首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA topoisomerases have been shown to cleave DNA phosphodiester bond and simultaneously become linked to the DNA at the cleavage site via a phosphotyrosine linkage (Tse, Y.-C., Kirkegaard, K., and Wang, J. C. (1980) J. Biol. Chem. 255, 5560-5565). For prokaryotic DNA topoisomerases, this is observed only when denaturant or protease is added to the topoisomerase-DNA incubation mixture. Previous attempts to reform DNA phosphodiester bonds from the covalent protein-DNA complex have been unsuccessful. Using oligonucleotides as substrates, the cleavage reaction of Escherichia coli DNA topoisomerase I occurs spontaneously (Tse-Dinh, Y.-C., McCarron, B. G. H., Arentzen, R., and Chowdhry, V. (1983) Nucleic Acids Res. 11, 8691-8701). Upon reaction with oligo(dA) labeled with 32P using terminal transferase and [alpha-32P]dATP, the enzyme becomes covalently linked to the 32P-labeled oligonucleotide. This 32P label can then be transferred to the 3'-OH end of a linear or nicked duplex DNA molecule subsequently added to the reaction mixture. This phosphodiester bond rejoining reaction can occur at a recessed, blunt, or protruding 3'-end of double-stranded DNA. It requires magnesium ions. These observations suggest that the covalent protein-DNA complex is a true intermediate during topoisomerization. Implications on the structure of prokaryotic type I DNA topoisomerases as compared to their eukaryotic counterparts are discussed.  相似文献   

2.
J Sekiguchi  S Shuman 《The EMBO journal》1996,15(13):3448-3457
Vaccinia DNA topoisomerase, a eukaryotic type I enzyme, binds and cleaves duplex DNA at sites containing the sequence 5''-(T/C)CCTT. We report the identification of Tyr70 as the site of contact between the enzyme and the +4C base of its target site. This was accomplished by UV-crosslinking topoisomerase to bromocytosine-substituted DNA, followed by isolation and sequencing of peptide-DNA photoadducts. A model for the topoisomerase-DNA interface is proposed, based on the crystal structure of a 9 kDa N-terminal tryptic fragment. The protein domain fits into the DNA major groove such that Tyr70 is positioned close to the +4C base and Tyr72 is situated near the +3C base. Mutational analysis indicates that Tyr70 and Tyr72 contribute to site recognition during covalent catalysis. We propose, based on this and other studies of the vaccinia protein, that DNA backbone recognition and reaction chemistry are performed by a relatively well-conserved 20 kDa C-terminal portion of the vaccinia enzyme, whereas discrimination of the DNA sequence at the cleavage site is accomplished by a separate N-terminal domain, which is less conserved between viral and cellular proteins. Division of function among distinct structural modules may explain the different site specificities of the eukaryotic type I topoisomerases.  相似文献   

3.
DNA topoisomerases are the key enzymes involved in carrying out high precision DNA transactions inside the cells. However, they are detrimental to the cell when a wide variety of topoisomerase-targeted drugs generate cytotoxic lesions by trapping the enzymes in covalent complexes on the DNA. The discovery of unusual heterodimeric topoisomerase I in kinetoplastid family added a new twist in topoisomerase research related to evolution, functional conservation and their preferential sensitivity to Camptothecin. On the other hand, structural and mechanistic studies on kinetoplastid topoisomerase II delineate some distinguishing features that differentiate the parasitic enzyme from its prokaryotic and eukaryotic counterparts. This review summarizes the recent advances in research in kinetoplastid topoisomerases, their evolutionary significance and the death of the unicellular parasite Leishmania donovani induced by topoisomerase I inhibitor camptothecin.  相似文献   

4.
In the absence of DNA aggregation, spermidine inhibited the relaxation of negatively supercoiled DNA by Escherichia coli topoisomerase I at concentrations of the polyamine normally found intracellularly. Spermidine also curtailed the cleavage of negatively supercoiled ColE1 DNA by the enzyme in the absence of Mg2+. On the contrary, knotting of M13 single-stranded DNA circles catalyzed by topoisomerase I was stimulated by the polyamine. Relaxation of supercoiled DNA by eukaryotic type 1 topoisomerases, such as calf thymus topoisomerase I and wheat germ topoisomerase, was significantly stimulated by spermidine in the same range of concentrations that inhibited the prokaryotic enzyme. In reactions catalyzed by S1 nuclease, the polyamine enhanced the digestion of single-stranded DNA and inhibited the nicking of negatively supercoiled DNA. These results suggest that spermidine modifies the supercoiled duplex substrate in these reactions by modulating the degree of single strandedness.  相似文献   

