首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

2.
The Regional Feedstock Partnership is a collaborative effort between the Sun Grant Initiative (through Land Grant Universities), the US Department of Energy, and the US Department of Agriculture. One segment of this partnership is the field-scale evaluation of switchgrass (Panicum virgatum L.) in diverse sites across the USA. Switchgrass was planted (11.2 kg PLS ha?1) in replicated plots in New York, Oklahoma, South Dakota, and Virginia in 2008 and in Iowa in 2009. Adapted switchgrass cultivars were selected for each location and baseline soil samples collected before planting. Nitrogen fertilizer (0, 56, and 112 kg N ha?1) was applied each spring beginning the year after planting, and switchgrass was harvested once annually after senescence. Establishment, management, and harvest operations were completed using field-scale equipment. Switchgrass production ranged from 2 to 11.5 Mg ha?1 across locations and years. Yields were lowest the first year after establishment. Switchgrass responded positively to N in 6 of 19 location/year combinations and there was one location/year combination (NY in Year 2) where a significant negative response was noted. Initial soil N levels were lowest in SD and VA (significant N response) and highest at the other three locations (no N response). Although N rate affected some measures of biomass quality (N and hemicellulose), location and year had greater overall effects on all quality parameters evaluated. These results demonstrate the importance of local field-scale research and of proper N management in order to reduce unnecessary expense and potential environmental impacts of switchgrass grown for bioenergy.  相似文献   

3.
Switchgrass, Panicum virgatum L., grown for biomass has been extensively researched where the annual precipitation >760 mm and the climate varies from humid to moist-subhumid. Research is needed for areas that receive <700 mm of precipitation, where the climate varies from dry-subhumid to semiarid. The objectives were to determine (1) the effect of nitrogen fertilization on biomass production, (2) the effect of residual nitrogen on biomass production, (3) the nitrogen yield from harvested biomass, and (4) the concentration of soil organic carbon (SOC) from switchgrass plots. Plots were fertilized annually with nitrogen at the rates of 0, 40, 80, and 120 kg ha?1 from 2008 to 2011 and unfertilized from 2012 to 2015. The biomass yield varied with N rate × production year interactions (P < 0.05), and biomass yield as a function of N rate was either linear or curvilinear depending upon production year. When fertilized, the biomass yield averaged 4.4, 9.4, 11.6, and 13.2 ± 0.4 Mg ha?1 for the 0, 40, 80, and 120 kg ha?1 N rates, respectively. Residual nitrogen sustained high biomass yields for 1 year after fertilization ceased. The nitrogen harvested in biomass varied with N rate × production year interactions (P < 0.05), and the harvested nitrogen yield as a function of N rate was linear each year. Fertilization increased the concentration of SOC an average of 1.0 ± 0.2 mg g?1 of soil. The data suggest that producers could occasionally skip a year of nitrogen fertilization without detrimentally impacting the production of switchgrass biomass.  相似文献   

4.
Switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) are known for high biomass productivity and for various traits that make these species more suitable for marginal environmental growing conditions. The goal of this study was to evaluate the impact of organic vs. inorganic fertilizer application on grass biomass production and soil nutrient status. Switchgrass, tall fescue, and reed canarygrass were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. The six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses, 84 kg ha?1 for switchgrass; (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1); (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1); (4) 89.6 Mg dairy manure ha?1; (5) 44.8 Mg dairy manure compost ha?1; and (6) no fertilizer applied (control plots). Switchgrass with a single harvest per season yielded on average 13.0 Mg ha?1, while tall fescue and reed canarygrass averaged 8.4 and 7.7 Mg ha?1, respectively, under two-cut systems. Switchgrass with no fertilization produced 84% of maximum yield of fertilized treatments. Application of a similar amount of organic N with fresh and composted dairy manure resulted in greater yields for fresh dairy manure. Organic fertilizers strongly impacted the P and K status of soils. Switchgrass is capable of high yields in marginal environments and can provide a land base for environmentally acceptable application of animal manure, although from a yield standpoint it is not very responsive to fertilizer applications.  相似文献   

