首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Neutrophils have long been regarded as essential for host defense against Staphylococcus aureus infection. However, survival of the pathogen inside various cells, including phagocytes, has been proposed as a mechanism for persistence of this microorganism in certain infections. Therefore, we investigated whether survival of the pathogen inside polymorphonuclear neutrophils (PMN) contributes to the pathogenesis of S. aureus infection. Our data demonstrate that PMN isolated from the site of infection contain viable intracellular organisms and that these infected PMN are sufficient to establish infection in a naive animal. In addition, we show that limiting, but not ablating, PMN migration into the site of infection enhances host defense and that repletion of PMN, as well as promoting PMN influx by CXC chemokine administration, leads to decreased survival of the mice and an increased bacterial burden. Moreover, a global regulator mutant of S. aureus (sar-) that lacks the expression of several virulence factors is less able to survive and/or avoid clearance in the presence of PMN. These data suggest that the ability of S. aureus to exploit the inflammatory response of the host by surviving inside PMN is a virulence mechanism for this pathogen and that modulation of the inflammatory response is sufficient to significantly alter morbidity and mortality induced by S. aureus infection.  相似文献   

2.
The colonization of respiratory tract by Staphylococcus aureus is a frequent feature of cystic fibrosis (CF), especially in pediatric patients. The formation of small colony variants (SCVs), which produce reduced amounts of alpha-toxin, is one of the proposed ways of staphylococcal accommodation in an intracellular niche. The aim of the present study was to compare some properties of S. aureus SCVs and their parent strains. A site-directed S. aureus hemB mutant and parent strain 8325-4 were included in the study (control pair). Normal and SCV strain pairs from CF patients as well as control strains were tested for the susceptibility to defensins, killing activity of professional phagocytes and adhesion to A549 cell line. Because S. aureus are exposed to many cationic proteins in the host, we challenged a clinical isolate with minimal subinhibitory concentration (subMIC) of protamine and found that hemin and menadione auxotrophic SCVs emerged. SCVs were more resistant than normal strains to protamine but not to dermaseptin. The susceptibility to the bactericidal activity of magainin was the same for normal and SCV strains. The protamine resistance of normal as well as SCVs was strongly enhanced by high salt concentration. The adhesion of some SCVs to A549 cells was higher than adhesion of parental strains. However, the number of adherent bacteria (SCVs) was diminished in the presence of hemin for hemin auxotrophs. The uptake of SCVs by granulocytes was lower than ingestion of normal strains, but SCVs were killed with equal or greater potency. SCVs are adapted to intracellular survival and persistence in the host under certain circumstances. The ability to form a variant subpopulation affords S. aureus additional survival options.  相似文献   

3.
Staphylococcus aureus is a dangerous opportunistic human pathogen that causes serious invasive diseases when it reaches the bloodstream. Recent studies have shown that S. aureus is highly resistant to killing by professional phagocytes and that such cells even provide a favorable environment for intracellular survival of S. aureus. Importantly, the reciprocal interactions between phagocytes and S. aureus have remained largely elusive. Here we have employed kinase profiling to define the nature and time resolution of the human THP-1 macrophage response toward S. aureus and proteomics to identify the response of S. aureus toward macrophages. The results of these studies reveal major macrophage signaling pathways triggered by S. aureus and proteomic signatures of the responses of S. aureus to macrophages. We also identify human proteins bound to S. aureus that have potential roles in bacterial killing and internalization. Most noticeably, our observations challenge the classical concept that macrophage responses are mainly mediated through Toll-like receptor 2 and NF-κB signaling and highlight the important role of the stress-activated MAP kinase signaling in orchestrating the host defense.  相似文献   

