首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Effects of rhizosphere microorganisms on Fe uptake by oat (Avena sativa) and maize (Zea mays) were studied in short-term (10 h) nutrient solution experiments. Fe was supplied either as microbial siderophores (pseudobactin [PSB] or ferrioxamine B [FOB]) or as phytosiderophores obtained as root exudates from barley (epi-3-hydroxy-mugineic acid [HMA]) under varied population densities of rhizosphere microorganisms (axenic, uninoculated, or inoculated with different microorganism cultures). When maize was grown under axenic conditions and supplied with FeHMA, Fe uptake rates were 100 to 300 times higher compared to those in plants supplied with Fe siderophores. Fe from both sources was taken up without the involvement of an extracellular reduction process. The supply of FeHMA enhanced both uptake rate and translocation rate to the shoot (more than 60% of the total uptake). However, increased density of microorganisms resulted in a decrease in Fe uptake rate (up to 65%), presumably due to microbial degradation of the FeHMA. In contrast, when FeFOB or FePSB was used as the Fe source, increased population density of microorganisms enhanced Fe uptake. The enhancement of Fe uptake resulted from the uptake of FeFOB and FePSB by microorganisms adhering to the rhizoplane or living in the free space of cortical cells. The microbial apoplastic Fe pool was not available for root to shoot transport or, thus, for utilization by the plants. These results, in addition to the low uptake rate under axenic conditions, are in contrast to earlier hypotheses suggesting the existence of a specific uptake system for Fe siderophores in higher plants. The bacterial siderophores PSB and FOB were inefficient as Fe sources for plants even when supplied by stem injection. It was concluded that microorganisms are involved in degradation processes of microbial siderophores, as well as in competition for Fe with higher plants.  相似文献   

2.
Utilization of microbial siderophores in iron acquisition by oat   总被引:9,自引:3,他引:6       下载免费PDF全文
Iron uptake by oat (Avena sativa cv Victory) was examined under hydroponic chemical conditions that required direct utilization of microbial siderophores for iron transport. Measurements of iron uptake rates by excised roots from the hydroxamate siderophores, ferrichrome, ferrichrome A, coprogen, ferrioxamine B (FOB), and rhodotorulic acid (RA) showed all five of the siderophores supplied iron, but that FOB and RA were preferentially utilized. FOB-mediated iron uptake increased four-fold when roots were preconditioned to iron stress and involved an active, iron-stress induced transport system that was inhibited by 5 millimolar sodium azide or 0.5 millimolar dinitrophenol. Kinetic studies indicated partial saturation with an apparent Km of 5 micromolar when FOB was supplied at 0.1 to 50 micromolar concentrations. Whole plant experiments confirmed that 5 micromolar FOB was sufficient for plant growth. Siderophore-mediated iron transport was inhibited by Cr-ferrichrome, an analog of ferrated siderophore. Our results confirm the existence of a microbial siderophore iron transport system in oat which functions within the physiological concentrations produced and used by soil microorganisms.  相似文献   

3.
4.
Under iron deficiency the release of so-called phytosiderophores by roots of barley plants ( Hordeum vulgare L. cv. Europa) was greater by a factor of 10 to 50 compared to iron-sufficient plants. This enhanced release occurred particularly in apical zones of the seminal roots and in the lateral root zones. Under iron deficiency, uptake rates for iron, supplied as FeIII phytosiderophore, increased by a factor of ca 5 as compared to iron-sufficient plants. This enhanced uptake rate for iron was also much more pronounced in apical than in basal root zones. In contrast, with supply of the synthetic iron chelate, FelII EDDHA (ferric diaminoethane-N, N-di- o -hydroxyphenyl acetic acid), the Fe deficiency-enhanced uptake rates for iron were only small and similar along the roots, except for the lateral root zones. The high selectivity of barley roots for uptake and translocation of FeIII phytosiderophores compared with FeIII EDDHA is reflected by the fact that, at the same external concentration (2 μ M ), rates of uptake and translocation of iron from FeIII phytosiderophores were between 100 (Fe-sufficient) and 1 000 times higher (Fe-deficient plants) than from FeIII EDDHA. The relatively high rates of uptake and particularly of translocation of iron supplied as FeIII EDDHA in the zone of lateral root formation strongly suggest an apoplastic pathway of radial transport of the synthetic iron chelate into the stele in this root zone.
The results demonstrate that apical root zones are the main sites both for Fe deficiency-enhanced release of phytosiderophores and for uptake and translocation of iron supplied as FeIII phytosiderophores.  相似文献   

