首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mast/stem cell growth factor receptor (KIT) and melanocortin receptor 1 (MC1R) mutations are responsible for coat color phenotypes in domestic pigs. Rongchang is a Chinese indigenous pig breed with a white coat color phenotype. To investigate the genetic variability of the KIT and MC1R genes and their possible association with the coat color phenotype in this breed, a gene duplication and splice mutation of KIT were diagnosed in a sample of 93 unrelated Rongchang animals. The results show that Rongchang pigs have a single copy of KIT without the splice mutation at the first nucleotide of intron 17, indicating that the dominant white I allele of KIT is not responsible for their white phenotype. The KIT mRNA and MC1R coding sequences were also determined in this breed. Three putative amino acid substitutions were found in the KIT gene between Rongchang and Western white pigs, their association with the Rongchang white phenotype remains unknown. For the MC1R gene, Rongchang pigs were demonstrated to have the same dominant black allele (E(D1)) as other Chinese breeds, supporting the previous conclusion that Chinese and Western pigs have independent domestication origin. We also clarified that the Rongchang white phenotype was recessive to nonwhite color phenotypes. Our results provide a good starting point for the identification of the mutations underlying the white coat color in Rongchang pigs.  相似文献   

2.
通过利用PCR—RFLP和PCR—SSCP技术对中国地方猪种KIT基因内含子17、18的序列进行多态性分析。结果表明:内含子17上的替换突变(G→A)发生于毛色为白色的个体——白色五指山猪、大白猪、长白猪上,其基因型(AB型)频率分别为1、1和0.8;其他中国地方猪种的此基因型频率均为0。内含子18上的缺失突变(AGTT)也同样发生在上述3个猪种的白色个体中,其基因型(AA型)频率分别为1、1和0.93;而且同样在其他的地方品种中其基因型频率均为0。这充分证明KIT基因对于猪的白毛色有重要的调控作用,而且I基因座对于其他的经典遗传基因座有上位作用。另一方面,中国地方猪种荣昌猪虽然在表型上与引入猪种大白猪、长白猪相似(白毛色),但是在KIT基因上发生的突变完全不同,推测它们分别属于不同的毛色遗传体系。  相似文献   

3.
During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The "splashed white" pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes.  相似文献   

4.
Mutations in KIT encoding the mast/stem cell growth factor receptor (MGF) are responsible for coat color variation in domestic pigs. The dominant white phenotype is caused by two mutations, a gene duplication and a splice mutation in one of the copies leading to skipping of exon 17. Here we applied minisequencing and pyrosequencing for quantitative analysis of the number of copies with the splice form. An unexpectedly high genetic diversity was revealed in white pigs. We found four different KIT alleles in a small sample of eight Large White females used as founder animals in a wild boar intercross. A similar number of KIT alleles was found in commercial populations of white Landrace and Large White pigs. We provide evidence for at least two new KIT alleles in pigs, both with a triplication of the gene. The results imply that KIT alleles with the duplication are genetically unstable and new alleles are most likely generated by unequal crossing over. This study provides an improved method for genotyping the complicated Dominant white/KIT locus in pigs. The results also suggest that some alleles may be associated with negative pleiotropic effects on other traits.  相似文献   

5.
Five feline-derived microsatellite markers were genotyped in a large pedigree of cats that segregates for ventral white spotting. Both KIT and EDNRB cause similar white spotting phenotypes in other species. Thus, three of the five microsatellite markers chosen were on feline chromosome B1 in close proximity to KIT; the other two markers were on feline chromosome A1 near EDNRB. Pairwise linkage analysis supported linkage of the white spotting with the three chromosome B1 markers but not with the two chromosome A1 markers. This study indicates that KIT, or another gene within the linked region, is a candidate for white spotting in cats. Platelet-derived growth factor alpha (PDGFRA) is also a strong candidate, assuming that the KIT-PDGFRA linkage group, which is conserved in many mammalian species, is also conserved in the cat.  相似文献   