5.
The putative structural gene encoding the vaccinia virus type I DNA topoisomerase (EC 5.99.1.2) was expressed in Escherichia coli under the control of a bacteriophage T7 promoter. Provision of T7 RNA polymerase resulted in the accumulation to high level of a Mr = 33,000 type I topoisomerase with the properties of the vaccinia enzyme. A simple purification scheme yielded approximately 8 mg of recombinant vaccinia topoisomerase from 400 ml of bacteria. DNA unwinding by the enzyme was stimulated by magnesium, manganese, calcium, cobalt, and spermidine, but inhibited by copper and zinc. Like eukaryotic cellular type I topoisomerases, but unlike the prokaryotic counterpart, the recombinant topoisomerase relaxed positively and negatively supercoiled DNA. The viral topoisomerase I was, however, resistant to the effects of camptothecin, a drug that specifically inhibits cellular type I topoisomerases.  相似文献   

6.
We conducted a comparative study of the properties of topoisomerase I isolated from maize nuclei and mitochondria. We found that nuclear and mitochondrial enzymes possess different ability to bind single stranded DNA. Study of the enzyme activity dependence on Mg2+ demonstrated an absolute dependence of the mitochondrial topoisomerase activity. Contrary, nuclear enzyme activity was not absolutely dependent but stimulated by the magnesium cation. Mitochondrial topoisomerase formed covalent bond with the 5'-end of the cleaved DNA what is unique property of prokaryotic topoisomerase I. Nuclear enzyme bound covalently to the 3'-end like all eukaryotic topoisomerases I. The search through databases revealed genes which could encode mitochondrial topoisomerase I in the genomes of higher plants. Using both cDNA sequencing and in silico methods we demonstrated an existence of the ortholog gene in the maize genome. This gene shares significant homology with prokaryotic topoisomerase I genes that may explain differences in the properties of the mitochondrial and nuclear enzyme. Data obtained is of a significant interest both from the point of view of plant organelle evolution and mitochondrial genome expression mechanisms study.  相似文献   

7.
It has been shown earlier that eukaryotic type I DNA topoisomerases act on duplex DNA regions, while eubacterial type I topoisomerases require single-stranded regions. The present paper demonstrates that the type I topoisomerase from extremely thermophilic archaebacteria, reverse gyrase, winds DNA by binding to single-stranded DNA regions. Thus, type I topoisomerases, both relaxing one in eubacteria and reverse gyrase in extremely thermophilic archaebacteria share a substrate specificity to melted DNA regions. The important consequence of this specificity is that the cellular DNA superhelical stress actively controlled by bacterial topoisomerases is confined to a narrow range characterized by a low stability of the double helix. Hence we suppose that bacterial topoisomerase systems control duplex stability near its minimum, for which purpose they create an appropriate negative superhelicity at moderate temperatures or a positive one at extremely high temperatures, the feedback being ensured by the aforesaid specificity of type I bacterial topoisomerases.  相似文献   

8.
Although highly homologous to the other eukaryotic type I DNA topoisomerases, vaccinia virus DNA topoisomerase I is distinct in its resistance to the anti-cancer drug camptothecin. After comparison of available sequences of sensitive and resistant type I topoisomerases, the aspartic acid at position 221 of vaccinia virus topoisomerase I is mutated to a valine. The resulting mutant protein is partially active. In contrast to the wild type enzyme, the relaxation of supercoiled DNA is inhibited by camptothecin. Its cleavage reaction with DNA is enhanced by camptothecin due to inhibition of religation of DNA. This demonstrates that even though the size of vaccinia virus is only about one-third that of the other camptothecin-sensitive topoisomerases, it has a potential interaction site for camptothecin.  相似文献   