5.
To investigate the recognition of Zn-phytosiderophores by the putative Fe-phytosiderophore transporter in maize (Zea mays L.) roots, short-term uptake of 65Zn-labeled phytosiderophores was compared in the Fe-efficient maize cultivar Alice and the maize mutant ys1 carrying a defect in Fe-phytosiderophore uptake. In ys1, uptake and translocation rates of Zn from Zn-phytosiderophores were one-half of those in Alice, but no genotypical difference was found in Zn uptake and translocation from other Zn-binding forms. In ys1 and in tendency also in Alice, Zn uptake decreased with increasing stability constant of the chelate in the order: ZnSO4 [greater than or equal to] Zn-desferrioxamine > Zn-phytosiderophores > Zn-EDTA. Adding a 500-fold excess of free phytosiderophores over Zn to the uptake solution depressed Zn uptake in ys1 almost completely. In uptake studies with double-labeled 65Zn-14C-phytosiderophores, ys1 absorbed the phytosiderophore at similar rates when supplied as a Zn-chelate or the free ligand. By contrast, in Alice 14C-phytosiderophore uptake from the Zn-chelate was 2.8-fold higher than from the free ligand, suggesting that Alice absorbed the complete Zn-phytosiderophore complex via the putative plasma membrane transporter for Fe-phytosiderophores. We propose two pathways for the uptake of Zn from Zn-phytosiderophores in grasses, one via the transport of the free Zn cation and the other via the uptake of nondissociated Zn-phytosiderophores.  相似文献   

6.
To determine the Fe inefficiency factors in the maize mutant ys1 (Zea mays L. cv Yellow Stripe), root exudates of Fe-inefficient ys1 and of two Fe-efficient maize cultivars (Alice, WF9) were collected in axenic nutrient solution cultures. Analysis by thin-layer chromatography and high-performance liquid chromatography revealed that under Fe deficiency ys1 released the phytosiderophore 2[prime]-deoxymugineic acid (DMA) in quantities similar to those of Alice and WF9. Under nonaxenic conditions, DMA released by plants of all three cultivars was rapidly decomposed by microorganisms in the nutrient solution. Uptake experiments with 59Fe-labeled DMA, purified from root exudates of either Fe-deficient Alice or ys1 plants, showed up to 20 times lower uptake and translocation of 59Fe in ys1 than in Alice or WF9 plants. The presence of microorganisms during preculture and short-term uptake experiments had no significant effect on uptake and translocation rates of 59Fe in Alice and ys1 plants. We conclude that Fe inefficiency in the maize mutant ys1 is the result of a defect in the uptake system for Fe-phytosiderophores.  相似文献   

7.
Cucumber, as a strategy I plant, and Maize as a strategy II plant, were cultivated in hydroponic culture in the presence of a ferrated siderophore mixture (1 M) from a culture of Penicillium chrysogenumisolated from soil. The siderophore mixture significantly improved the iron status of these plants as measured by chlorophyll concentration to the same degree as a 100-fold higher FeEDTA supply. Analysis of the siderophore mixture from P. chrysogenum by HPLC and electrospray mass spectrometry revealed that besides the trihydroxamates, coprogen and ferricrocin, large amounts of dimerum acid and fusarinines were present which represent precursor siderophores or breakdown products of coprogen. In order to prove the iron donor properties of dimerum acid and fusarinines for plants, purified coprogen was hydrolyzed with ammonia and the hydrolysis products consisting of dimerum acid and fusarinine were used for iron uptake by cucumber and maize. In short term experiments radioactive iron uptake and translocation rates were determined using ferrioxamine B, coprogen and hydrolysis products of coprogen. While the trihydroxamates revealed negligible or intermediate iron uptake rates by both plant species, the fungal siderophore mixture and the ammoniacal hydrolysis products of coprogen showed high iron uptake, suggesting that dimerum acid and fusarinines are very efficient iron sources for plants. Iron reduction assays using cucumber roots or ascorbic acid also showed that iron bound to hydrolysis products of coprogen was more easily reduced compared to iron bound to trihydroxamates. Ligand exchange studies with epi-hydroxymugineic acid and EDTA showed that iron was easily exchanged between coprogen hydrolysis products and phytosiderophores or EDTA. The results indicate that coprogen hydrolysis products are an excellent source for Fe nutrition of plants.  相似文献   