6.
Genome scan reveals new coat color loci in exotic pig cross   总被引:2,自引:0,他引:2  
The porcine genome was scanned to identify loci affecting coat color in an experimental cross between the Meishan breed and Dutch commercial lines. Linkage was studied in 1181 F(2) animals for 132 microsatellite markers and seven binary coat color scores: White, Black spotting, Speckle, Gray, Black, and specific color phenotypes for head and legs. The analyses were performed using interval mapping under various models. The study confirmed the existence of coat color loci on chromosome 8 and chromosome 6. One additional locus affecting White was detected on chromosome 5, possibly representing the porcine equivalent of the steel factor. Two new loci affecting Black were detected on chromosome 2. One of these showed exclusive maternal expression and mapped to a region where imprinted genes have been reported. The effect of the binary coding was tested by additional analyses excluding the white animals (>50% of F(2) animals). This showed that Black spotting was strongly influenced by the locus on chromosome 6 and the other color phenotypes were mainly influenced by the locus on chromosome 8. Epistatic effects were found between the loci on chromosomes 6 and 8 for Black spotting. For Black color, all combinations among chromosomes 2, 6, and 8 showed epistatic effects.  相似文献   

7.
Domestic yaks (Bos grunniens) exhibit two major coat color variations: a brown vs. wild‐type black pigmentation and a white spotting vs. wild‐type solid color pattern. The genetic basis for these variations in color and distribution remains largely unknown and may be complicated by a breeding history involving hybridization between yaks and cattle. Here, we investigated 92 domestic yaks from China using a candidate gene approach. Sequence variations in MC1R, PMEL and TYRP1 were surveyed in brown yaks; TYRP1 was unassociated with the coloration and excluded. Recessive mutations from MC1R, or p.Gln34*, p.Met73Leu and possibly p.Arg142Pro, are reported in bovids for the first time and accounted for approximately 40% of the brown yaks in this study. The remaining 60% of brown individuals correlated with a cattle‐derived deletion mutation from PMEL (p.Leu18del) in a dominant manner. Degrees of white spotting found in yaks vary from color sidedness and white face, to completely white. After examining the candidate gene KIT, we suggest that color‐sided and all‐white yaks are caused by the serial translations of KIT (Cs6 or Cs29) as reported for cattle. The white‐faced phenotype in yaks is associated with the KIT haplotype Swf. All KIT mutations underlying the serial phenotypes of white spotting in yaks are identical to those in cattle, indicating that cattle are the likely source of white spotting in yaks. Our results reveal the complex genetic origins of domestic yak coat color as either native in yaks through evolution and domestication or as introduced from cattle through interspecific hybridization.  相似文献   

8.
White spotting phenotypes have been intensively studied in horses, and although similar phenotypes occur in the donkey, little is known about the molecular genetics underlying these patterns in donkeys. White spotting in donkeys can range from only a few white areas to almost complete depigmentation and is characterised by a loss of pigmentation usually progressing from a white spot in the hip area. Completely white‐born donkeys are rare, and the phenotype is characterised by the complete absence of pigment resulting in pink skin and a white coat. A dominant mode of inheritance has been demonstrated for spotting in donkeys. Although the mode of inheritance for the completely white phenotype in donkeys is not clear, the phenotype shows similarities to dominant white in horses. As variants in the KIT gene are known to cause a range of white phenotypes in the horse, we investigated the KIT gene as a potential candidate gene for two phenotypes in the donkey, white spotting and white. A mutation analysis of all 21 KIT exons identified a missense variant in exon 4 (c.662A>C; p.Tyr221Ser) present only in a white‐born donkey. A second variant affecting a splice donor site (c.1978+2T>A) was found exclusively in donkeys with white spotting. Both variants were absent in 24 solid‐coloured controls. To the authors’ knowledge, this is the first study investigating genetic mechanisms underlying white phenotypes in donkeys. Our results suggest that two independent KIT alleles are probably responsible for white spotting and white in donkeys.  相似文献   

9.
Thecoatcolorisanimportantcharacteristicofapigbreed,andcanbeclassifiedintomanytypes.Thecolorvariationsareeitherduetothedistributionofmelanocytesintheskinortotheabilityofmelano-cytestoproducemelaningranules.Thesynthesisofmelaninoriginatedfromtheformationofneuralcrest-derivedcells,whichhavetwomigrationroutes[1,2].Themelanocytesaretheramificationswhiletheneuralcrest-derivedcellsmigrateviadorsalroute[3].Andtheyprovidethefactoryformelaninsynthesis.Al-thoughtherearemanykindsofpigmentsinvertebralanim…  相似文献   

