首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 660 毫秒
1.
Ren  Ling  Rabalais  Nancy N.  Turner  R. Eugene 《Hydrobiologia》2020,847(8):1831-1850

Diversion of river waters to adjacent estuaries may occur during wetland restoration, navigation channel development, or storms. We proposed that diversions of nitrogen- and phosphorus-enriched waters from the river to estuarine waters would result in increased phytoplankton biomass and shifts to noxious or harmful algal blooms. We tested this hypothesis by conducting four seasonal microcosm experiments in which Mississippi River water was mixed at different volume ratios with ambient estuarine waters of three lakes in the upper Barataria Basin, Louisiana, USA. These lakes included two brackish lakes that were in the path of diverted Mississippi River water, and a freshwater lake that was not. The results from the 3- to 8-day experiments yielded a predictable increase in phytoplankton biomass related to nutrient additions from Mississippi River water. The subsequent decreases in the dissolved nitrate + nitrite, soluble reactive phosphorus, and silicate concentrations explained 76 to 86% of the increase in chlorophyll a concentrations in the microcosms. Our experiments showed that cyanobacteria can successfully compete with diatoms for N and P resources even under non-limiting Si conditions and that toxic cyanobacteria densities can increase to bloom levels with increased Mississippi River water inputs to ambient waters in the microcosms. Diversions of Mississippi River into adjacent estuarine waters should be considered in relation to expected and, possibly, unexpected changes in phytoplankton communities to the receiving waters and coastal ecosystems.

  相似文献   

2.
In estuaries, phytoplankton are exposed to rapidly changing conditions that may have profound effects on community structure and function. In these experiments, we evaluated the growth, productivity, and compositional responses of natural phytoplankton communities exposed to limiting nutrient additions and incubation conditions typical of estuarine habitats. Mesocosm bioassays were used to measure the short-term (2-day) growth rate, primary productivity, and group-specific biomass responses of the phytoplankton community in the Neuse River Estuary, North Carolina. A three-factor (mixing, sediment addition, and nutrient addition) experimental design was applied using 55-L mesocosm tanks. Growth rates were determined using the 14C photopigment radiolabeling method, and the abundance of algal groups was based on quantification of chemosystematic photopigments by HPLC. For Neuse River Estuary phytoplankton communities, stratified (nonmixed), turbid, and low-nitrate conditions favored increases in cryptomonad biomass. Mixed, turbid, high-nitrate conditions were favorable for increased primary productivity and chlorophytes, diatoms, and cyanobacteria. The highest community growth rates occurred under calm, high-nitrate conditions. This approach provided an assessment of the community-level phytoplankton responses and insights into the mechanisms driving blooms and bloom species in estuarine waters. The ability to rapidly alter growth rates to capitalize on conditions conducive for growth may play an important role in the timing, extent, and species involved with blooms in estuarine waters. Adaptive growth rate responses of individual species, as well as the community as a whole, further illustrate the sensitivity of estuarine ecosystems to excessive N inputs.  相似文献   

3.
In this paper, effects of eutrophication in selected compartments of the North Sea ecosystem are discussed, encompassing the possibly positive effects of nutrient enrichment. Based on a variety of studies, impacts on biomass of phytoplankton, macrozoobenthos, microzooplankton, shrimps and fishes and productivity are presented. Enhanced nutrient concentrations and loadings can be observed in several coastal areas of the North Sea. As a result, increases in the concentration, production and changes in the species composition was observed in the phytoplankton. In addition, there are some indications for an increased biomass of macrozoobenthos, whereas an increase in microzooplankton can only be assumed from mesocosm experiments. A concomitant increase of higher trophic levels such as shrimps and fishes, as observed in some coastal regions of the North Sea, is difficult to link directly to eutrophication due to a lack of conclusive field observations showing the causality of the changes. That the large fertilisation process in the North Sea has led to a series of changes is, however, without doubt. The answer, to what extent these can be claimed as being harmless, positive or negative from the anthropogenic point of view, is hampered by the lack of good assessment criteria for marine ecosystems and requires a thorough analysis of all compartments involved by means of long-term-series long enough to discriminate between man-made and natural variability.  相似文献   