5.
Switchgrass (Panicum virgatum L.), a warm-season perennial grass, is an important bioenergy crop candidate because it produces high biomass yields on marginal lands and on reclaimed surface mined sites. In companion studies, dry matter (DM) yields for Cave-in-Rock, Shawnee, and Carthage cultivars varied from 4.2 to 13.0 Mg ha?1averaged over 6 years at the reclaimed Hampshire site, and fertilization increased yields of Cave-in-Rock at Black Castle and Coal Mac sites from 0.3 to 2 Mg ha?1 during the first 3 years. The objective of these experiments was to compare the impacts of cultivar and soil amendments on biomass quality and theoretical ethanol production of switchgrass grown on surface mines with differing soil characteristics. Biomass quality was determined for fiber, ash, lignin, digestibility, and carbohydrate contents via near-infrared reflectance spectroscopy, and carbohydrates were used to calculate theoretical ethanol yield (TEY; L Mg?1) and multiplied by biomass yield to calculate theoretical ethanol production (TEP; L ha?1). Cultivars at the Hampshire site did not differ in TEY and ranged from 426 to 457 L Mg?1. Theoretical ethanol production from Cave-in-Rock at Hampshire was 7350 L ha?1, which was higher than other cultivars because of its greater biomass production. This TEP was higher than in other studies which predicted 4000 to 5000 L ha?1. At the Black Castle and Coal Mac sites, fertilizer applications slightly affected biomass quality of switchgrass and TEY, but provided greater TEP as a function of increased yield. Similar to other findings, total switchgrass biomass production has more impact than compositional differences on TEP, so maximizing biomass production is critical for maximizing potential biofuel production. With appropriate soil substrates, fertilization, planning, and management, large areas of reclaimed surface mines can be converted to switchgrass stands to produce high biomass quality and yields to support a bioethanol industry.  相似文献   

6.
Although upgrading bio-oil from fast pyrolysis of biomass is an attractive pathway for biofuel production, nitrogen (N) and mineral matter carried over from the feedstock to the bio-oil represents a serious contaminant in the process. Reducing the N and ash content of biomass feedstocks would improve process reliability and reduce production costs of pyrolytic biofuels. This study investigated: (1) How does switchgrass harvest date influence the yield, N concentration ([N]), and ash concentration of biomass and fast pyrolysis products? and (2) Is there a predictive relationship between [N] of switchgrass biomass and [N] of fast pyrolysis products? Switchgrass from five harvest dates and varying [N] from central Iowa were pyrolyzed using a free-fall reactor. Harvestable biomass peaked in August (8.6 Mg ha?1), dropping significantly by November (6.7 Mg ha?1, P?=?0.0027). Production of bio-oil per unit area mirrored that of harvested biomass at each harvest date; however, bio-oil yield per unit dry biomass increased from 46.6 % to 56.7 % during the season (P?=?0.0018). Allowing switchgrass to senesce lowered biomass [N] dramatically, by as much as 68 % from June to November (P?<?0.0001). Concurrently, bio-oil [N] declined from 0.51 % in June to 0.17 % by November (P?<?0.0001). Significant reductions in ash concentration were also observed in biomass and char. Finally, we show for the first time that the [N] of switchgrass biomass is a strong predictor of the [N] of bio-oil, char, and non-condensable gas with R 2 values of 0.89, 0.94, and 0.88, respectively.  相似文献   

7.
Sustainable development of a bioenergy industry will require low‐cost, high‐yielding biomass feedstock of desirable quality. Switchgrass (Panicum virgatum L.) is one of the primary feedstock candidates in North America, but the potential to grow this biomass crop using fertility from biosolids has not been fully explored. The objective of this study was to examine the effects of harvest frequency and biosolids application on switchgrass in Virginia, USA. ‘Cave‐in‐Rock’ switchgrass from well‐established plots was cut once (November) or twice (July and November) per year between 2010 and 2012. Class A biosolids were applied once at rates of 0, 153, 306, and 459 kg N ha?1 in May 2010. Biomass yield, neutral and acid detergent fiber, cellulose, hemicellulose, lignin, and ash were determined. Theoretical ethanol potential (TEP, l ethanol Mg?1 biomass) and yield (TEY, l ethanol ha?1) were calculated based on cellulose and hemicellulose concentrations. Cutting twice per season produced greater biomass yields than one cutting (11.7 vs. 9.8 Mg ha?1) in 2011, but no differences were observed in other years. Cutting once produced feedstock with greater TEP (478 vs. 438 l Mg?1), but no differences in TEY between cutting frequencies. Biosolids applied at 153, 306, and 459 kg N ha?1 increased biomass yields by 25%, 37%, and 46%, and TEY by 25%, 34%, and 42%, respectively. Biosolids had inconsistent effects on feedstock quality and TEP. A single, end‐of‐season harvest likely will be preferred based on apparent advantages in feedstock quality. Biosolids can serve as an effective alternative to N fertilizer in switchgrass‐to‐energy systems.  相似文献   