9.
DNA topoisomerases play essential roles in many DNA metabolic processes. It has been suggested that topoisomerases play an essential role in DNA repair. Topoisomerases can introduce DNA damage upon exposure to drugs that stabilize the covalent protein-DNA intermediate of the topoisomerase reaction. Lesions in DNA are also able to trap topoisomerase-DNA intermediates, suggesting that topoisomerases have the potential to either assist in DNA repair by locating sites of damage or exacerbating DNA damage by generation of additional damage at the site of a lesion. We have shown that overexpression of yeast topoisomerase I (TOP1) conferred hypersensitivity to methyl methanesulfonate and other DNA-damaging agents, whereas expression of a catalytically inactive enzyme did not. Overexpression of topoisomerase II did not change the sensitivity of cells to these DNA-damaging agents. Yeast cells lacking TOP1 were not more resistant to DNA damage than cells expressing wild type levels of the enzyme. Yeast topoisomerase I covalent complexes can be trapped efficiently on UV-damaged DNA. We suggest that TOP1 does not participate in the repair of DNA damage in yeast cells. However, the enzyme has the potential of exacerbating DNA damage by forming covalent DNA-protein complexes at sites of DNA damage.  相似文献   

10.
DNA topoisomerase I from Mycobacterium smegmatis unlike many other type I topoisomerases is a site specific DNA binding protein. We have investigated the sequence specific DNA binding characteristics of the enzyme using specific oligonucleotides of varied length. DNA binding, oligonucleotide competition and covalent complex assays show that the substrate length requirement for interaction is much longer ( approximately 20 nucleotides) in contrast to short length substrates (eight nucleotides) reported for Escherichia coli topoisomerase I and III. P1 nuclease and KMnO(4) footprinting experiments indicate a large protected region spanning about 20 nucleotides upstream and 2-3 nucleotides downstream of the cleavage site. Binding characteristics indicate that the enzyme interacts efficiently with both single-stranded and double-stranded substrates containing strong topoisomerase I sites (STS), a unique property not shared by any other type I topoisomerase. The oligonucleotides containing STS effectively inhibit the M. smegmatis topoisomerase I DNA relaxation activity.  相似文献   

11.
Mycobacterium smegmatis topoisomerase I has several distinctive features. The absence of the zinc finger motif found in other prokaryotic type I topoisomerases and the ability of the enzyme to recognise single-stranded and duplex DNA are unique characteristics of the enzyme. We have mapped the strong topoisomerase sites of the enzyme on genomic DNA sequences from Mycobacterium tuberculosis and M.smegmatis. The enzyme does not nick DNA in random fashion and DNA cleavage occurred at a few specific sites. Mapping of these sites revealed conservation of a pentanucleotide motif CG/TCT↓T at the cleavage site (↓ represents the cleavage site). The enzyme binds and cleaves consensus oligonucleotides having this sequence motif. The protein exhibits a very high preference for C or a G residue at the +2 position with respect to the cleavage site. Based on earlier and the present studies we propose that the enzyme functions in vivo mainly at these specific sites to carry out topological reactions.  相似文献   

12.
Type IB topoisomerases are essential enzymes that are responsible for relaxing superhelical tension in DNA by forming a transient covalent nick in one strand of the DNA duplex. Topoisomerase I is a target for anti-cancer drugs such as camptothecin, and these drugs also target the topoisomerases I in pathogenic trypanosomes including Leishmania species and Trypanosoma brucei. Most eukaryotic enzymes, including human topoisomerase I, are monomeric. However, for Leishmania donovani, the DNA-binding activity and the majority of residues involved in catalysis are located in a large subunit, designated TOP1L, whereas the catalytic tyrosine residue responsible for covalent attachment to DNA is located in a smaller subunit, called TOP1S. Here, we present the 2.27A crystal structure of an active truncated L.donovani TOP1L/TOP1S heterodimer bound to nicked double-stranded DNA captured as a vanadate complex. The vanadate forms covalent linkages between the catalytic tyrosine residue of the small subunit and the nicked ends of the scissile DNA strand, mimicking the previously unseen transition state of the topoisomerase I catalytic cycle. This structure fills a critical gap in the existing ensemble of topoisomerase I structures and provides crucial insights into the catalytic mechanism.  相似文献   