4.
Marine and terrestrial ecosystems are connected via transfers of nutrients and organic matter in river discharges. In coastal seas, such freshwater outflows create prominent turbidity plumes. These plumes are areas of high biological activity in the pelagos, of which zooplankton is a key element. Conceptually, the increased biomass of zooplankton consumers in plumes can be supported by two alternative trophic pathways—consumption of fresh marine phytoplankton production stimulated by riverine nutrients, or direct trophic subsidies through the uptake of terrestrial and estuarine organic matter flushed to sea. The relative importance of these two pathways has not been established previously. Isotopic tracing (carbon and nitrogen) was used to measure the extent of incorporation of marine versus terrestrial matter into mesozooplankton consumers in the plumes off a small estuary in eastern Australia. Replicate zooplankton samples were taken during baseflow conditions with minimal freshwater influence to the sea, and during pulsed discharge events that generated turbidity plumes in coastal waters. Food sources utilized by zooplankton differed among locations and with the strength of freshwater flow. Terrestrial and estuarine carbon only made a sizeable contribution (47%) to the carbon demands of zooplankton in the lower estuary during pulsed freshwater flows. By contrast, in plumes that developed in nearshore marine waters, phytoplankton supplied up to 90% of the dietary carbon of zooplankton feeding in the plumes. Overall, it was “fresh” carbon, fixed by marine phytoplankton, the growth of which became stimulated by fluvial nutrient exports, that dominated energy flows in plume regions. The trophic role of terrestrial and estuarine organic exports was comparatively minor. The trophic dynamics of plankton in small coastal plumes is closely linked to variations in freshwater flow, but this coupling operates mainly through the enhancement of in-situ phytoplankton production rather than cross-boundary transfers of organic matter to marine food webs in the pelagos.  相似文献   

5.
Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities.  相似文献   

6.
We analyzed heterotrophic, pelagic bacterial production and specific growth rate data from 57 studies conducted in fresh, marine and estuarine/coastal waters. Strong positive relationships were identified between 1) bacterial production and bacterial abundance and 2) bacterial production and algal biomass. The relationship between bacterial production and bacterial abundance was improved by also considering water temperature. The analysis of covariance model revealed consistent differences between fresh, marine and estuarine/coastal waters, with production consistently high in estuarine/coastal environments. The log-linear regression coefficient of abundance was not significantly different from 1.00, and this linear relationship permitted the use of specific growth rate (SGR in day−1) as a dependent variable. A strong relationship was identified between specific growth rate and temperature. This relationship differed slightly across the three habitats. A substantial portion of the residual variation from this relationship was accounted for by algal biomass, including the difference between marine and estuarine/coastal habitats. A small but significant difference between the fresh- and saltwater habitats remained. No significant difference between the chlorophyll effect in different habitats was identified. The model of SGR against temperature and chlorophyll was much weaker for freshwater than for marine environments. For a small subset of the data set, mean cell volume accounted for some of the residual variation in SGR. Pronounced seasonality, fluctuations in nutrient quality, and variation of the grazing environment may contribute to the unexplained variation in specific growth.  相似文献   

7.
Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full‐factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω2) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.  相似文献   

8.
The effects of nutrient loading on phytoplankton, zooplankton and macrozoobenthos in experimental ecosystems was studied in a 7-month experiment. The mesocosms were designed to mimic the major physical characteristics (irradiance, temperature, mixing) of the Dutch coastal zone in the river Rhine plume. Three different nutrient loading scenarios were used, representing present and future conditions. The level of the spring phytoplankton bloom was determined by phosphorus loading, whereas during summer the nitrogen loading determined phytoplankton biomass. The differences in nutrient loading did not result in shifts in phytoplankton species composition. With exception of the early phase of the spring bloom, diatoms dominated phytoplankton biomass in all nutrient treatments. This was ascribed to microzooplankton grazing on smaller algal species. Microzooplankton biomass showed a positive correlation with primary production, and also significant differences between nutrient treatments. Copepod development was limited, probably due to competition with microzooplankton and predation by benthic fauna. Macrobenthos biomass correlated with primary production, and was lower in the lowest nutrient treatment.  相似文献   