8.
Organic fertilizers can improve soil health while providing nutrients for perennial grass growth for bioenergy feedstock, particularly under marginal soil conditions. The impact of organic fertilizer application on perennial grass composition needs clarification. Our objective was to evaluate feedstock composition, and N, P, and K dynamics of switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) provided with either inorganic or organic fertilizer sources. Grasses were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomization of a randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. Six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses; 84 kg ha?1 for switchgrass, (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1), (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1), (4) 89.6 Mg dairy manure ha?1, (5) 44.8 Mg dairy manure compost ha?1, and (6) a control without fertilizer. Organic fertilizers produced a net positive P and K balance, while other treatments had negative balances. Organic fertilizer treatments resulted in lower lignin and gross energy values, and higher total ash and Cl, compared to inorganic fertilizer treatments. Switchgrass biomass had higher fiber and gross energy, lower total ash, and much lower Cl content under organic fertilizer applications than cool-season grasses, making switchgrass a more desirable feedstock regardless of conversion process.  相似文献   

9.
Switchgrass (Panicum virgatum) is a C4 perennial grass and is the model herbaceous perennial bioenergy feedstock. Although it is indigenous to North American grasslands east of the Rocky Mountains and has been planted for forage and conservation purposes for more than 75 years, there is concern that switchgrass grown as a biofuel crop could become invasive. Our objective is to report on the invasion of C4 and C3 grasses into the stands of two switchgrass cultivars following 10 years of management for biomass energy under different N and harvest management regimes in eastern Nebraska. Switchgrass stands were invaded by big bluestem (Andropogon gerardii), smooth bromegrass (Bromus inermis), and other grasses during the 10 years. The greatest invasion by grasses occurred in plots to which 0 N had been applied and with harvests at anthesis. In general, less grass encroachment occurred in plots receiving at least 60 kg of N ha?1 or in plots harvested after frost. There were differences among cultivars with Cave-in-Rock being more resistant to invasion than Trailblazer. There was no observable evidence of switchgrass from this study invading into border areas or adjacent fields after 10 years of management for biomass energy. Results indicate that switchgrass is more likely to be invaded by other grasses than to encroach into native prairies or perennial grasslands seeded on marginally productive cropland in the western Corn Belt of the USA.  相似文献   

10.
Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states. Grain and stover yields from all sites as well as N, P, and K removal from 28 sites are summarized for nine longitude and six latitude bands, two tillage practices (conventional vs no tillage), two stover-harvest methods (machine vs calculated), and two crop rotations {continuous corn (maize) vs corn/soybean [Glycine max (L.) Merr.]}. Mean grain yields ranged from 5.0 to 12.0 Mg ha?1 (80 to 192 bu ac?1). Harvesting an average of 3.9 or 7.2 Mg ha?1 (1.7 or 3.2 tons ac?1) of the corn stover resulted in a slight increase in grain yield at 57 and 51 % of the sites, respectively. Average no-till grain yields were significantly lower than with conventional tillage when stover was not harvested, but not when it was collected. Plant samples collected between physiological maturity and combine harvest showed that compared to not harvesting stover, N, P, and K removal was increased by 24, 2.7, and 31 kg ha?1, respectively, with moderate (3.9 Mg ha?1) harvest and by 47, 5.5, and 62 kg ha?1, respectively, with high (7.2 Mg ha?1) removal. This data will be useful for verifying simulation models and available corn stover feedstock projections, but is too variable for planning site-specific stover harvest.  相似文献   

