177 bp) were low within each ITS type but extremely high between ITS types. The number of different nucleotides among the seven Alexandrium types in this 28-bp region is more than 10. High diversity of this region may facilitate the design of DNA probes specific for each ITS type/species of Alexandrium.  相似文献   

9.
The gonyaulacoid dinofiagellate Alexandrium satoanum Yuki et Fukuyo sp. nov. is described from Matoya Bay, Pacific coast of central Japan. The species is distinctive in its conical epitheca with almost straight sides and dorsal concavity of the hypotheca. The plate formula is Po, pc, 4′, 6″, 6c, 10s, 5″″, and 2″″, including two accessory plates inside the sulcus. The apical pore plate is triangular and possesses an anterior attachment pore at the right margin. The first apical plate does not make contact with the apical pore plate and lacks a ventral pore. A posterior attachment pore lies at the center of the posterior sulcal plate. In Matoya Bay, vegetative cells occur as solitary cells or sometimes in pairs during late spring and early summer in low concentrations. In connection with this study, the following new combination is proposed: Alexandrium pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov.  相似文献   

10.
The presence of neurotoxic species within the genus Alexandrium along the U.S. coastline has raised concern of potential poisoning through the consumption of contaminated seafood. Paralytic shellfish toxins (PSTs) detected in shellfish provide evidence that these harmful events have increased in frequency and severity along the California coast during the past 25 years, but the timing and location of these occurrences have been highly variable. We conducted a 4-year survey in King Harbor, CA, to investigate the seasonal dynamics of Alexandrium catenella and the presence of a particulate saxitoxin (STX), the parent compound of the PSTs. A quantitative PCR (qPCR) assay was developed for quantifying A. catenella in environmental microbial assemblages. This approach allowed for the detection of abundances as low as 12 cells liter−1, 2 orders of magnitude below threshold abundances that can impact food webs. A. catenella was found repeatedly during the study, particularly in spring, when cells were detected in 38% of the samples (27 to 5,680 cells liter−1). This peak in cell abundances was observed in 2006 and corresponded to a particulate STX concentration of 12 ng liter−1, whereas the maximum STX concentration of 26 ng liter−1 occurred in April 2008. Total cell abundances and toxin levels varied strongly throughout each year, but A. catenella was less abundant during summer, fall, and winter, when only 2 to 11% of the samples yielded positive qPCR results. The qPCR method developed here provides a useful tool for investigating the ecology of A. catenella at subbloom and bloom abundances.  相似文献   

11.
Cell abundances and distributions of Alexandrium catenella resting cysts in recent sediments were studied along time at two locations in the Chilean Inland Sea exposed to different oceanographic conditions: Low Bay, which is much more open to the ocean than the more interior and protected Ovalada Island. The bloom began in interior areas but maximum cyst concentrations were recorded in locations more open to the ocean, at the end of the Moraleda channel. Our results showed a time lapse of around 3 months from the bloom peak (planktonic population) until the number of resting cysts in the sediments reached a maximum. Three months later, less than 10% of the A. catenella cysts remained in the sediments. Maximum cyst numbers in the water column occurred one month after the planktonic peak, when no cells were present. The dinoflagellate assemblage at both study sites was dominated by heterotrophic cysts, except during the A. catenella bloom. CCA analyses of species composition and environmental factors indicated that the frequency of A. catenella blooms was associated with low temperatures, but not with salinity, chlorophyll a concentration, and predator presence (measured as clam biomass). However, resting cyst distribution was only related to cell abundance and location. The occurrence of A. catenella cysts was also associated with that of cysts from the toxic species Protoceratium reticulatum. By shedding light on the ecological requirements of A. catenella blooms, our observations support the relevance of encystment as a mechanism of bloom termination and show a very fast depletion of cysts from the sediments (<3 months), which suggest a small role for resting cyst deposits in the recurrence of A. catenella blooms in this area.  相似文献   