9.
In contrast to cold and eurythermal waters, benthic communities of warm brooks in temperate regions have been inadequately studied. In order to investigate the effects of water thermal regime on the benthic communities of warm waters and their relationships with those of cold and eurythermic ones, the macrozoobenthos was studied at eight sites in the Toplica River, and at four sites in its tributary, the Termalni brook. Investigations were carried out seasonally from April 2000 to January 2001. Warm waters of the Termalni brook were characterized by specific macrozoobenthos assemblages that exhibited significant differences to the populations of eurythermal and cold waters of the Toplica River. The dominant taxa in the macrozoobenthos community of warm waters were mainly Gastropoda species. Moreover, benthic communities of warm waters were characterized by lower diversity and greater biomass in comparison with those of cold and eurythermal waters. The gradient of average annual temperatures represented the main ecological factor influencing changes of diversity and biomass along the course of the investigated Termalni brook. Inflow of warm waters at site T6 lead to a decrease in macrozoobenthos abundance and changes in qualitative and quantitative composition of the benthocoenosis of a highland stream, but did not significantly alter diversity.  相似文献   

10.
Jerome J. Weis  David M. Post 《Oikos》2013,122(9):1343-1349
Predation has important cascading impacts on primary producer biomass and community composition in many ecosystems. While most studies have focused on the consequences of interspecific or density differences in predators, it is recognized that phenotypic variation within species can have strong and cascading community and ecosystem consequences at lower trophic levels. In coastal New England lakes, both the presence and life history form of the zooplanktivorous fish alewife, Alosa pseudoharengus, have strong influence on the biomass, size structure and community composition of crustacean zooplankton communities. Here we test the hypothesis that alewife presence and life history will have cascading impacts on phytoplankton biomass and community composition in a mesocosm experiment that previously reported strong biomass and compositional differences of crustacean zooplankton communities among alewife treatments. We show that alewife life history led to small but statistically significant differences in phytoplankton community composition among treatments. This compositional difference was driven primarily by an increase in the density of two edible phytoplankton genera associated with lower zooplankton biomass in the anadromous alewife treatment. Our results show that intraspecific variation in a predator can have cascading effects on primary producer communities. However we did not observe significant differences in total algal biomass.  相似文献   

11.
I. J. Hodgkiss  K. C. Ho 《Hydrobiologia》1997,352(1-3):141-147
There is mounting evidence of a global increase in nutrient levels of coastal waters through riverine and sewage inputs, and in both the numbers and frequency(as well as the species composition) of red tides. However, it is still not possible to conclude the extent to which the increase in red tides in coastal waters can be attributed to the increase in nutrient levels, since so many other factors are involved. Undoubtedly, a relationship exists between red tides and the N and P load of coastal waters, and many nutrient enrichment experiments have shown that marine phytoplankton blooms are often nutrient limited. What is now becoming clear, however, is that although in classical Liebigian terms minimum amounts can be limiting, nutrient ratios (such as N:P and Si:P) are far more important regulators. This paper reviews evidence collected by the authors from Tolo Harbour, Hong Kong together with data collected in Japanese and North European coastal waters by various authors, which indicates that both long term and relatively short term changes in the N:P ratio are accompanied by increased blooms of non-siliceous phytoplankton groups and, furthermore,that the growth of most red tide causative organisms in Hong Kong coastal water is optimized at a low N:P(atomic) ratio of between 6 and 15. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Nutrient cycling and foodwebs in Dutch estuaries   总被引:5,自引:4,他引:1  
P. H. Nienhuis 《Hydrobiologia》1993,265(1-3):15-44
In this review several aspects of the functioning of the Dutch estuaries (Ems-Dollard, Wadden Sea, Oosterschelde, Westerschelde, Grevelingen and Veerse Meer) have been compared. A number of large European rivers (especially Rhine) have a prevailing influence on the nutrient cycling of most Dutch estuaries. Owing to the increased loading of the estuaries with nitrogen and phosphorus compounds, effects of eutrophication on the biological communities could be demonstrated, mainly in the western Wadden Sea. The causality, however, of the relation between increased nutrient loading and increased biomass and production of primary producers in the turbid tidal Dutch ecosystems is questioned. The most obvious biological effects of eutrophication have been observed in a non-tidal brackish lagoon, Veerse Meer. The estuarine food web received major attention. Budget studies of the main primary producers revealed a dominance of phytoplankton in all Dutch estuaries, followed by microphytobenthos in the tidal systems and macrophytes in the lagoons. The quantitative distribution of primary producers and primary and secondary consumers shows remarkable similarities along the physical and chemical estuarine gradients, notwithstanding the large variability in space and the considerable inconstancy over time. Among the secondary consumers (waterfowl, marine fish, larger invertebrates) the levels of organic carbon consumption — expressed in g C m−2 y−1 — are almost the same, when tidal estuaries are compared with non-tidal lagoons, notwithstanding the fact that the consumer populations show large qualitative differences. The transfer from primary consumers to secondary consumers reveals a bottle neck: especially during late winter, when macrozoobenthos reaches its lowest biomass, food may be a serious limiting resource for large numbers of migratory waders foraging on the intertidal flats. The consequences of the Deltaplan, the closure of several estuaries in the southwest of the Netherlands and their subsequent transfer into non-tidal lagoons, offer complicated case studies of ecosystem changes. Several examples of long-term trends in ecosystem development in Grevelingen lagoon have been discussed.  相似文献   