11.
Switchgrass is a promising bioenergy source that is perennial, productive, native to a broad geographic region, and can grow on marginal, nitrogen (N)-poor soils. Understanding N dynamics in switchgrass is critical to predicting productivity, conserving N, and optimizing the timing of harvest. We examined seasonal changes in N distribution in above- and belowground tissues in switchgrass to quantify N retranslocation rates. Above- and belowground biomass from three sites (two in PA and one in NE) were collected and analyzed for biomass growth and N concentrations at 30-day intervals from June through October. Total living plant mass ranged from 10.3?±?2.4 standard error (SE) to 14.9?±?2.5 SE Mg ha?1. Belowground mass comprised 52–57 % of total mass. Blades had the highest N concentration during summer, ranging from 6 to 22 g kg?1 N. Aboveground N concentrations decreased from September until autumn senescence, whereas belowground N concentration increased from August until senescence. Across the sites, total N retranslocated from aboveground to belowground components between September and October averaged 16.5?±?7.1 (SE)?kg ha?1 N representing 26.7 % of the average maximum N content of aboveground biomass. Based on N fertilizer costs, delayed harvest would conserve some N and provide financial savings on fertilizer ($9 ha?1) if harvest occurs after senescence but before overwinter biomass loss. However, biomass losses of even 10 % will negate potential economic savings accrued from N retention. To maximize environmental and economic savings from N retranslocation and to simultaneously minimize harvest losses, it would be optimal to harvest switchgrass as soon as possible after complete senescence.  相似文献   

12.
Growing food crops for biofuel on productive agricultural lands may become less viable as requirements to feed a growing human population increase. This has increased interest in growing cellulosic biofuel feedstocks on marginal lands. Switchgrass (Panicum virgatum L.), a warm-season perennial, is a viable bioenergy crop candidate because it produces high yields on marginal lands under low fertility conditions. In other studies, switchgrass dry matter (DM) yields on marginal croplands varied from 5.0 to 10.0 Mg ha?1 annually. West Virginia contains immense areas of reclaimed surface mined lands that could support a switchgrass-based biofuel industry, but yield data on these lands are lacking. Field experiments were established in 2008 to determine yields of three switchgrass cultivars on two West Virginia mine sites. One site reclaimed with topsoil and municipal sludge produced biomass yields of 19.0 Mg DM ha?1 for Cave-in-Rock switchgrass after the sixth year, almost double the varieties Shawnee and Carthage, at 10.0 and 5.7 Mg ha?1, respectively. Switchgrass yields on another site with no topsoil were 1.0 Mg ha?1 after the sixth year, with little variation among cultivars. A second experiment was conducted at two other mine sites with a layer of topsoil over gray overburden. Cave-in-Rock was seeded with fertilizer applications of 0, 34, and 68 kg N-P2O5-K2O ha?1. After the third year, the no fertilizer treatment averaged biomass yields of 0.3 Mg ha?1, while responses to the other two rates averaged 1.1 and 2.0 Mg ha?1, respectively. Fertilization significantly increased yields on reclaimed mine soils. Where mine soil fertility was good, yields were similar to those reported on agricultural soils in the Northeastern USA.  相似文献   

13.
Switchgrass (Panicum virgatum L.) is a native North American prairie grass being developed for bioenergy production in the central and eastern USA. The objective of this study was to identify the impacts of harvest time and switchgrass cultivar had on sugar release variables determined through enzymatic hydrolysis. Previously, we reported that delaying harvest of switchgrass until after frost and until after winter resulted in decreased yields of switchgrass but it reduced the amount of ash and nutrients in the biomass. The current study used near-infrared reflectance spectroscopy (NIRS) to broaden an existing set of calibration equations designed to predict composition and sugar release variables of switchgrass. These updated calibrations were then applied to the full set of samples from a multi-year and multi-location switchgrass harvest-management study. Composition and processor sugar yields were significantly affected by location, year, cultivar, and harvest time, of which the time of harvest was the most important. Delaying the time of harvest until after frost or post-winter increased the concentration of structural carbohydrates from 500 to over 570 g kg?1 in the biomass and lignin content from 160 to over 200 g kg?1. Conversely, delaying harvest time lowered the amounts of ash and soluble sugars. The later harvest times also yielded more sugars following processing with yields increasing over 20% from the first harvest. Increased sugar yields are attributable to both increased concentration of sugars in the biomass upon harvest and reduced biomass recalcitrance. Based upon processed sugar yields, it is estimated that a biorefinery producing 76 million liters of ethanol per year would require 229–373 km2 of land cultivated with switchgrass.  相似文献   

