首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
The uptake of macromolecules by nerve terminals which is followed by retrograde axonal transport seems to occur by two different mechanisms, a specific and a nonspecific one. The nonspecific uptake depends on the presence of macromolecules (e.g., horseradish peroxidase) in the vicinity of the nerve terminals at very high concentrations and is enhanced by neuronal activity. In contrast, the specific uptake and subsequent retrograde axonal transport becomes apparent at much lower concentrations of the appropriate macromolecules, depends on the affinity of these ligands for specific binding sites on the surface of the neuronal membrane, and is independent of neuronal activity. The fact that lectins and some bacterial toxins bind to specific membrane glycoproteins or glycolipids allows conclusions to be drawn regarding qualitative and even quantitative aspects of the composition of the plasma membrane of the nerve terminals. 125I-labelled nerve growth factor (NGF), tetanus toxin, cholera toxin, wheat germ agglutinin (WGA), ricin II, phytohemagglutinin (PHA), and concanavalin A (ConA) were injected into the anterior eye chamber of rats where they were taken up by adrenergic nerve terminals and transported retrogradely to the superior cervical ganglion. The saturation of the uptake-transport found for NGF, WGA, choleragenoid and an atoxic binding-fragment of tetanus toxin indicates that limited numbers of binding sites, which showed also different affinites, are present for each ligand on the membrane of the nerve terminals. Competition experiments showed that the binding sites for the ligands investigated are largely independent. Two different classes of binding sites (high affinity-low capacity and intermediate affinity-intermediate capacity) seem to be involved in the saturable retrograde axonal transport of NGF. In contrast, WGA seems to have only a single class of binding-uptake sites with high capacity and relatively low affinity. Strong evidence for positive cooperativity was obtained for the uptake and subsequent transport of the tetanus toxin fragment.  相似文献   

2.
A series of specific macromolecules (tetanus toxin, cholera toxin, nerve growth factor [NGF], and several lectins) have been shown to be transported retrogradely with high selectivity from terminals to cell bodies in various types of neurons. Under identical experimental conditions (low protein concentrations injected), most other macromolecules, e.g. horseradish peroxidase (HRP), albumin, ferritin, are not transported in detectable amounts. In the present EM study, we demonstrate selective binding of tetanus toxin to the surface membrane of nerve terminals, followed by uptake and subsequent retorgrade axonal transport. Tetanus toxin or albumin was adsorbed to colloidal gold particles (diam 200 A). The complex was shown to be stable and well suited as an EM tracer. 1-4 h after injection into the anterior eye chamber of adult rats, tetanus toxin-gold particles were found to be selectively associated with membranes of nerve terminals and preterminal axons. Inside terminals and axons, the tracer was localized mainly in smooth endoplasmic reticulum (SER)-like membrane compartments. In contrast, association of albumin-gold complexes with nervous structures was never observed, in spite of extensive uptake into fibroblasts. Electron microscope and biochemical experiments showed selective retrograde transport of tetanus toxin-gold complexes to the superior cervical ganglion. Specific binding to membrane components at nerve terminals and subsequent internalization and retrograde transport may represent an important pathway for macromolecules carrying information from target organs to the perikarya of their innervating neurons.  相似文献   

3.
Functions of retrograde axonal transport   总被引:2,自引:0,他引:2  
Retrograde axonal transport conveys materials from axon to cell body. One function of this process is recycling of materials originally transported from cell body to axon. In motoneurons, 50% of fast-transported protein is returned. Reversal probably occurs mainly at nerve terminals and, for labeled proteins, is nonselective. Proteolysis is not required, although changes in tertiary protein structure may occur with a repackaging of molecules in organelles different from those in which they were anterograde-transported. A second function is transfer of information about axonal status and terminal environment. Premature reversal of transport adjacent to an axon injury may be a component of a signal that initiates cell body chromatolysis. Transport of target cell-derived molecules with trophic effects on the cell body is exemplified by nerve growth factor transport in neurons dependent on it, and is probably a widespread phenomenon in the developing nervous system. Disorders in retrograde transport or reversal occur in some experimental neuropathies, and certain viruses, as well as tetanus toxin, may gain access to the central nervous system by this route.  相似文献   