4.
Staphylococcus aureus is a common bacterial etiology of serious infectious diseases. S. aureus can invade various types of non-professional phagocytes to produce host cell death. We show here that shortly after invasion of HeLa cells S. aureus transit to autophagosomes was characterized by double membranes and co-localization with LC3. S. aureus were not able to replicate and produce cell death in autophagy-deficient atg5-/- mouse embryonic fibroblasts. S. aureus-containing autophagosomes do not acidify nor do they acquire lysosome-associated membrane protein-2, indicating that S. aureus inhibits autophagosome maturation and fusion with lysosomes. Eventually, S. aureus escape from autophagosomes into the cytoplasm, which results in caspase-independent host cell death. S. aureus strains deficient for agr, a global regulator of S. aureus virulence, were not targeted by autophagy and did not produce host-cell death. Autophagy induction by rapamycin restored both replication and cytotoxicity of agr-deficient S. aureus strains, indicating that an agr-regulated factor(s) is required for autophagy-mediated cytotoxicity. The results of this study suggest that rapid induction of autophagy is essential for S. aureus replication, escape into the cytoplasm, and host cell killing.  相似文献   

5.
Liang X  Ji Y 《Cellular microbiology》2006,8(10):1656-1668
Staphylococcus aureus is an important human and animal pathogen. During infection, this bacterium is able to attach to and enter host cells by using its cell surface-associated factors to bind to the host's extracellular matrix (ECM) proteins. In this study, we determined that a protein exported by S. aureus, alpha-toxin, can interfere with the integrin-mediated adhesion and internalization of S. aureus by human lung epithelial cells (A549). The downregulation of alpha-toxin production significantly increased bacterial adhesion and invasion into the epithelial cells. In contrast, bacterial adhesion and invasion was inhibited by both overproduction of alpha-toxin and the addition of alpha-toxin to the culture medium. Moreover, our results showed that the quantitative effects on invasion closely parallel those of adherence. This suggests that the effect on invasion is probably secondary to, and a consequence of, the reduced adherence caused by alpha-toxin exposure. Specifically, we demonstrated that alpha-toxin interacts with the hosts' ECM protein's receptor, beta1-integrin, which indicates that beta1-integrin may be a potential receptor of alpha-toxin on epithelial cells. Taken together, our results indicate that exported alpha-toxin inhibits the adhesion and internalization of S. aureus by interfering with integrin-mediated pathogen-host cell interactions.  相似文献   

6.
7.
This study was performed to investigate the in vivo effects of staphylococcal alpha-toxin on phagocytosis and the secretion of proinflammatory cytokines at local sites of intraperitoneal toxin-challenged mice. A dosage of 45 hemolytic units (HU) of alpha-toxin induced a marked increase in the peritoneal neutrophil count. The toxin caused a 52% decrease in phagocytosis by peritoneal macrophages, compared with that of control mice receiving Staphylococcus aureus particles alone. However, no effect on phagocytosis in neutrophils was observed. A dosage of 45 HU toxin and the synergistic activity of S. aureus particles strongly induced interleukin (IL) 6 secretion but only mildly induced IL-1alpha secretion. The toxin did not induce the secretion of tumor necrosis factor-alpha (TNF-alpha). Interestingly, S. aureus culture supernatant induced the secretion of TNF-alpha in cultured macrophages. These results suggest that alpha-toxin damages the primary host defense system by inducing the oversecretion of IL-1alpha and IL-6, but not TNF-alpha, via a mechanism that requires the synergistic action of bacterial components.  相似文献   

8.
Although Staphylococcus aureus is not a classical intracellular pathogen, it can survive within phagocytes and many other cell types. However, the pathogen is also able to escape from cells by mechanisms that are only partially understood. We analysed a series of isogenic S. aureus mutants of the USA300 derivative JE2 for their capacity to destroy human macrophages from within. Intracellular S. aureus JE2 caused severe cell damage in human macrophages and could efficiently escape from within the cells. To obtain this full escape phenotype including an intermittent residency in the cytoplasm, the combined action of the regulatory systems Sae and Agr is required. Mutants in Sae or mutants deficient in the Sae target genes lukAB and pvl remained in high numbers within the macrophages causing reduced cell damage. Mutants in the regulatory system Agr or in the Agr target gene psmα were largely similar to wild‐type bacteria concerning cell damage and escape efficiency. However, these strains were rarely detectable in the cytoplasm, emphasizing the role of phenol‐soluble modulins (PSMs) for phagosomal escape. Thus, Sae‐regulated toxins largely determine damage and escape from within macrophages, whereas PSMs are mainly responsible for the escape from the phagosome into the cytoplasm. Damage of macrophages induced by intracellular bacteria was linked neither to activation of apoptosis‐related caspase 3, 7 or 8 nor to NLRP3‐dependent inflammasome activation.  相似文献   