12.
A comparative analysis of the morphology, toxin composition, and ribosomal DNA (rDNA) sequences was performed on a suite of clonal cultures of the potentially toxic dinoflagellate Alexandrium minutum Halim. These were established from resting cysts or vegetative cells isolated from sediment and water samples taken from the south and west coasts of Ireland. Results revealed that strains were indistinguishable, both morphologically and through the sequencing of the D1-D2 domain of the large subunit and the ITS1-5.8S-ITS2 regions of the rDNA. High-performance liquid chromatography fluorescence detection analysis, however, showed that only strains derived from retentive inlets on the southern Irish coast synthesized paralytic shellfish poisoning (PSP) toxins (GTX2 and GTX3), whereas all strains of A. minutum isolated from the west coast were nontoxic. Toxin analysis of net hauls, taken when A. minutum vegetative cells were in the water column, revealed no PSP toxins in samples from Killary Harbor (western coast), whereas GTX2 and GTX3 were detected in samples from Cork Harbor (southern coast). These results confirm the identity of A. minutum as the most probable causative organism for historical occurrences of contamination of shellfish with PSP toxins in Cork Harbor. Finally, random amplification of polymorphic DNA was carried out to determine the degree of polymorphism among strains. The analysis showed that all toxic strains from Cork Harbor clustered together and that a separate cluster grouped all nontoxic strains from the western coast.  相似文献   

13.
In Chile, 90% of the fish farms and major natural shellfish beds are located in the region surrounding the Inland Sea, where over the last few decades harmful phytoplankton blooms have often been observed. The onset and recurrence of bloom events are often related to the resuspension and germination of resting cysts that have accumulated in the sediments. The degree of cyst settling, accumulation and germination is highly variable between areas and depends on physical and environmental factors. To learn how differences in oceanographic exposure, amount of river runoff and bathymetry affect dinoflagellate cyst deposition, we examined the diversity and abundance of dinoflagellate resting cysts from two hydrographically contrasting coastal areas (oceanic Guaitecas Archipelago and estuarine Pitipalena Fjord) of the Chilean Inland Sea in September 2006, seven months after a bloom of Alexandrium catenella, a producer of paralytic shellfish toxin. Cyst species diversity consisted of 18 taxa, including A. catenella and the noxious species Protoceratium reticulatum, both of which have caused blooms in the study area. Our results revealed significant differences between the two study sites in terms of the abundance and diversity of resting cysts, suggesting that in the specific case of A. catenella, only Guaitecas stations have potential for cyst accumulation and successful growth of cells. However, there was no evidence of long-term resting cyst beds of A. catenella at either study site.  相似文献   

14.
The bloom forming marine dinoflagellate Gymnodinium catenatum Graham has been linked to paralytic shellfish poisoning (PSP) outbreaks in humans. Along the Portuguese coast (NE Atlantic), G. catenatum shows a complex bloom pattern, raising questions about the origin and affinities of each bloom population. In this work, the variability within six cultured strains of G. catenatum isolated from Portuguese coastal waters (S coast, W coast and NW coast), between 1999 and 2011, was investigated. The strains were analyzed for toxin profiling and intra-specific genetic diversity. Regarding the toxin profile, differences recorded between strains could not be assigned to the time of isolation or geographical origin. The parameter that most influenced the toxin profile was the life-cycle stage that originated the culture: vegetative cell versus hypnozygote (resting cyst). At the genetic level, all strains showed similar sequences for the D1–D2 region of the large subunit (LSU) of the nuclear ribosomal DNA (rDNA) and shared complete identity with strains from Spain, Algeria, China and Australia. Conversely, we did not find a total identity match for the ITS-5.8S nuclear rDNA fragment. After sequence analysis, two guanine/adenine (R) single nucleotide polymorphisms (SNP 1 and 2) were detected for all strains, in the ITS1 region. This species has been reported to present very conservative LSU and ITS-5.8S rDNA regions, though with few SNP, including SNP1 of this study, already attributed to strains from certain locations. The SNP here described characterize G. catenatum populations from Portuguese waters and may represent valuable genetic markers for studies on the phylogeography of this species.  相似文献   

15.
16.
The profile of tetrahydropurine neurotoxins associated with paralytic shellfish poisoning (PSP) was determined from a Chilean strain of the marine dinoflagellate Alexandrium catenella. The toxin composition was compared with that of toxic shellfish, presumably contaminated by natural blooms of A. catenella from the same region in southern Chile. Ion pair-liquid chromatography with post-column derivatization and fluorescence detection (LC-FD) was employed for relative quantitative analysis of the toxin components, whereas unambiguous identification of the toxins was confirmed by tandem mass spectrometry (LC–MS/MS). In the dinoflagellate strain from Chile, the N-sulfocarbamoyl derivatives (C1/C2, B1) and the carbamoyl gonyautoxins GTX1/GTX4 comprise >90% of the total PSP toxin content on a molar basis. This toxin composition is consistent with that determined for A. catenella populations from the Pacific coast in the northern hemisphere. The characteristic toxin profile is also reflected in the shellfish, but with evidence of epimerization and metabolic transformations of C1 and C2 to GTX2 and GTX3, respectively. This work represents the first unequivocal identification and confirmation of such PSP toxin components from the Chilean coast.  相似文献   