14.
The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate treatments were fallow control, reed canarygrass (Phalaris arundinaceae L. Bellevue) with nitrogen (N) fertilizer (75 kg N ha?1), switchgrass (Panicum virgatum L. Shawnee), and switchgrass with N fertilizer (75 kg N ha?1). Based on periodic soil water measurements, permanent sampling locations were assigned to various wetness groups. Surface (0–15 cm) soil organic carbon (SOC), active carbon, wet aggregate stability, pH, total nitrogen (TN), root biomass, and harvested aboveground biomass were measured annually (2011–2014). Multi-year decreases in SOC, wet aggregate stability, and pH followed plowing in 2011. For all years, wettest soils had the greatest SOC and active carbon, while driest soils had the greatest wet aggregate stability and lowest pH. In 2014, wettest soils had significantly (p?<?0.0001) greater SOC and TN than drier soils, and fallow soils had 14 to 20% greater SOC than soils of reed canarygrass + N, switchgrass, and switchgrass + N. Crop type and N fertilization did not result in significant differences in SOC, active carbon, or wet aggregate stability. Cumulative 3-year aboveground biomass yields of driest switchgrass + N soils (18.8 Mg ha?1) were 121% greater than the three wettest switchgrass (no N) treatments. Overall, soil moisture status must be accounted for when assessing soil dynamics during feedstock establishment.  相似文献   

15.
Switchgrass (Panicum virgatum L.) is being developed as a biofuel feedstock for the United States. Efficient and accurate methods to estimate switchgrass biomass feedstock supply within a production area will be required by biorefineries. Our main objective was to determine the effectiveness of indirect methods for estimating biomass yields and composition of switchgrass fields. Indirect measurements were conducted in eastern Nebraska from 2003 to 2007 in which switchgrass biomass yields were manipulated using three nitrogen rates (0 kg N ha-1, 60 kg N ha-1, and 120 kg N ha-1) and two harvest periods (August and post-killing frost). A modified Robel pole was used to determine visual obstruction, elongated leaf height, and canopy height measurements. Prediction models from the study showed that elongated leaf height, visual obstruction, and canopy height measurements accounted for >?91%, >?90%, and >?82% of the variation in switchgrass biomass, respectively. Regression slopes were similar by cultivar (“Cave-in-Rock” and “Trailblazer”), harvest period, and across years indicating that a single model is applicable for determining biomass feedstock supply within a region, assuming similar harvesting methods. Sample numbers required to receive the same level of precision were as follows: elongated leaf height<canopy height<visual obstruction. Twenty to 30 elongated leaf height measurements in a field could predict switchgrass biomass yield within 10% of the mean with 95% confidence. Visual obstruction is recommended on switchgrass fields with low to variable stand densities while elongated leaf height measurements would be recommended on switchgrass fields with high, uniform stand densities. Incorporating an ocular device with a Robel pole provided reasonable frequency estimates of switchgrass, broadleaf weeds, and grassy weeds at the field scale.  相似文献   

16.
Switchgrass (Panicum virgatum L.) is a candidate for cellulosic bioenergy feedstock development. Because biomass yield is the most important biological factor limiting the commercial development and deployment of switchgrass as a cellulosic bioenergy feedstock efforts must be undertaken to develop improved cultivars. The objectives of this study were (1) to conduct two cycles of within-family selection for increased biomass yield in WS4U switchgrass and (2) to simultaneously evaluate progress from selection relative to the mean of the original WS4U population. Each of the 150 WS4U families was subjected to phenotypic selection for vigor, seed production, and disease resistance. The mean of all families increased relative to the original WS4U population by 0.36 Mg ha?1 cycle?1 for biomass yield and 3.0% cycle?1 for ground cover. Gains were uniform across two diverse evaluation locations, indicating that selection gains were robust relative to some variation in Hardiness Zone and soil type. Two cycles of within-family selection led to a homogenization of the diverse families, creating novel recombinations and reducing the family genetic variance to near zero. It is hypothesized that selection and recombination has led to replication of favorable alleles across pedigrees with differing genetic backgrounds, increasing the likelihood of including these favorable alleles in the progeny of future selections. The rate of genetic progress is expected to increase in future cycles of selection with a combination of within-family phenotypic selection and half-sib progeny testing of selected families.  相似文献   