9.
Exploitation of host components by microbes to promote their survival in the hostile host environment has been a recurring theme in recent years. Available data indicate that bacterial pathogens activate ectodomain shedding of host cell surface molecules to enhance their virulence. We reported previously that several major bacterial pathogens activate ectodomain shedding of syndecan-1, the major heparan sulfate proteoglycan of epithelial cells. Here we define the molecular basis of how Staphylococcus aureus activates syndecan-1 shedding. We screened mutant S. aureus strains devoid of various toxin and protease genes and found that only strains lacking both alpha-toxin and beta-toxin genes do not stimulate shedding. Mutations in the agr global regulatory locus, which positively regulates expression of alpha- and beta-toxins and other exoproteins, also abrogated the capacity to stimulate syndecan-1 shedding. Furthermore, purified S. aureus alpha- and beta-toxins, but not enterotoxin A and toxic shock syndrome toxin-1, rapidly potentiated shedding in a concentration-dependent manner. These results establish that S. aureus activates syndecan-1 ectodomain shedding via its two virulence factors, alpha- and beta-toxins. Toxin-activated shedding was also selectively inhibited by antagonists of the host cell shedding mechanism, indicating that alpha- and beta-toxins shed syndecan-1 ectodomains through stimulation of the host cell's shedding machinery. Interestingly, beta-toxin, but not alpha-toxin, also enhanced ectodomain shedding of syndecan-4 and heparin-binding epidermal growth factor. Because shedding of these ectodomains has been implicated in promoting bacterial pathogenesis, activation of ectodomain shedding by alpha-toxin and beta-toxin may be a previously unknown virulence mechanism of S. aureus.  相似文献   

10.
Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non‐lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti‐phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal‐infected macrophages and highlight areas for future research.  相似文献   

11.
We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.  相似文献   

12.
Integrin βν, one of two β subunits of Drosophila integrin, acts as a receptor in the phagocytosis of apoptotic cells. We here examined the involvement of this receptor in defense against infection by Staphylococcus aureus. Flies lacking integrin βν died earlier than control flies upon a septic but not oral infection with this bacterium. A loss of integrin βν reduced the phagocytosis of S. aureus and increased bacterial growth in flies. In contrast, the level of mRNA of an antimicrobial peptide produced upon infection was unchanged in integrin βν-lacking flies. The simultaneous loss of integrin βν and Draper, another receptor involved in the phagocytosis of S. aureus, brought about a further decrease in the level of phagocytosis and accelerated death of flies compared with the loss of either receptor alone. A strain of S. aureus lacking lipoteichoic acid, a cell wall component serving as a ligand for Draper, was susceptible to integrin βν-mediated phagocytosis. In contrast, a S. aureus mutant strain that produces small amounts of peptidoglycan was less efficiently phagocytosed by larval hemocytes, and a loss of integrin βν in hemocytes reduced a difference in the susceptibility to phagocytosis between parental and mutant strains. Furthermore, a series of experiments revealed the binding of integrin βν to peptidoglycan of S. aureus. Taken together, these results suggested that Draper and integrin βν cooperate in the phagocytic elimination of S. aureus by recognizing distinct cell wall components, and that this dual recognition system is necessary for the host organism to survive infection.  相似文献   

13.
Macrophages are critical effectors of the early innate response to bacteria in tissues. Phagocytosis and killing of bacteria are interrelated functions essential for bacterial clearance but the rate‐limiting step when macrophages are challenged with large numbers of the major medical pathogen Staphylococcus aureus is unknown. We show that macrophages have a finite capacity for intracellular killing and fail to match sustained phagocytosis with sustained microbial killing when exposed to large inocula of S. aureus (Newman, SH1000 and USA300 strains). S. aureus ingestion by macrophages is associated with a rapid decline in bacterial viability immediately after phagocytosis. However, not all bacteria are killed in the phagolysosome, and we demonstrate reduced acidification of the phagolysosome, associated with failure of phagolysosomal maturation and reduced activation of cathepsin D. This results in accumulation of viable intracellular bacteria in macrophages. We show macrophages fail to engage apoptosis‐associated bacterial killing. Ultittop mately macrophages with viable bacteria undergo cell lysis, and viable bacteria are released and can be internalized by other macrophages. We show that cycles of lysis and reuptake maintain a pool of viable intracellular bacteria over time when killing is overwhelmed and demonstrate intracellular persistence in alveolar macrophages in the lungs in a murine model.  相似文献   