17.
Paralytic shellfish poisoning (PSP) caused the deaths of four people in coastal area of Korea, mainly Jinhae-Masan Bay and adjacent areas, in April 1986 and in 1996. The PSP outbreaks were caused by the consumption of mussels, Mytilus edulis. The organism that caused PSP was identified, from morphological data only, as Alexandrium tamarense which is recently renamed as A. catenella, however recent studies have shown that the morphological diagnostic characteristics used to identify Alexandrium species have uncertainties and molecular tools and other criteria should be considered as well. The organism that caused past PSP outbreaks and incidents in Korea therefore need to be carefully reconsidered. The aim of this study was to re-evaluate the species really responsible for past outbreaks of PSP in Jinhae-Masan Bay, Korea. The temporal production and fluxes of the resting cysts of Alexandrium species were investigated for one year (from March 2011 to February 2012) using a sediment trap, and the morphology and phylogeny of vegetative cells germinated from the resting cysts were analysed. The production of Alexandrium species peaked in August and November, when temporal discrepancies were found in the water temperature (22.4 and 22.7 °C in August, 19.1 and 19.6 °C in November) and salinity (29.5 and 26.1 psu in August, 30.5 and 31.8 psu in November). The morphological data revealed that Alexandrium species germinated from resting cysts collected in August have a ventral pore on the 1′ plate, whereas the 1′ plate in Alexandrium species germinated from resting cysts collected in November lacks a ventral pore. Molecular phylogenetic data for the vegetative cells from the germination experiments allowed the August and November peaks to be assigned to Alexandrium catenella (Group I) and A. pacificum (Group IV), respectively. This indicates that the production of resting cysts of A. catenella can be enhanced by relatively high water temperature. This result is not consistent with those of previous studies that A. catenella responsible for PSP outbreaks was found at relatively low water temperature. In addition, large subunit ribosomal sequences data revealed that A. pacificum isolates from Korea were closely related to those from Australia, Japan and New Zealand where the PSP toxicity of shellfish and blooms occurred in the 1990s, indicating that the introduction of toxic dinoflagellates were related to ballast water from bulk-cargo shipping. Based on these results, we concluded that past PSP outbreaks in Jinhae-Masan Bay of Korea could have been caused by A. pacificum rather than by A. catenella.  相似文献   

18.
At present 8 species of Alexandrium genus have been found in seas and adjacent waters of Russia: A. acatenella, A. catenella, A. insuetum, A. margalefii, A. ostenfeldii, A. pseudogonyaulax, A. tamarense, and A. tamutum. The distribution and population density of Alexandrium species varied within the surveyed area of the Pacific: in the Sea of Japan and Sea of Okhotsk, 7 species were recorded; 3 species were recorded along the Pacific coast of Kamchatka; and 2 species were found in the Bering Sea. A. tamarense was the most widespread and abundant species over the area. A. insuetum was recorded only in the Sea of Japan, and A. catenella, in the Sea of Okhotsk (Terpeniya Bay). The highest concentration of Alexandrium spp. (2–7 million cells/l) was recorded along the Pacific coast of Kamchatka and in the Bering Sea; in the Sea of Okhotsk, a rather high concentration (51000 cells/l) was registered in Aniva Bay; in the Sea of Japan, the highest concentration was recorded in Peter the Great Bay (6000 cells/l). The distribution of cysts (spores) in surface sediments of the Pacific coast of Russia as a whole reflected the pattern of distribution of vegetative cells of Alexandrium. Cysts of Alexandrium cf. tamarense prevailed all over the area, with the maximum concentration along the Pacific coast of Kamchatka. Beyond that type of cysts, insignificant numbers of cysts of Alexandrium cf. minutum were recorded in Peter the Great Bay and Aniva Bay. Analysis of seasonal dynamics revealed that cells of Alexandrium spp. occurred in Peter the Great Bay from June up to September, and along the Pacific coast of Kamchatka from April to October. In the first region, the maximum density was recorded in August; it was provided by A. pseudogonyaulax (59% of the total density of Alexandrium), A. tamarense (35%), and A. insuetum (6%). In the second region, it was recorded in July, thanks only to development of A. tamarense.  相似文献   