17.
Switchgrass (Panicum virgatum L.) is being developed into a perennial, herbaceous, cellulosic feedstock crop for use in temperate regions of the USA. Information on spatial and temporal variation for stands and biomass yield among and within fields in large agroecoregions is not available. Spatial and temporal variation information is needed to model feedstock availability for biorefineries. In this 5-yr study, the spatial and temporal variation for biomass yield and stands was determined among and within 10 fields located in North Dakota, South Dakota, and Nebraska. Switchgrass fields were managed for bioenergy from 2000 to 2004 for the Nebraska locations and 2001 to 2005 for the South Dakota and North Dakota locations. A global positioning system (GPS) receiver was used to repeatedly measure within field quadrat sites for switchgrass stands using frequency grid (2.25 m2) measurements in June for five growing seasons. Sixteen quadrat (≥1 m2) yield samples were taken post-killing frost in the establishment year and in August in subsequent years at each location. Topographic within field effects on switchgrass stand frequency and biomass yields were largely insignificant. Stands tended to increase from establishment year to year 3 and then begin to plateau. Weather factors, which were the principal source of temporal variation, were more important in switchgrass yield variation than on switchgrass stand frequencies. Temporal standard deviations for yield were higher on quadrat sites with higher than average field means while temporal standard deviations were smaller in quadrat sites that had lower than average field means at six locations. In the Northern Great Plains agroecoregion, there is greater temporal and spatial variation for switchgrass biomass yields among fields than within fields. Results indicate that modeling feedstock availability for a biorefinery can be based on field scale yields.  相似文献   

18.
Cellulosic biofuels are an important source of renewable biomass within the alternative energy portfolio. Switchgrass (Panicum virgatum L.), a perennial C4 grass native to North America, is widely studied as a biofuel feedstock for its consistently high yields and minimal input requirements. The influences of precipitation amount and temporal variability on the fertilizer response of switchgrass productivity are not fully understood. Moreover, global climate models predict changes in rainfall patterns towards lower and increasingly variable soil water availability in several productive areas worldwide, which may impact net primary production of biofuel crops. We conducted a meta-analysis of aboveground net primary production of switchgrass from 48 publications encompassing 82 different locations, 11 soil types, 52 switchgrass cultivars, fertilizer inputs between 0 to 896 kg N ha?1 year?1, and 1 to 6 years of annual productivity measures repeated on the same stand. Productivity of the lowland ecotype doubled with N rates >?131 kg N ha?1 year?1, but upland ecotype productivity increased only by 50%. Results showed an optimum N rate of 30 to 60 kg N ha?1 year?1 for both ecotypes, after which biomass gain per unit of N added decreased. Growing season precipitation (GSPPT) and inter-annual precipitation variability (inter-PPTvar) affected both ecotypes similarly. Long-term mean annual precipitation (MAP) differentially affected lowland and upland productivity, depending on the N level. Productivity responses to MAP and GSPPT were similar for both upland and lowland ecotypes at none or low N rates. When N increased beyond 60 kg N ha?1 year?1, lowland cultivars had a greater growth response to MAP than uplands. Productivity increased with increasing GSPPT and MAP and had a positive linear response to MAP ranging from 600 to 1200 mm year?1. One third of the variability in switchgrass production was accounted for by inter-PPTvar. After accounting for MAP, sites with higher inter-PPTvar had lower switchgrass productivity than sites with lower inter-PPTvar. Increased inter-annual variation in precipitation reduced production of both ecotypes. Predicted changes in the amount and timing of precipitation thus likely will exert greater influence on production of upland than lowland ecotypes of switchgrass.  相似文献   

19.
Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of minerals from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha?1 (fall) and 5.4 Mg ha?1 (spring) with similar high heating value (17.7 MJ kg?1). The K/(Ca?+?Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13 % by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.  相似文献   

20.
In dry climates with long, hot summers and freezing winters, such as that of the southern Great Plains of North America, switchgrass (Panicum virgatum L.) has proven potential as a cellulosic bioenergy feedstock. This trial looked at dry matter (DM) and N yield dynamics of switchgrass overseeded with cool-season legumes and rye (Secale cereale L.), compared to switchgrass fertilized with 0, 56 and 112 kg N ha-1 yr-1 at an infertile and a fertile location. Optimal N fertilizer rate on switchgrass was 56 kg N ha-1 at the infertile location. Legume yield was greater in the first season after planting, compared to subsequent years where annual legumes were allowed to reseed and alfalfa (Medicago sativa L.) was allowed to grow. This suggests that the reseeding model for annual legumes will not work in switchgrass swards grown for biomass unless soil seed banks are built up for more than one year, and that overseeding with alfalfa may have to be repeated in subsequent years to build up plant populations. Overseeding rye and legumes generally did not suppress or enhance switchgrass biomass production compared to unfertilized switchgrass. However, cumulative spring and fall biomass yields were generally greater due to winter and spring legume production, which could be beneficial for grazing or soil conservation systems, but not necessarily for once-yearly late autumn harvest biofuel production systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号