4.
Spinal cord motor neurons control voluntary movement by relaying messages that arrive from upper brain centres to the innervated muscles. Despite the importance of motor neurons in human health and disease, the precise control of their membrane dynamics and its effect on motor neuron homoeostasis and survival are poorly understood. In particular, the molecular basis of the co-ordination of specific endocytic events with the axonal retrograde transport pathway is largely unknown. To study these important vesicular trafficking events, we pioneered the use of atoxic fragments of tetanus and botulinum neurotoxins to follow endocytosis and retrograde axonal transport in motor neurons. These neurotoxins bind specifically to pre-synaptic nerve terminals, where they are internalized. Whereas botulinum neurotoxins remain at the neuromuscular junction, tetanus toxin is retrogradely transported along the axon to the cell body, where it is released into the intersynaptic space and is internalized by adjacent inhibitory interneurons. The high neurospecificity and the differential intracellular sorting make tetanus and botulinum neurotoxins ideal tools to study neuronal physiology. In the present review, we discuss recent developments in our understanding of the internalization and trafficking of these molecules in spinal cord motor neurons. Furthermore, we describe the development of a reliable transfection method for motor neurons based on microinjection, which will be extremely useful for dissecting further the molecular basis of membrane dynamics and axonal transport in these cells.  相似文献   

5.
The plant toxin ricin binds to both glycosphingolipids and glycoproteins with terminal galactose and is transported to the Golgi apparatus in a cholesterol-dependent manner. To explore the question of whether glycosphingolipid binding of ricin or glycosphingolipid synthesis is essential for transport of ricin from the plasma membrane to the Golgi apparatus, retrogradely to the endoplasmic reticulum or for translocation of the toxin to the cytosol, we have investigated the effect of ricin and the intracellular transport of this toxin in a glycosphingolipid-deficient mouse melanoma cell line (GM95), in the same cell line transfected with ceramide glucosyltransferase to restore glycosphingolipid synthesis (GM95-CGlcT-KKVK) and in the parental cell line (MEB4). Ricin transport to the Golgi apparatus was monitored by quantifying sulfation of a modified ricin molecule, and toxicity was studied by measuring protein synthesis. The data reveal that ricin is transported retrogradely to the Golgi apparatus and to the endoplasmic reticulum and translocated to the cytosol equally well and apparently at the same rate in cells with and without glycosphingolipids. Importantly cholesterol depletion reduced endosome to Golgi transport of ricin even in cells without glycosphingolipids, demonstrating that cholesterol is required for Golgi transport of ricin bound to glycoproteins. The rate of retrograde transport of ricin was increased strongly by monensin and the lag time for intoxication was reduced both in cells with and in those without glycosphingolipids. In conclusion, neither glycosphingolipid synthesis nor binding of ricin to glycosphingolipids is essential for cholesterol-dependent retrograde transport of ricin. Binding of ricin to glycoproteins is sufficient for all transport steps required for ricin intoxication.  相似文献   

6.
Target-derived NGF promotes the phenotypic maintenance of mature dorsal root ganglion (DRG) nociceptive neurons. Here, we provide in vivo and in vitro evidence for the presence within DRG neurons of endosomes containing NGF, activated TrkA, and signaling proteins of the Rap1/Erk1/2, p38MAPK, and PI3K/Akt pathways. Signaling endosomes were shown to be retrogradely transported in the isolated sciatic nerve in vitro. NGF injection in the peripheral target of DRG neurons increased the retrograde transport of p-Erk1/2, p-p38, and pAkt in these membranes. Conversely, NGF antibody injections decreased the retrograde transport of p-Erk1/2 and p-p38. Our results are evidence that signaling endosomes, with the characteristics of early endosomes, convey NGF signals from the target of nociceptive neurons to their cell bodies.  相似文献   