19.
Alexandrium species can be very difficult to identify, with A. catenella, A. tamarense, and A. fundyense that compose “Alexandrium tamarense species complex” (Atama complex) as a distinct example. DNA barcoding is promising to offer a solution but remains to be established. In this study, we examined the utility of ITS in resolving the Atama species complex, by analyzing previously studied strains plus unstudied Chinese strains within the LSU- and SSU-rDNA based group/clade frameworks recently established. We further investigated the presence of intragenomic polymorphism and its implications in species delimitation. Similar to the previous SSU and LSU results, our ITS-based phylogenies divided the complex to five clusters, but with longer and evener branch lengths between the clusters. Based on the ITS region, the inter-cluster genetic distances (p = 0.134–0.216) were consistently and substantially greater than intra-cluster genetic distances (p = 0.000–0.066), with an average inter-cluster (species) distance (p = 0.167) 7.6-fold of the average intraspecific difference (p = 0.022), qualifying the approximately 510–520 bp ITS as a DNA barcode for Atama complex. We detected varying levels of intragenomic polymorphism in ITS but found that this did not impact the taxon-resolving power of this gene. With this DNA barcode, the new East and South China Sea strains and one Antarctic strain were placed in Clade IIC/Group IV, even though there were 7–10 polymorphic sites in their ITS, in contrast to none in SSU. Furthermore, our results suggest that the five clusters are recognizable as distinct species according to the phylogenetic species concept. Based on the phylogenetic placements of the type-locality strains of the existing three morphospecies and the dominant localities of other strains, we propose that Group I/Clade I be designated as A. fundyense, Group III/Clade IIB as A. tamarense, Group IV/Clade IIC as A. catenella, Group II/Clade IIA as A. mediterranis, and Group V/Clade IID as A. australis.  相似文献   

20.
In a previous study large-subunit ribosomal RNA gene (LSU rDNA) sequences from the marine dinoflagellates Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech, A. affine (Fukuyo et Inoue) Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech were compared to assess inter- and intraspecific relationships. Many cultures compared in that study contained more than one class of LSU rDNA. Sequencing pooled clones of rDNA from single cultures revealed length heterogeneities and sequence ambiguities. This complicated sequence comparisons because multiple rDNA clones from a single culture had to be sequenced individually to document the different classes of molecules present in that culture. A further complication remained as to whether or not the observed intraculture sequence variations were reliable genetic markers or were instead artifacts of the polymerase chain reaction (PCR) amplification, cloning, and/or sequencing methods employed. The goals of the present study were to test the accuracy of Alexandrium LSU rDNA sequences using restriction fragment-length polymorphism (RFLP) analysis and to devise RFLP-based assays for discriminating among representatives of that group. Computer-assisted examination of the sequences allowed us to identify a set of restriction enzymes that were predicted to reveal species, strain, and intraculture LSU rDNA heterogeneities. All groups identified by sequencing were revealed independently and repeatedly by RFLP analysis of PCR-amplified material. Five ambiguities and one length heterogeneity, each of which ascribes a unique group of Alexandrium species or strains, were confirmed by restriction digests. Observed intraculture LSU rDNA heterogeneities were not artifacts of cloning and sequencing but were instead a good representation of the spectrum of molecules amplified during PCR reactions. Intraculture LSU rDNA heterogeneities thus serve as unique genetic markers for particular strains of Alexandrium, particularly those of A. tamarense, A. catenella, and A. fundyense. However, some of these “signature heterogeneities” represented a smaller portion of PCR product than was expected given acquired sequences. Other deviations from predicted RFLP patterns included incomplete digestions and appearance of spurious products. These observations indicate that the diversity of sequences in PCR product pools were greater than that observed by cloning and sequencing. The RFLP tests described here are useful tools for characterizing Alexandrium LSU rDNA to define the evolutionary lineage of cultures and are applicable at a fraction of the time, cost, and labor required for sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号