8.
Most bacteria, fungi, and some plants respond to Fe stress by the induction of high-affinity Fe transport systems that utilize biosyrthetic chelates called siderophores. To competitively acquire Fe, some microbes have transport systems that enable them to use other siderophore types in addition to their own. Bacteria such as Escherichia coli achieve this ability by using a combination of separate siderophore receptors and transporters, whereas other microbial species, such as Streptomyces pilosus, use a low specificity, high-affinity transport system that recognizes more than one siderophore type. By either strategy, such versatility may provide an advantage under Fe-limiting conditions; allowing use of siderophores produced at another organism's expense, or Fe acquisition from siderophores that could otherwise sequester Fe in an unavailable form.Plants that use microbial siderophores may also be more Fe efficient by virtue of their ability to use a variety of Fe sources under different soil conditions. Results of our research examining Fe transport by oat indicate parity in plant and microbial requirements for Fe and suggest that siderophores produced by root-colonizing microbes may provide Fe to plants that can use the predominant siderophore types. In conjunction with transport mechanisms, ecological and soil chemical factors can influence the efficacy of siderophores and phytosiderophores. A model presented here attempts to incorporate these factors to predict conditions that may govern competition for Fe in the plant rhizosphere. Possibly such competition has been a factor in the evolution of broad transport capabilities for different siderophores by microorganisms and plants.  相似文献   

9.
Dhugga KS  Ray PM 《Plant physiology》1991,97(4):1302-1305
The role of the root apoplasm for iron acquisition was studied in wheat (Triticum aestivum L. cv Ares) grown in nutrient solution under controlled environmental conditions. To obtain different levels of Fe in the root apoplasm, plants were supplied in the dark for 5 hours (preloading period) with various 59Fe-labeled Fe compounds [Fe(III) hydroxide; microbial siderophores: Fe rhodotorulic acid (FeRDA) and ferrioxamin (FeDesferal3), and synthetic Fe chelate (FeEDDHA)], each at a concentration of 5 micromolar. Large pools of apoplasmic Fe were formed after supplying Fe(III) hydroxide or FeRDA, but no such pools were observed after supplying FeDesferal or FeEDDHA. Depending on plant Fe nutritional status (preculture ± 0.1 millimolar FeEDTA), apoplasmic Fe was used to different extent for translocation to the shoot. Under Fe deficiency, a much greater fraction of the apoplasmic Fe was utilized than in Fe-sufficient plants, as a result of the different rates of phytosiderophore release. Because of the diurnal rhythm in release of phytosiderophores in Fe-deficient plants, the utilization of the apoplasmic Fe for translocation into the shoot started 2 hours after onset of the light period and was dependent on the concentration of Fe in the apoplasm, which followed the order: Fe(III) hydroxide FeRDA FeDesferal = FeEDDHA. From these results, it can be concluded that in soil-grown plants the apoplasmic Fe pool loaded by various indigenous Fe compounds such as siderophores in the soil solution can be an important Fe source in graminaceous species, particularly during periods of limited Fe supply from the soil.  相似文献   