13.
A ParE-ParC fusion protein is a functional topoisomerase.   总被引:4,自引:0,他引:4  
L S Lavasani  H Hiasa 《Biochemistry》2001,40(29):8438-8443
Type II topoisomerases are responsible for DNA unlinking during DNA replication and chromosome segregation. Although eukaryotic enzymes are homodimers and prokaryotic enzymes are heterotetramers, both prokaryotic and eukaryotic type II topoisomerases belong to a single protein family. The amino- and carboxyl-terminal domains of eukaryotic enzymes are homologous to the ATP-binding and catalytic subunits of prokaryotic enzymes, respectively. Topoisomerase IV, a prokaryotic type II topoisomerase, consists of the ATP-binding subunit, ParE, and the catalytic subunit, ParC. We have joined the coding regions of parE and parC in frame and constructed a fusion protein of the two subunits of topoisomerase IV. This fusion protein, ParEC, can catalyze both decatenation and relaxation reactions. The ParEC protein is also capable of decatenating replicating daughter DNA molecules during oriC DNA replication in vitro. Furthermore, the fusion gene, parEC, complements the temperature-sensitive growth of both parC and parE strains, indicating that the ParEC protein can substitute for topoisomerase IV in vivo. These results demonstrate that a fusion protein of the two subunits of topoisomerase IV is a functional topoisomerase. Thus, a heterotetrameric type II topoisomerase can be converted into a homodimeric type II topoisomerase by gene fusion.  相似文献   

14.
DNA topoisomerases are important clinical targets for antibacterial and anticancer therapy. At least one type IA DNA topoisomerase can be found in every bacterium, making it a logical target for antibacterial agents that can convert the enzyme into poison by trapping its covalent complex with DNA. However, it has not been possible previously to observe the consequence of having such a stabilized covalent complex of bacterial topoisomerase I in vivo. We isolated a mutant of recombinant Yersinia pestis topoisomerase I that forms a stabilized covalent complex with DNA by screening for the ability to induce the SOS response in Escherichia coli. Overexpression of this mutant topoisomerase I resulted in bacterial cell death. From sequence analysis and site-directed mutagenesis, it was determined that a single amino acid substitution in the TOPRIM domain changing a strictly conserved glycine residue to serine in either the Y. pestis or E. coli topoisomerase I can result in a mutant enzyme that has the SOS-inducing and cell-killing properties. Analysis of the purified mutant enzymes showed that they have no relaxation activity but retain the ability to cleave DNA and form a covalent complex. These results demonstrate that perturbation of the active site region of bacterial topoisomerase I can result in stabilization of the covalent intermediate, with the in vivo consequence of bacterial cell death. Small molecules that induce similar perturbation in the enzyme-DNA complex should be candidates as leads for novel antibacterial agents.  相似文献   

15.
Quinolones are the most active oral antibacterials in clinical use and act by increasing DNA cleavage mediated by prokaryotic type II topoisomerases. Although topoisomerase IV appears to be the primary cytotoxic target for most quinolones in Gram-positive bacteria, interactions between the enzyme and these drugs are poorly understood. Therefore, the effects of ciprofloxacin on the DNA cleavage and religation reactions of Staphylococcus aureus topoisomerase IV were characterized. Ciprofloxacin doubled DNA scission at 150 nM drug and increased cleavage approximately 9-fold at 5 microM. Furthermore, it dramatically inhibited rates of DNA religation mediated by S. aureus topoisomerase IV. This inhibition of religation is in marked contrast to the effects of antineoplastic quinolones on eukaryotic topoisomerase II, and suggests that the mechanistic basis for quinolone action against type II topoisomerases has not been maintained across evolutionary boundaries. The apparent change in quinolone mechanism was not caused by an overt difference in the drug interaction domain on topoisomerase IV. Therefore, we propose that the mechanistic basis for quinolone action is regulated by subtle changes in drug orientation within the enzyme.drug.DNA ternary complex rather than gross differences in the site of drug binding.  相似文献   