14.
The internalization of Staphylococcus aureus by cultured human umbilical vein endothelial cells was recently shown to induce apoptosis. We examined the role of alpha-toxin, a major pore-forming toxin secreted by S. aureus, in causing apoptosis in vitro. Purified alpha-toxin, at sublytic concentrations, induced apoptosis in endothelial cell monolayers. Comparisons of two alpha-toxin (hla)-positive S. aureus strains and their isogenic hla-deficient mutants in the invasion assay of endothelial cells demonstrated that the capacity to produce alpha-toxin was associated with a greater propensity for apoptosis in endothelial cells. These results demonstrate for the first time that expression of alpha-toxin during endothelial cell invasion by S. aureus enhances apoptosis.  相似文献   

15.
Staphylococcus aureus invades a variety of mammalian cells and escapes from the endosome to multiply in the cytoplasm. We had previously hypothesized that the molecular events leading to escape of S. aureus from the endosome involved the Agr virulence factor regulatory system. In this report we demonstrate that temporal changes in intracellular activation of the Agr regulon correlates with expression of membrane active toxins. Also, the initial expression of Agr by even small numbers of staphylococci resulted in the permeabilization of the endosomal membrane and the eventual escape of bacteria into the cytoplasm by 3 h post invasion. After Agr downregulation, a second peak of expression coincided with increased permeability of the host cell membrane. In contrast to the parental strain, an Agr-mutant was unable to escape into the cytoplasm and was observed in intact endosomes as late as 5 h post invasion. These data provide evidence that staphylococcal virulence factor production during invasion of host cells is mediated by an Agr-dependent process that is most accurately described in the context of diffusion sensing.  相似文献   

16.
The success of Staphylococcus aureus as a pathogen is partly attributable to its ability to thwart host innate immune responses, which includes resisting the antimicrobial functions of phagocytes. Here, we have studied the interaction of methicillin‐resistant S. aureus (MRSA) strain USA300 with murine RAW 264.7 and primary human macrophages using molecular imaging and single cell analysis to obtain an unprecedented understanding of the interaction between the macrophage and MRSA. Herein we demonstrate that macrophages fail to control intracellular infection by MRSA USA300 despite trafficking the bacteria into mature phagolysosomes. Using fluorescence‐based proliferation assays we also show that intracellular staphylococci proliferate and that replication commences while the bacteria are residing in mature phagolysosomes hours after initial phagocytosis. Finally, live‐cell fluorescence video microscopy allowed for unprecedented visual insight into the escape of MRSA from macrophages, demonstrating that the macrophages die through a pathway characterized by membrane blebbing and activation of caspase‐3 followed by acquisition of the vital dye propidium iodide. Moreover, cell death precedes the emergence of MRSA from infected macrophages, and these events can be ablated by prolonged exposure of infected phagocytes to gentamicin.  相似文献   

17.
Staphylococcus aureus is an important pathogen that continues to be a significant global health threat because of the prevalence of methicillin-resistant S. aureus strains (MRSA). The pathogenesis of this organism is partly attributed to the production of a large repertoire of cytotoxins that target and kill innate immune cells, which provide the first line of defence against S. aureus infection. Here we demonstrate that leukocidin A/B (LukAB) is required and sufficient for the ability of S. aureus, including MRSA, to kill human neutrophils, macrophages and dendritic cells. LukAB targets the plasma membrane of host cells resulting in cellular swelling and subsequent cell death. We found that S. aureus lacking lukAB are severely impaired in their ability to kill phagocytes during bacteria-phagocyte interaction, which in turn renders the lukAB-negative staphylococci more susceptible to killing by neutrophils. Notably, we show that lukAB is expressed in vivo within abscesses in a murine infection model and that it contributes significantly to pathogenesis of MRSA in an animal host. Collectively, these results extend our understanding of how S. aureus avoids phagocyte-mediated clearance, and underscore LukAB as an important factor that contributes to staphylococcal pathogenesis.  相似文献   