7.
Radiolabeled Nerve Growth Factor (NGF) was injected into either the mandibular process of the first visceral arch or the limb bud of chick embryos at Days 3.5-14 or Days 4-13 of incubation, respectively. Control embryos received injections of labeled cytochrome-C or labeled NGF plus an excess of unlabeled NGF. The tissues were then processed for autoradiography. The 125I-NGF was retrogradely transported by motoneurons of the trigeminal (V) motor nucleus on Days 3.5-8 of incubation, but not at later stages. Similar transport was seen in motoneurons of the spinal cord lateral motor column from Days 4-10 of incubation, but not at later stages. Sensory neurons of the V ganglion and of the dorsal root ganglia transported NGF at all injection ages. In no instance was the 125I-cytochrome-C transported by sensory or motor neurons. The injection of an excess of cold NGF along with labeled NGF resulted in no evidence of retrograde transport of the labeled NGF indicating that the transport was saturable. The time of transport by these brainstem and spinal cord motoneurons corresponds closely to the points during development at which they have been found to exhibit specific NGF binding. The present results, then, provide further evidence for a possible biological role for NGF during early developmental stages of these motoneuron populations.  相似文献   

8.
Attempt to replace enzymes in a number of fatal lysosomal storage disease involving the central nervous system have as yet been unsuccessful owing to the impermeability of the blood/brain barrier to macromolecules. In order to treat storage disease due to enzyme deficiencies, we investigated the feasibility of transporting an enzyme into the central nervous system without crossing the blood/brain barrier. Using the B-IIb fragment of tetanus toxin (because it is involved in recognition by the nerve-cell endings), retrograde axonal transport toward the spinal cord and trans-synaptic movement, and glucose oxidase as a marker, we demonstrated that a non-toxic enzyme-vector conjugate was taken up by axon terminals. After injection into the gastrocnemius muscle, the B-IIb-glucose oxidase conjugate was detected, both histologically and electrochemically, distally to a ligature on the sciatic nerve. Thus the B-IIb fragment could serve as a vector for glucose oxidase transport into the central nervous system. It was also verified that the transported enzyme retained its activity. Transport of this 150 kDa molecule by fragment B-IIb of tetanus toxin suggests that other enzymes of a lesser molecular mass may also be transported.  相似文献   

9.
Shiga toxin (Stx) is internalized by receptor-mediated endocytosis and transported retrogradely to the endoplasmic reticulum from where the enzymatically active part of the toxin is translocated to the cytosol. In this study, we have investigated the effect of polyunsaturated fatty acids (PUFA) on intoxication and retrograde transport of Stx. In HEp-2 cells, PUFA treatment inhibited Stx intoxication by a factor of 10. Moreover, both Stx internalization and endosome-to-Golgi transport were reduced by PUFA and these reductions can together explain the reduced toxicity. Also cholera toxin internalization was reduced by PUFA treatment. Finally, ricin and Pseudomonas exotoxin 1 cytotoxicity were not reduced by PUFA, demonstrating that PUFA do not cause a general block in retrograde transport to the endoplasmic reticulum. In conclusion, these results clearly demonstrate the importance of PUFA for Stx and cholera toxin trafficking.  相似文献   

10.
The potential functional significance of nerve growth factor (NGF) receptors in spinal motoneurons was studied in newborn rats. 125I-NGF was specifically retrogradely transported by motoneurons from their peripheral nerve terminals. This transport was blocked by an excess of unlabeled NGF but not by cytochrome c. 125I-cytochrome c was not transported. The monoclonal anti-rat NGF receptor antibody, but not a control antibody, was also transported. Despite this ability of motoneurons to transport NGF, treatment of newborn rats with this factor did not increase motoneuron size or synthesis of neurotransmitter enzymes and did not prevent cell death after axotomy. We conclude that NGF receptors of spinal motoneurons can bind, internalize, and retrogradely transport NGF. However, these receptors do not mediate the classic trophic effects of NGF.  相似文献   