16.
Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I   总被引:12,自引:0,他引:12  
Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme concentration, were less sensitive to competition, and were most refractory to religation promoted by salt, divalent cations, and elevated temperature. Cleavage at lower affinity sites required higher enzyme concentration and was more sensitive to competition and induced religation. Cleavage site selection correlated with a pentameric sequence motif (C/T)CCTT immediately preceding the site of strand scission. Noncovalent DNA binding by topoisomerase predominated over covalent adduct formation, as revealed by nitrocellulose filter-binding studies. The noncovalent binding affinity of vaccinia topoisomerase for particular subsegments of pUC19 DNA correlated with the strength and/or the number of DNA cleavage sites contained therein. Thus, cleavage site selection is likely to be dictated by specific noncovalent DNA-protein interactions. This was supported by the demonstration that a mutant vaccinia topoisomerase (containing a Tyr----Phe substitution at the active site) that was catalytically inert and did not form the covalent intermediate, nevertheless bound DNA with similar affinity and site selectivity as the wild-type enzyme. Noncovalent binding is therefore independent of competence in transesterification. It is construed that the vaccinia topoisomerase is considerably more stringent in its cleavage and binding specificity for duplex DNA than are the cellular type I enzymes.  相似文献   

17.
A method has been used to quantitate the reaction between eukaryotic type I DNA topoisomerase and topological forms of DNA. This procedure (Trask, D.K., DiDonato, J.D. and Muller, M.T. (1984) Eur. Mol. Biol. Organ. J. 3, 671-676) measures the efficiency of DNA cleavage and concurrent formation of a covalent enzyme/DNA complex. Eukaryotic type I topoisomerases react preferentially by 5-10-fold with supercoiled DNA. The effect of supercoiling is clearly evident in that both the initial rate and final extent of the reaction is elevated. Because the dissociation rate is much lower than the association rate, it is possible to isolate native topoisomerase/DNA complexes. These complexes are comprised of enzyme molecules which are catalytically active when challenged with a second supercoiled DNA substrate. Collectively, the data support the conclusion that a functional intermediate in the reaction sequence is being detected and that the avian topoisomerase I preferentially cleaves supercoiled DNA.  相似文献   

18.
19.
Prompted by the close relationship between tyrosine recombinases and type IB topoisomerases we have investigated the ability of human topoisomerase I to resolve the typical intermediate of recombinase catalysis, the Holliday junction. We demonstrate that human topoisomerase I catalyzes unidirectional resolution of a synthetic Holliday junction substrate containing two preferred cleavage sites surrounded by DNA sequences supporting branch migration. Deleting part of the N-terminal domain (amino acid residues 1-202) did not affect topoisomerase I resolution activity, whereas a topoisomerase I variant lacking both the N-terminal domain and amino acid residues 660-688 of the linker domain was unable to resolve the Holliday junction substrate. The inability of the double deleted variant to mediate resolution correlated with the inability of this enzyme to introduce concomitant cleavage at the two preferred cleavage sites in a single Holliday junction substrate, which is a prerequisite for resolution. As determined by the gel electrophoretic mobility of native enzyme or enzyme crosslinked by disulfide bridging, the double deleted mutant existed almost entirely in a dimeric form. The impairment of this enzyme in performing double cleavages on the Holliday junction substrate may be explained by only one cleavage competent active site being formed at a time within the dimer. The assembly of only one active site within dimers is a well-known characteristic of the tyrosine recombinases. Hence, the obtained results may suggest a recombinase-like active site assembly of the double deleted topoisomerase I variant. Taken together the presented results consolidate the relationship between type IB topoisomerases and tyrosine recombinases.  相似文献   

20.
The DNA cleavage reaction of topoisomerase II is central to the catalytic activity of the enzyme and is the target for a number of important anticancer drugs. Unfortunately, efforts to characterize this fundamental reaction have been limited by the low levels of DNA breaks normally generated by the enzyme. Recently, however, a type II topoisomerase with an extraordinarily high intrinsic DNA cleavage activity was isolated from Chlorella virus PBCV-1. To further our understanding of this enzyme, the present study characterized the site-specific DNA cleavage reaction of PBCV-1 topoisomerase II. Results indicate that the viral enzyme cleaves DNA at a limited number of sites. The DNA cleavage site utilization of PBCV-1 topoisomerase II is remarkably similar to that of human topoisomerase IIalpha, but the viral enzyme cleaves these sites to a far greater extent. Finally, PBCV-1 topoisomerase II displays a modest sensitivity to anticancer drugs and DNA damage in a site-specific manner. These findings suggest that PBCV-1 topoisomerase II represents a unique model with which to dissect the DNA cleavage reaction of eukaryotic type II topoisomerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号