10.
Soil microorganisms may play an important role in plant Fe uptake from soils with low Fe bioavailability, but there is little direct experimental evidence to date. We grew red clover, an Fe-efficient leguminous plant, in a calcareous soil to investigate the role of soil microbial activity in plant Fe uptake. Compared with plants grown in non-sterlie (NS) grown plants, growth and Fe content of the sterile(s) grown plants was significantly inhibited, but was improved by foliar application of Fe EDTA, indicating that soil microbial activity should play an important role in plant Fe acquisition. When soil solution was incubated with phenolic root exudates from Fe-deficient red clover, a few microbial species thrived while growth of the rest was inhibited, suggesting that the Fe-deficient (-Fe) root exudates selectively influenced the rhizosphere's microbial community. Eighty six per cent of the phenolic-tolerant microbes could produce siderophore [the Fe(III) chelator] under -Fe conditions, and 71% could secrete auxin-like compounds. Interestingly, the synthetic and microbial auxins (MAs) significantly enhanced the Ferric reduction system, suggesting that MAs, in addition to siderophores, are important to plant Fe uptake. Finally, plant growth and Fe uptake in sterilized soil were significantly increased by rhizobia inoculation. Root Fe-EDTA reductase activity in the -Fe plant was significantly enhanced by rhizobia infection, and the rhizobia could produce auxin but not siderophore under Fe-limiting conditions, suggesting that the contribution of nodulating rhizobia to plant Fe uptake can be at least partially attributed to stimulation of turbo reductase activity through nodule formation and auxin production in the rhizosphere. Based on these observations, we propose as a model that root exudates from -Fe plants selectively influence the rhizosphere microbial community, and the microbes in turn favour plant Fe acquisition by producing siderophores and auxins.  相似文献   

11.
Based on the ability of phytosiderophores to chelate other heavy metals besides iron (Fe), phytosiderophores were suggested to prevent graminaceous plants from cadmium (Cd) toxicity. To assess interactions between Cd and phytosiderophore-mediated Fe acquisition, maize (Zea mays) plants were grown hydroponically under limiting Fe supply. Exposure to Cd decreased uptake rates of 59Fe(III)-phytosiderophores and enhanced the expression of the Fe-phytosiderophore transporter gene ZmYS1 in roots as well as the release of the phytosiderophore 2'-deoxymugineic acid (DMA) from roots under Fe deficiency. However, DMA hardly mobilized Cd from soil or from a Cd-loaded resin in comparison to the synthetic chelators diaminetriaminepentaacetic acid and HEDTA. While nano-electrospray-high resolution mass spectrometry revealed the formation of an intact Cd(II)-DMA complex in aqueous solutions, competition studies with Fe(III) and zinc(II) showed that the formed Cd(II)-DMA complex was weak. Unlike HEDTA, DMA did not protect yeast (Saccharomyces cerevisiae) cells from Cd toxicity but improved yeast growth in the presence of Cd when yeast cells expressed ZmYS1. When supplied with Fe-DMA as a Fe source, transgenic Arabidopsis (Arabidopsis thaliana) plants expressing a cauliflower mosaic virus 35S-ZmYS1 gene construct showed less growth depression than wild-type plants in response to Cd. These results indicate that inhibition of ZmYS1-mediated Fe-DMA transport by Cd is not related to Cd-DMA complex formation and that Cd-induced phytosiderophore release cannot protect maize plants from Cd toxicity. Instead, phytosiderophore-mediated Fe acquisition can improve Fe uptake in the presence of Cd and thereby provides an advantage under Cd stress relative to Fe acquisition via ferrous Fe.  相似文献   

12.
Zhang  F. S. 《Plant and Soil》1993,155(1):111-114
Phytosiderophores released by roots of iron-deficient grasses mobilise Fe, Zn, Mn and Cu in calcareous soils. Mobilisation of Fe, Zn and Cu can be explained as the chelation of these metal cations by phytosiderophores. Mobilisation of Mn could not be so explained because phytosiderophores have a much smaller affinity for Mn than for Fe, Cu and Zn. Model experiments have been made with freshly precipitated Fe(OH)3 and different soils to study the mobilisation of iron and manganese by plant-borne chelating phytosiderophores, the synthetic metal chelators DTPA and the microbial metal chelator sulphonated ferrioxamine B (FOB). Compared with the synthetic chelator DTPA, the plant-borne chelating phytosiderophores mobilised Fe very efficiently, but no change was observed in the Mn mobilisation by phytosiderophores.Different phytosiderophores, as well as the microbial metal chelator FOB, were used to compare the mobilisation of iron and manganese in a calcareous soil.  相似文献   