11.
On Trk for retrograde signaling.   总被引:13,自引:0,他引:13  
F D Miller  D R Kaplan 《Neuron》2001,32(5):767-770
Target-derived neurotrophins like nerve growth factor (NGF) mediate biological effects by binding to and activating Trk neurotrophin receptors at nerve terminals. The activated Trk receptors then stimulate local effects at nerve terminals, and retrograde effects at neuronal cell bodies that often reside at considerable distances from the terminals. However, the nature of the retrograde signal has been mysterious. Recent experiments suggest that the major retrograde signal required for survival and gene expression consists of activated Trk itself. Remarkably, signaling by Trk may differ at the terminal versus the neuronal cell body as a consequence of the retrograde transport mechanism, thereby allowing NGF to not only promote growth locally, but to specifically support survival and gene expression retrogradely.  相似文献   

12.
The pattern of retrograde axonal transport of the target-derived neurotrophic molecule, nerve growth factor (NGF), correlates with its trophic actions in adult neurons. We have determined that the NGF-related neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are also retrogradely transported by distinct populations of peripheral and central nervous system neurons in the adult. All three 125I-labeled neurotrophins are retrogradely transported to sites previously shown to contain neurotrophin-responsive neurons as assessed in vitro, such as dorsal root ganglion and basal forebrain neurons. The patterns of transport also indicate the existence of neuronal populations that selectively transport NT-3 and/or BDNF, but not NGF, such as spinal cord motor neurons, neurons in the entorhinal cortex, thalamus, and neurons within the hippocampus itself. Our observations suggest that neurotrophins are transported by overlapping as well as distinct populations of neurons when injected into a given target field. Retrograde transport may thus be predictive of neuronal types selectively responsive to either BDNF or NT-3 in the adult, as first demonstrated for NGF.  相似文献   

13.
The retrograde axonal transport of neurotrophins occurs after receptor-mediated endocytosis into vesicles at the nerve terminal. We have been investigating the process of targeting these vesicles for retrograde transport, by examining the transport of [125I]-labelled neurotrophins from the eye to sympathetic and sensory ganglia. With the aid of confocal microscopy, we examined the phenomena further in cultures of dissociated sympathetic ganglia to which rhodamine-labelled nerve growth factor (NGF) was added. We found the label in large vesicles in the growth cone and axons. Light microscopic examination of the sympathetic nerve trunk in vivo also showed the retrogradely transported material to be sporadically located in large structures in the axons. Ultrastructural examination of the sympathetic nerve trunk after the transport of NGF bound to gold particles showed the label to be concentrated in relatively few large organelles that consisted of accumulations of multivesicular bodies. These results suggest that in vivo NGF is transported in specialized organelles that require assembly in the nerve terminal.  相似文献   

14.
The present study was designed to clarify the in vivo function of trkA as an NGF receptor in mammalian neurons. Using the rat sciatic nerve as a model system, we examined whether trkA is retrogradely transported and whether transport is influenced by physiological manipulations. Following nerve ligation, trkA protein accumulates distal to the ligation site as shown by Western blot analysis. The distally accumulating trkA species were tyrosine phosphorylated. The trkA retrograde transport and phosphorylation were enhanced by injecting an excess of NGF in the footpad and were abolished by blocking endogenous NGF with specific antibodies. These results provide evidence that, upon NGF binding, trkA is internalized and retrogradely transported in a phosphorylated state, possibly together with the neurotrophin. Furthermore, our results suggest that trkA is a primary retrograde NGF signal in mammalian neurons in vivo.  相似文献   

15.
A number of protein toxins from plants and bacteria take advantage of transport through the Golgi apparatus to gain entry into the cytosol where they exert their action. These toxins include the plant toxin ricin, the bacterial Shiga toxins, and cholera toxin. Such toxins bind to lipids or proteins at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER, the enzymatically active part is released and then transported into the cytosol, exploiting components of the ER-associated degradation system. In this review, we will discuss transport of different protein toxins, but we will focus on factors involved in entry and sorting of ricin and Shiga toxin into and through the Golgi apparatus.  相似文献   