13.
Freshwater discharge from rivers is a powerful forcing agent in coastal ecosystems. It not only generates strong ecological effects in estuaries, but also drives the dynamics of nearshore marine waters where prominent river plumes form biogeochemical hot spots in coastal seas worldwide. Large plumes from major rivers exert important controls on pelagic processes. The majority of estuaries are smaller, however, and the importance of the smaller plumes they generate is unknown. We measured the degree of coupling between freshwater flow and inshore zooplankton in such a plume from a subtropical estuary on the east coast of Australia. Flow regimes encompassed long periods of low freshwater input, punctuated by pulsed freshets that initiated the formation of buoyant, lower‐salinity plumes in the nearshore marine zone. Plumes stimulated phytoplankton biomass in the receiving waters, and ultimately changes in zooplankton assemblages. Zooplankton responded strongly to river discharge: (1) in the absence of substantial freshwater flows and plumes, zooplankton was broadly similar in density and biomass across the estuarine‐marine gradient; (2) freshets that generated significant plumes strongly modified hydrological conditions and lowered zooplankton in the estuarine and nearshore waters, and (3) after the initial freshet, zooplankton in the residual plume was at a higher density in nearshore than shelf waters. We demonstrate that coupling between riverine and coastal pelagic systems operates in small plumes, but that there is substantial temporal variance linked to fluctuations in freshwater delivery. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The OSPAR Eutrophication Strategy requires assessment of eutrophication to be based on the ecological consequences of nutrient enrichment and not just on nutrient enrichment alone, i.e. finding reliable evidence for accelerated growth of algae and higher forms of plant life caused by anthropogenic nutrient enrichment, leading to undesirable disturbance. Fully flushed marine waters of England and Wales (salinity >30) were assessed against OSPAR’s harmonised criteria of nutrient concentration and ratios, chlorophyll concentrations, phytoplankton indicator species, macrophytes, dissolved oxygen (DO) levels, incidence of fish kills and changes in the zoobenthos, using region specific thresholds. None of the thirteen assessment areas, including six nutrient enriched areas, exhibited evidence for undesirable disturbance. This paper details the methods and the overall outcome of the assessment. It presents evidence that undesirable disturbance caused by nutrient enrichment was not detected in English and Welsh marine waters assessed under the OSPAR procedure. The main reasons for the lack of eutrophication problems, such as the underwater light climate limiting the accelerated growth of algae, which might otherwise result from nutrient enrichment, are discussed.  相似文献   