13.
Roots of grasses in response to iron deficiency markedly increase the release of chelating substances (`phytosiderophores') which are highly effective in solubilization of sparingly soluble inorganic FeIII compounds by formation of FeIIIphytosiderophores. In barley (Hordeum vulgare L.), the rate of iron uptake from FeIIIphytosiderophores is 100 to 1000 times faster than the rate from synthetic Fe chelates (e.g. Fe ethylenediaminetetraacetate) or microbial Fe siderophores (e.g. ferrichrome). Reduction of FeIII is not involved in the preferential iron uptake from FeIIIphytosiderophores by barley. This is indicated by experiments with varied pH, addition of bicarbonate or of a strong chelator for FeII (e.g. batho-phenanthrolinedisulfonate). The results indicate the existence of a specific uptake system for FeIIIphytosiderophores in roots of barley and all other graminaceous species. In contrast to grasses, cucumber plants (Cucumis sativus L.) take up iron from FeIIIphytosiderophores at rates similar to those from synthetic Fe chelates. Furthermore, under Fe deficiency in cucumber, increased rates of uptake of FeIIIphytosiderophores are based on the same mechanism as for synthetic Fe chelates, namely enhanced FeIII reduction and chelate splitting. Two strategies are evident from the experiments for the acquisition of iron by plants under iron deficiency. Strategy I (in most nongraminaceous species) is characterized by an inducible plasma membrane-bound reductase and enhancement of H+ release. Strategy II (in grasses) is characterized by enhanced release of phytosiderophores and by a highly specific uptake system for FeIIIphytosiderophores. Strategy II seems to have several ecological advantages over Strategy I such as solubilization of sparingly soluble inorganic FeIII compounds in the rhizosphere, and less inhibition by high pH. The principal differences in the two strategies have to be taken into account in screening methods for resistance to `lime chlorosis'.  相似文献   

14.
15.
Fe nutrition demand and utilization by the green alga Dunaliella bardawil   总被引:2,自引:0,他引:2  
Keshtacher-Liebson  Ety  Hadar  Yitzhak  Chen  Yona 《Plant and Soil》1999,215(2):175-182
The Fe nutritional demands, requirements and mechanisms of uptake by Dunaliella bardawil as well as potential Fe sources were studied. A comparison between Fe uptake from bacterial siderophores and from synthetic ferric chelates revealed algal growth response and chlorophyll synthesis to increasing concentrations and availability at a range of 0.01 μM–5 μM, as well as differences in efficiency. Furthermore, chloroplast ultrastructure, as observed by TEM, was affected by Fe deficiency, as was chlorophyll content. Ferric reduction is involved in the Fe uptake mechanism of Fe-stressed D. bardawil. Nutrient solution with controlled levels of free Fe2+ as well as spectrophotometric assays were used to measure Fe3+ reduction. This study shows that D. bardawil utilizes Fe3+ via a reduction mechanism, similar to that of strategy-I higher plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Iron availability to plants is often limited when soil pH is 7 or higher. In C rich, but Fe limiting environments, microorganisms may produce organic chelators that complex Fe and increase its availability to plants. Seedlings of soybean (Glycine max L.) and oat (Avena sativa L.) plants, with Fe-efficient or inefficient uptake mechanisms, were grown in an Fe free nutrient solution at pH 7.5. Experiments (using a complete factorial design) were conducted in which these seedlings were transferred to a fresh nutrient solution and treated with Fe sources (FeCl3, FeEDDHA, and Fe complexed with chelators produced by compost microorganisms (CCMs) after their enrichment in an Fe free, glucose medium), Fe concentrations (0 and 6.7 M) and antibiotic (0 and 100 mg streptomycin L-1). Dry weight of soybean plants and Fe uptake were significantly (P 0.05) higher when Fe was supplied as 59FeCCM than as59 FeCl3 and similar to when Fe was supplied as59 FeEDDHA. Dry weight of the Fe-inefficient Tam 0-312 oat cultivar was also significantly higher when Fe was supplied as FeCCM. Fe uptake by oat, when supplied as 59FeCCM, was twice that for59 FeEDDHA and 59FeCl3. Chlorophyll concentration in plants supplied with FeCCM and FeEDDHA was significantly greater (P 0.05) than in minus Fe control plants and in FeCl3 supplied plants. Activities of catalase and peroxidase, measured as indicators of Fe nutrition in soybean and oats, were generally increased when Fe was supplied with FeCCM as compared to the other Fe sources. The experimental conditions in which the CCMs were produced are similar to those in soil after amendment with manures or other readily available organic materials. These CCMs can bind with Fe, even under slightly alkaline conditions, and effectively improve Fe nutrition of soybean and oat.  相似文献   