16.
We have demonstrated in vitro and in vivo the specific binding of a monoclonal antibody to the rat nerve growth factor (NGF) receptor. Previous work had shown that this antibody, designated 192-IgG, does not compete with NGF for binding to the NGF receptor of PC12 cells, but instead interacts with the receptor to increase NGF binding to PC12 cells (Chandler, C. E., L. M. Parsons, M. Hosang, and E. M. Shooter, 1984, J. Biol. Chem., 259:6882-6889). In the present study, a solid-phase separation assay verified the specific formation of a ternary complex of 192-IgG, the NGF receptor, and NGF: 125I-labeled 192-IgG precipitated from solution only when incubated with both solubilized NGF receptor and NGF covalently linked to a solid phase (Sepharose 4B). Filtration assays using plasma membrane preparations of various tissues showed strict correlation of 125I-192-IgG and 125I-labeled NGF binding; only membranes obtained from superior cervical ganglion bound significant amounts of the monoclonal antibody and NGF. Injection of 125I-192-IgG into the rat anterior eye chamber led to accumulation of intact antibody molecules in the ipsilateral superior cervical ganglion, indicating retrograde axonal transport of 125I-192-IgG from the neuronal termini, located at the iris, to the cell bodies situated in the ganglion. The time course and saturation characteristics of 125I-192-IgG retrograde transport were very similar to those previously reported for 125I-NGF transport, indicating that 192-IgG can be internalized and transported by the same mechanisms as is NGF. Consistent with results of the in vitro binding assays, 192-IgG and NGF failed to compete for retrograde transport and were actually co-transported. Retrograde axonal transport of 192-IgG appears to be species specific, since 125I-192-IgG was transported in the rat, but not in mice, gerbils, hamsters, or guinea pigs. These results establish monoclonal antibody 192-IgG as a specific probe for the rat NGF receptor in vitro and in vivo.  相似文献   

17.
Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

18.
Summary Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

19.
Central terminals of the primary sensory neurons depend on the integrity of the retrograde transport mechanism within the peripheral axon. Whenever retrograde transport is impaired (either by injury or by blockade induced by perineural application of microtubule inhibitors) central terminals undergo transganglionic degenerative atrophy (TDA), characterized by depletion of substance P, somatostatin, FRAP (fluoride resistant acid phosphatase), TMPase (thiamine monophosphatase) and lectin-binding fucose-terminated glyco-conjugates. The TDA is essentially a failure of the central terminals to bind the above genuine marker substances. TDA-inflicted central terminals undergo a slowly proceeding ultrastructural deterioration, accompanied by derangement of the dorsal root potential, reflecting decreased functional activity of synaptic transmission between first and second-order cells. One of the important trophic substances carried by retrograde axoplasmic transport to dorsal root ganglion cells is nerve growth factor (NGF); blockade of NGF transport results in TDA; conversely, locally applied NGF delays or prevents TDA.  相似文献   

20.
Tetanus toxin is a potent neurotoxin that inhibits the release of neurotransmitters from presynaptic nerve endings. The mature toxin is composed of a heavy and a light chain that are linked via a disulfide bridge. After entry of tetanus toxin into the cytoplasm, the released light chain causes block of neurotransmitter release. Recent evidence suggests that the L-chain may act as a metalloendoprotease. Here we demonstrate that blockade of neurotransmission by tetanus toxin in isolated nerve terminals is associated with a selective proteolysis of synaptobrevin, an integral membrane protein of synaptic vesicles. No other proteins appear to be affected by tetanus toxin. In addition, recombinant light chain selectively cleaves synaptobrevin when incubated with purified synaptic vesicles. Our data suggest that cleavage of synaptobrevin is the molecular mechanism of tetanus toxin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号