15.
We investigated the fine pigment structure and composition of phytoplankton and benthic cyanobacterial mats in Ward Hunt Lake at the northern limit of High Arctic Canada and the responses of these two communities to in situ nutrient enrichment. The HPLC analyses showed that more than 98% of the total pigment stocks occurred in the benthos. The phytoplankton contained Chrysophyceae, low concentrations of other protists and Cyanobacteria (notably picocyanobacteria), and the accessory pigments chl c2, fucoxanthin, diadinoxanthin, violaxanthin, and zeaxanthin. The benthic community contained the accessory pigments chl b, chl c2, and a set of carotenoids dominated by glycosidic xanthophylls, characteristic of filamentous cyanobacteria. The black surface layer of the mats was rich in the UV‐screening compounds scytonemin, red scytonemin‐like, and mycosporine‐like amino acids, and the blue‐green basal stratum contained high concentrations of light‐harvesting pigments. In a first bioassay of the benthic mats, there was no significant photosynthetic or growth response to inorganic carbon or full nutrient enrichment over 15 days. This bioassay was repeated with increased replication and HPLC analysis in a subsequent season, and the results confirmed the lack of significant response to added nutrients. In contrast, the phytoplankton in samples from the overlying water column responded strongly to enrichment, and chl a biomass increased by a factor of 19.2 over 2 weeks. These results underscore the divergent ecophysiology of benthic versus planktonic communities in extreme latitudes and show that cold lake ecosystems can be dominated by benthic phototrophs that are nutrient sufficient despite their ultraoligotrophic overlying waters.  相似文献   

16.
Chan  F.  Menge  B. A.  Nielsen  K.  & Lubchenco  J. 《Journal of phycology》2003,39(S1):8-9
Net primary production in marine ecosystems ultimately reflects the inputs of nutrients and the efficiency with which nutrients are acquired and used by phytoplankton in growth. In contrast to our understanding of the linkages between nutrient loading and production, the influence of nutrient use efficiency (NUE) on cross-system variations in coastal productivity remains unclear. Nutrient use efficiency at the ecosystem scale is the product of the per capita efficiency of nutrient use in phytoplankton growth and the efficiency with which phytoplankton communities are able to assimilate limiting nutrient(s). We measured the relative dominance of ecosystem N pools by phytoplankton biomass as an index of NUE across 56 inner-shelf sites. These sites were distributed across a strong geographic range of upwelling intensity and productivity along the coasts of Oregon, California and New Zealand. We also compiled an extensive dataset of published NUE values in coastal and oceanic sites in order to assess cross-system patterns and differences in NUE. Our results indicate that exceptional rates of productivity in inner-shelf upwelling systems arise as a consequence of near dominance of ecosystem N pools by phytoplankton biomass. Elevated rates of NUE nevertheless appear to be a transient phenomenon in marine systems. Cross-shelf transects across upwelling fronts off the Oregon coast reveal a temporal pattern of intense phytoplankton blooms and decline that reflects the eventual dominance of ecosystems N pools by detrital and dissolved organic N pools. Our findings suggest that NUE may play a central role in governing the productivity of marine ecosystems.  相似文献   

17.
Complex seasonal patterns of primary producers at the land-sea interface   总被引:1,自引:0,他引:1  
Cloern JE  Jassby AD 《Ecology letters》2008,11(12):1294-1303
Seasonal fluctuations of plant biomass and photosynthesis are key features of the Earth system because they drive variability of atmospheric CO2, water and nutrient cycling, and food supply to consumers. There is no inventory of phytoplankton seasonal cycles in nearshore coastal ecosystems where forcings from ocean, land and atmosphere intersect. We compiled time series of phytoplankton biomass (chlorophyll a) from 114 estuaries, lagoons, inland seas, bays and shallow coastal waters around the world, and searched for seasonal patterns as common timing and amplitude of monthly variability. The data revealed a broad continuum of seasonal patterns, with large variability across and within ecosystems. This contrasts with annual cycles of terrestrial and oceanic primary producers for which seasonal fluctuations are recurrent and synchronous over large geographic regions. This finding bears on two fundamental ecological questions: (1) how do estuarine and coastal consumers adapt to an irregular and unpredictable food supply, and (2) how can we extract signals of climate change from phytoplankton observations in coastal ecosystems where local‐scale processes can mask responses to changing climate?  相似文献   