17.
The siderophore rhizoferrin, produced by the fungus Rhizopus arrhizus, was previously found to be as an efficient Fe source as Fe-ethylenediamine-di(o-hydroxphenylacetic acid) to strategy I plants. The role of this microbial siderophore in Fe uptake by strategy II plants is the focus of this research. Fe-rhizoferrin was found to be an efficient Fe source for barley (Hordeum vulgare L.) and corn (Zea mays L.). The mechanisms by which these Gramineae utilize Fe from Fe-rhizoferrin and from other chelators were studied. Fe uptake from 59Fe-rhizoferrin, 59Fe-ferrioxamine B, 59Fe-ethylenediaminetetraacetic acid, and 59Fe-2[prime]-deoxymugineic acid by barley plants grown in nutrient solution at pH 6.0 was examined during periods of high (morning) and low (evening) phytosiderophore release. Uptake and translocation rates from Fe chelates paralleled the diurnal rhythm of phytosiderophore release. In corn, however, similar uptake and translocation rates were observed both in the morning and in the evening. A constant rate of the phytosiderophore's release during 14 h of light was found in the corn cv Alice. The results presented support the hypothesis that Fe from Fe-rhizoferrin is taken up by strategy II plants via an indirect mechanism that involves ligand exchange between the ferrated microbial siderophore and phytosiderophores, which are then taken up by the plant. This hypothesis was verified by in vitro ligand-exchange experiments.  相似文献   

18.
Two greenhouse experiments were focused on the application of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) in planting of high-biomass crops on reclaimed spoil banks. In the first experiment, we tested the effects of different organic amendments on growth of alfalfa and on the introduced microorganisms. While growth of plants was supported in substrate with compost amendment, mycorrhizal colonization was suppressed. Lignocellulose papermill waste had no negative effects on AMF, but did not positively affect growth of plants. The mixture of these two amendments was found to be optimal in both respects, plant growth and mycorrhizal development. Decreasing doses of this mixture amendment were used in the second experiment, where the effects of microbial inoculation (assumed to compensate for reduced doses of organic matter) on growth of two high-biomass crops, hemp and reed canarygrass, were studied. Plant growth response to microbial inoculation was either positive or negative, depending on the dose of the applied amendment and plant species.  相似文献   

19.
Strategies of plants for acquisition of iron   总被引:23,自引:2,他引:21  
Two different types of root response to Fe deficiency (strategies) have been identified in species of the Plant Kingdom. In Strategy I which occurs in all plant species except grasses, a plasma membrane-bound reductase is induced with enhanced net excretion of protons. Often the release of reductants/chelators is also higher. In Strategy II which is confined to grasses, there is an increase in the biosynthesis and secretion of phytosiderophores which form chelates with FeIII. Uptake of FeIII phytosiderophores is mediated by a specific transporter in the plasma membrane of root cells of grasses. From results based mainly on long-term studies under non-axenic conditions this classification into two strategies has been questioned, and the utilization of Fe from microbial siderophores has been considered as an alternative strategy particularly in grasses. Possible reasons for controversial results are discussed in some detail. The numerous effects of microorganisms in non-axenic cultures, and the as yet inadequate characterization of the so-called standard (basic) reductase present major limitations to understanding different mechanisms of Fe acquisition. In comparison with the progress made in identifying the cellular mechanisms of root responses in Strategy I and Strategy II plants, our understanding is poor concerning the processes taking place in the apoplasm of root rhizodermal cells and of the role of low-molecular-weight root exudates and siderophores in Fe acquisition of plants growing in soils of differing Fe availability.  相似文献   

20.
铁载体是微生物在缺铁条件下分泌的小分子有机化合物,以获取铁元素维持其生长。细菌分泌的铁载体在拮抗植物病原菌和促进植物生长方面具有重要作用。本文总结了细菌铁载体拮抗植物病原真菌的营养和生态位竞争、诱导植物诱导性系统抗性、扰乱病原菌铁稳态的机制,以及促进植物生长的作用,以解释细菌分泌的铁载体在多功能微生物菌剂研制中的重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号