10.
Dominantly acting mutations that produce visible phenotypes are frequently recovered, either during routine maintenance of colonies or from mutagenesis experiments. We have studied 12 dominant mouse mutations that cause a tail dysmorphology, a coat spotting phenotype, or a combination of these. The majority of these mutations act in a semidominant manner with the homozygous state associated with embryonic lethality and a visible phenotype at or before midgestation. The homozygous phenotypes include axis truncation and neural crest cell defects, as may be expected from the heterozygous phenotypes. The majority of mutations, however, also produced other phenotypes that include neural tube closure defects and aberrant heart looping. In one coat spotting mutant the homozygous condition is lethal before neural crest cell production commences. The mutated genes often function in processes additional to those alluded to by the heterozygous phenotype.  相似文献   

11.
White Galloway cattle exhibit three different white coat colour phenotypes, that is, well marked, strongly marked and mismarked. However, mating of individuals with the preferred well or strongly marked phenotype also results in offspring with the undesired mismarked and/or even fully black coat colour. To elucidate the genetic background of the coat colour variations in White Galloway cattle, we analysed four coat colour relevant genes: mast/stem cell growth factor receptor (KIT), KIT ligand (KITLG), melanocortin 1 receptor (MC1R) and tyrosinase (TYR). Here, we show that the coat colour variations in White Galloway cattle and White Park cattle are caused by a KIT gene (chromosome 6) duplication and aberrant insertion on chromosome 29 (Cs29) as recently described for colour‐sided Belgian Blue. Homozygous (Cs29/Cs29) White Galloway cattle and White Park cattle exhibit the mismarked phenotype, whereas heterozygous (Cs29/wt29) individuals are either well or strongly marked. In contrast, fully black individuals are characterised by the wild‐type chromosome 29. As known for other cattle breeds, mutations in the MC1R gene determine the red colouring. Our data suggest that the white coat colour variations in White Galloway cattle and White Park cattle are caused by a dose‐dependent effect based on the ploidy of aberrant insertions and inheritance of the KIT gene on chromosome 29.  相似文献   

12.
13.
Seven novel KIT mutations in horses with white coat colour phenotypes   总被引:2,自引:0,他引:2  
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.  相似文献   

14.
Melanocortin receptor 1 (MC1R) gene, one of the important candidate genes for coat color trait, was used to analyze the single nucleotide polymorphism (SNP) in Chinese native pig breeds by PCR-single strand conformation polymorphism (PCR-SSCP). The study had also taken 3 imported pig breeds as control. The results showed that the three mutations G284A, T309C and T364C found in Chinese native pigs were consistent to the mutation found in the European Large Black individuals. However, 68CC or C492T and G728A were only found in the imported individuals, which were obviously different from the Chinese native pigs. Accordingly, we presumed that the coat colors of Chinese native pigs belonged to dominant black color system, which was completely distinct to that of imported pig breeds. Thus it was implied thatMC1R gene was not the principal factor affecting the coat color differences of Chinese native pig breeds, but could be used to trace the molecular evolution of pig breeds.  相似文献   

15.
Lethal White Foal Syndrome is a disease associated with horse breeds that register white coat spotting patterns. Breedings between particular spotted horses, generally described as frame overo, produce some foals that, in contrast to their parents, are all white or nearly all white and die shortly after birth of severe intestinal blockage. These foals have aganglionosis characterized by a lack of submucosal and myenteric ganglia from the distal small intestine to the large intestine, similar to human Hirschsprung Disease. Some sporadic and familial cases of Hirschsprung Disease are due to mutations in the endothelin B receptor gene (EDNRB). In this study, we investigate the role of EDNRB in Lethal White Foal Syndrome. A cDNA for the wild-type horse endothelin-B receptor gene was cloned and sequenced. In three unrelated lethal white foals, the EDNRB gene contained a 2-bp nucleotide change leading to a missense mutation (I118K) in the first transmembrane domain of the receptor, a highly conserved region of this protein among different species. Seven additional unrelated lethal white foal samples were found to be homozygous for this mutation. No other homozygotes were identified in 138 samples analyzed, suggesting that homozygosity was restricted to lethal white foals. All (40/40) horses with the frame overo pattern (a distinct coat color pattern that is a subset of overo horses) that were tested were heterozygous for this allele, defining a heterozygous coat color phenotype for this mutation. Horses with tobiano markings included some carriers, indicating that tobiano is epistatic to frame overo. In addition, horses were identified that were carriers but had no recognized overo coat pattern phenotype, demonstrating the variable penetrance of the mutation. The test for this mutant allele can be utilized in all breeds where heterozygous animals may be unknowingly bred to each other including the Paint Horse, Pinto horse, Quarter Horse, Miniature Horse, and Thoroughbred. Received: 25 November 1997 / Accepted: 3 February 1998  相似文献   