18.
We conducted nutrient enrichment experiments and field sampling to address three questions: (1) is there nutrient limitation of phytoplankton accumulation within an estuary whose waters are exposed to relatively high nitrogen loading rates, (2) where in the salinity gradient from fresh to seawater (0 to 32‰) is there a shift from phosphorus to nitrogen limitation of phytoplankton accumulation, and (3) is there a seasonal shift in limiting function of phosphorus and nitrogen anywhere in the estuarine gradient. Nitrogen and phosphorus enrichment experiments in the Childs River, an estuary of Waquoit Bay, Massachusetts, USA, showed that the accumulation of phytoplankton biomass in brackish and saline water was limited by supply of nitrate during warm months. The effects of enrichment were less evident in fresh water, with short-lived responses to phosphate enrichment. There was no specific point along the salinity gradient where there was a shift from phosphorus- to nitrogen-limited phytoplankton accumulation; rather, the relative importance of nitrogen and phosphorus changed along the salinity gradient in the estuary and with season of the year. There was no response to nutrient additions during the colder months, suggesting that some seasonally-varying factor, such as light, temperature or a physiological mechanism, restricted phytoplankton accumulation during months other than May-Aug. There was only slight evidence of a seasonal shift between nitrogen- and phosphorus-limitation of chlorophyll accumulation. Phytoplankton populations in nutrient-rich estuaries with short flushing times grow fast, but at the same time the cells may be advected out of the estuaries while still rapidly dividing, thereby providing an important subsidy to production in nearby deeper waters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
We investigated phytoplankton biomass, assemblage structure and production along an environmental gradient to evaluate if chlorophyll-a (as proxy for biomass) and primary production peaked under conditions hypothesised to favour phytoplankton growth. During Spring 2003, a wide area from shallow estuarine waters to the shelf slope off the Río de la Plata was sampled and routine measurements included CTD profiles, nutrients, chlorophyll-a, phytoplankton composition and abundance, seston and organic matter loads, downwelling light and, at selected stations, production versus irradiance experiments. Spatial differences in abiotic variables suggested distinct hydrographic zones that differed in phytoplankton biomass and productivity. Chlorophyll-a was highest under estuarine influence and peaked at low salinity when strong stratification developed in the outer estuary, and was minimum at the shelf break and slope. In that area, however, relatively high chlorophyll-a was associated to oceanographic fronts and to the occurrence of Sub Antarctic water within the photic depth range. Productivity was maximum in shallow waters, but biomass-specific productivity peaked at the outer shelf in oceanographic fronts or in upwelled Sub Antarctic waters. Over shelf and slope waters productivity and biomass were not tightly coupled, as indicated by situations of high biomass and low productivity (Station 9), low biomass and high productivity (Station 10), or both high biomass and productivity (Station 22). Ordination analysis of phytoplankton taxa suggested that assemblages changed gradually along the environmental gradient and correlated to abiotic variables defining geographic zones. Overall results were consistent with an interpretation that phytoplankton biomass and growth were modulated by light in estuarine and coastal waters, and by hydrographic processes on the continental shelf and slope. Handling editor: Luigi Naselli-Flores  相似文献   

20.
陈纯  李思嘉  肖利娟  韩博平 《生态学报》2013,33(18):5777-5784
浮游植物是水体生态系统敞水区最重要的初级生产者,其组成与多样性反映了群落的结构类型和存在状态。通过围隔实验,模拟水库春季发生的营养盐加富和鱼类放养的干扰,分析在这两种干扰下的浮游植物群落演替过程中优势种和稀有种的变化,并通过以丰度与生物量为变量的香农和辛普森多样性指数的计算,分析浮游植物群落演替过程中的多样性变化特征。结果表明,营养盐加富干扰下的浮游植物群落的优势种变化和演替更为明显,营养盐加富与鱼类添加对浮游植物群落多样性变化的影响符合中度干扰理论。在优势种优势度变化较大的浮游植物群落演替过程中,多样性指数与浮游植物生物量有较高的负相关性。在浮游植物群落演替过程中,香农和辛普森多样性指数的变化趋势基本一致,采用丰度与生物量为变量的两种多样性指数的计算结果对实验系统中浮游植物群落多样性的分析结果没有明显的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号