18.
Many pathogens colonize host tissues by binding to the extracellular matrix via their cell surface adhesion molecules, which are called MSCRAMMs (microbial surface components recognizing adhesive matrix molecules). Staphylococcus aureus expresses several of these adhesion molecules, some of which bind to fibronectin. Of these adhesion molecules, fibronectin-binding proteins play a role in the pathogenicity of S. aureus, although it is not yet clear whether they enhance its virulence. We have previously shown that fibronectin-bound S. aureus is efficiently phagocytosed by thioglycolate-induced mouse peritoneal macrophages. Bacterial ingestion is mediated by Very Late Antigen-5 (VLA-5; alpha5beta1 integrin) and is accompanied by the formation of adhesion complexes. Here we show that the expression of VLA-5 is restricted to thioglycolate-induced inflammatory macrophages and is not found in the resident macrophages. When cells were in suspension, alpha5 integrin was not expressed on the surface of either resident or inflammatory macrophages, whereas in adherent cells, this integrin was distributed on the surface of inflammatory but not resident macrophages. A high level of this integrin was present in the cytoplasmic region only in inflammatory macrophages. In agreement with this, fibronectin-mediated phagocytosis of S. aureus was observed only in the inflammatory macrophages. In inflammatory macrophages ingesting fibronectin-bound S. aureus, alpha5 integrin was concentrated close to the phagocytosed bacteria. This change in distribution was not found in macrophages ingesting untreated bacteria. Together with our previous work, these results indicate that, upon ingestion of fibronectin-bound S. aureus, VLA-5 accumulates in the area of phagocytosis in inflammatory macrophages, where it forms adhesion complexes.  相似文献   

19.
Liang X  Ji Y 《Cellular microbiology》2007,9(7):1809-1821
Staphylococcus aureus causes suppurative infections which are often associated with tissue destruction and cell death. In the present study, we investigated the molecular and cellular basis of S. aureus-induced apoptosis and death in a human lung epithelial cell line (A549). We found that staphylococcal alpha-toxin is an important mediator of cytotoxicity in these epithelial cells. Specifically, we found that downregulating alpha-toxin production eliminated the cytotoxicity of S. aureus, whereas the addition of alpha-toxin to the cell culture medium significantly increased cell death in a dose-dependent manner. Importantly, we found that alpha-toxin-mediated cell death may partially function through alpha5beta1-integrin, because both the beta1-integrin antibody and the ligand fibronectin inhibited the cytotoxicity of alpha-toxin. Furthermore, we found that the overexpression of the inflammatory cytokine interferon (TNF)-alpha is associated with alpha-toxin-induced cell death, because both the TNF-alpha release inhibitor and antibody effectively inhibited the cytotoxicity of alpha-toxin. In contrast, the cytotoxicity of alpha-toxin was enhanced by the inhibition of the MAPK p38 and NF-kappaB pathways. Taken together, our results suggest that the activation of the MAPK p38 and NF-kappaB pathways are stress responses for survival, rather than direct contributes to alpha-toxin-induced cell death, and that the interaction of alpha-toxin with alpha5beta1-integrin and overproduction of TNF-alpha may contribute to destruction of epithelial cells during S. aureus infection.  相似文献   

20.
Staphylococcus aureus is internalised by host cells in vivo, and recent research results suggest that the bacteria use this intracellularity to persist in the host and form a reservoir for recurrent infections. However, in different cells types, the pathogen resorts to alternative strategies to survive phagocytosis and the antimicrobial mechanisms of host cells. In non‐professional phagocytes, Saureus either escapes the endosome followed by cytoplasmic replication or replicates within autophagosomes. Professional phagocytes possess a limited capacity to kill Saureus and hence the bacteria, well equipped with immune evasive mechanisms, replicate within the cells, eventually lyse out of the cells and thus persist in a continuous cycle of phagocytosis, host cell death, and bacterial release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号