16.
The genetic basis of the white spotting pattern in Dutch boxer dogs is not known. We studied whether the segregation of white spotting in boxers follows a Mendelian inheritance pattern. Blood samples were collected, along with digital photographs in standard directions of (grand)parents (n=16) and offspring (n=52) from eight litters of Dutch boxers. In order to select heterozygous parents, we selected nonuniform litters, in which at least one puppy was extreme white. On the basis of criteria for the location, the extent of white spotting, and the mean percentage of pigmented area of the foot soles, we classified 10 dogs as solid colored, 27 as flashy, and 15 as extreme white. This was not a significant deviation from the expected 1:2:1 ratio. Because the flashy phenotype seems to be an intermediate between the two homozygotes, white spotting in the Dutch boxer can be considered to be due to a single gene effect, with incomplete dominance. We have evaluated candidate genes c-KIT (KIT) and EDNRB for segregation with white spotting phenotype in these litters. Using polymorphic markers, very near the KIT and EDNRB genes, we found that segregation of the white spotting pattern did not coincide with segregation of these polymorphic markers. Thus neither KIT nor EDNRB are likely to be responsible for white spotting in the Dutch population of boxers.  相似文献   

17.
Clark LA  Starr AN  Tsai KL  Murphy KE 《Gene》2008,418(1-2):49-52
Harlequin is a coat pattern of the Great Dane characterized by ragged patches of full color on a white background. Harlequin patterning is a bigenic trait, resulting from the interaction of the merle allele of SILV, and a dominant modifier locus, H. Breeding data suggest that H is embryonic recessive lethal and that all harlequins are Hh. To identify linkage with the harlequin phenotype, 46 Great Danes from 5 pedigrees were genotyped for 280 microsatellite markers in a whole genome screen. One marker on the telomeric end of chromosome 9 was suggestive of linkage. Fine mapping of this region using additional microsatellite markers and 10 Great Danes from a sixth pedigree resulted in significant LOD scores for 2 markers. Reported herein is linkage mapping of the H locus to a 3.27 Mb region of chromosome 9 containing approximately 20 genes.  相似文献   

18.
R. Robinson 《Genetica》1964,35(1):241-250
A new mutant gene,anophthalmic white, is described for the Syrian hamster. The gene is inherited as a dominant to normal and, when homozygous, produces a characteristic syndrome of achromia and anophthalmia or microphthalmia. The heterozygote possesses white belly fur (instead of cream), a fine sprinkling of white hairs in the adult coat and a diminution of eye pigmentation. An occasional heterozygote may possess a small patch of unpigmented fur on the head or body. The new mutant does not appear to be linked with the gene forcream coat colour nor that forpiebald spotting. The significance of homologous mutants, with the above syndrome, in the mouse and hamster is briefly discussed.  相似文献   

19.
20.
Kit基因对白马被毛褪色的影响   总被引:2,自引:0,他引:2  
Bai DY  Yang LH  Unerhu U  Zhao YP  Zhao QN  Hasigaowa H  Dugarjaviin M 《遗传》2011,33(11):1171-1178
马毛色是品种鉴定和个体识别的重要依据,也是制定育种方案时必须考虑的重要性状之一。因此,研究马被毛褪色已成为当今国际马毛色研究领域的重要内容,试图弄清导致马被毛褪色的真正机理。目前已经发现,许多马种被毛褪色表型个体中3号染色体上的kit基因存在不同的显著突变。研究结果表明马kit基因的正常表达与否与表皮中黑色素细胞及黑色素的形成密切相关,从而控制是否出现褪色表型。然而,研究证明在不同马种间褪色表型个体在该位点上出现的突变存在着较大的种间差异。具有被毛完全褪色表型的马群非常少见,只是偶尔见于有些马种,但在内蒙古锡林郭勒盟西乌珠穆沁旗生存着较大数量的被毛褪色表型个体,被称为蒙古白马。然而,造成其被毛褪色的机理还没有得到证实,有趣的是至今为止在蒙古白马kit基因的21个外显子中还没有发现任何典型突变。因此,文章对近些年国际上对马被毛褪色的分子研究进展做一比较系统的综合叙述,为蒙古白马毛色形成的机理研究奠定基础,为今后的马匹毛色研究及其育种工作提供有价值的参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号