首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Paravortex karlingi sp. nov. collected from the intestine of the bivalve mollusc Cerastorderma edule from the Ythan Estuary, N. E. Scotland, and elsewhere, is distinguished from a closely related species, P. cardii, also occurring in this host, on the basis of differences in habitat occupied by the two species as well as behavioural and morphological differences. P. karlingi is smaller, has fewer embryos in the gravid adult and shows a different behaviour pattern when released from the host intestine. It is also negatively phototactic whereas P. cardii is initially positively phototactic, only later becoming negatively phototactic. The occurrence of both species in Britain is briefly described.Abbreviations bc brood capsules - c core of indigestible particles - ca common atrium - ch chamber - e eye - fa female atrium - fol fibre optic light - gc gut caecum - gp genital pore - j juvenile worm - m mouth - o ovary - oe oesophagus - p pharynx - pe penis - sg shell gland - sv seminal vesicle - t testis - u uterus - vg vitelline gland - w window  相似文献   

2.
【背景】杜比亚蟑螂(Blaptica dubia)可用于活体饲料、化妆品和医药保健品的生产,其肠道菌的研究对杜比亚蟑螂的饲养和肠道菌资源的开发与利用都十分重要。【目的】揭示杜比亚蟑螂肠道可培养菌的种类,筛选具有产消化酶功能的菌株,为理解肠道菌对宿主的影响机理及功能菌株的利用提供科学依据和研究材料。【方法】采用体外培养法获得杜比亚蟑螂肠道菌,结合形态学和分子生物学方法进行鉴定;用水解圈法分别筛选产纤维素酶、蛋白酶、脂肪酶和淀粉酶菌株。【结果】在杜比亚蟑螂肠道中共分离出4属7种细菌,其中芽孢杆菌属(Bacillus)2种,沙雷氏菌属(Serratia)和柠檬酸杆菌属(Citrobacter)各2种,肠球菌属(Enterococcus)1种。从获得的20个菌株中筛选出10个具有产消化酶功能的菌株。其中,芽孢杆菌属的菌株D6、D12和D20具有产纤维素酶、蛋白酶、淀粉酶及脂肪酶4种消化酶的功能;沙雷氏菌属的菌株D3、D7、D9、D11和D15具有产纤维素酶、蛋白酶和脂肪酶3种消化酶的能力;柠檬酸杆菌属的菌株D5具有产纤维素酶的功能;肠球菌属的菌株D17具有产蛋白酶的能力。【结论】杜比亚蟑螂肠道多种细菌具有产消化酶帮助降解大分子营养物质的功能,可通过协助食物消化影响宿主健康。菌株D12、D7和D11分别具有最强产纤维素酶、蛋白酶和脂肪酶的能力,是可进一步开发利用的肠道功能菌株资源。  相似文献   

3.
Ctenomys talarum is a subterranean herbivorous rodent which due to its particular life style is frequently exposed to variations in surface environmental conditions (i.e. food quality and availability, temperature). Thus, unlike other subterranean rodents, C. talarum has to buffer both the surface and burrow challenging environmental conditions. We studied the occurrence of digestive strategies at different levels of C. talarum living in their natural habitat. We determined the dimensions of different parts of the gastrointestinal tract and organs along as the activity of key digestive enzymes (disaccharidase, N-aminopeptidase) in different parts of the gut in individuals seasonally caught. The results show that C. talarum exhibits characteristics in the gut at the biochemical level (high disaccharidase activities in small intestine, high N-aminopeptidase activity in the caecum and large intestine, and a seasonal differential modulation of N-aminopeptidase activity in small and large intestines), which could represent adaptive strategies to face seasonal variations in key environmental factors.  相似文献   

4.
Summary The entire gut of Cyathura carinata is lined by a cuticle indicating its completely ectodermal origin. By flattening of the epithelial folds and possibly also of reserve-folds of the plasma membrane the intestine is highly dilatable, an adaptation towards a rapid uptake of the food which is sucked in by means of specialized mouthparts, which pierce the body wall of its main prey, the polychaete Nereis diversicolor. Bundles of microtubules within the intestinal cells presumably represent cytoskeletal structures providing protection against mechanical stress. Spirally arranged muscle fibres, which form peculiar contact areas with the gut, can easily follow any dilatation. A few indications of the metabolic functions of the anterior gut epithelium have been found: Basally and apically located labyrinthine structures of the plasma membrane, apically located clear vesicles, positive reactions for lysosomal, mitochondrial and membraneous enzymes, a strikingly thin and loosely arranged cuticle through which food substances of low molecular weight may diffuse. The cells of the gut and also of the digestive caeca are interconnected by desmosomes, extensive pleated septate junctions, and gap junctions. In the pleon the gut is less dilatable and devoid of plasma membrane specializations. In this area tendon cells, particularly rich in microtubules, serve as attachment sites for the dilating muscles of the rectum. The digestive caeca synthetize and secrete digestive enzymes, mix food and enzymes in their lumen, resorb food molecules, store lipids and glycogen. In the glandular epithelium small cells, rich in rough ER, and a majority of large cells, rich in lipid droplets, occur which, however, are interconnected by a series of morphologically intermediate cells. All cells bear an apical brush border, form a basal labyrinth and contain high to medium activities of acid phosphatase, nonspecific esterases, ATPase, and succinic dehydrogenase. The ER-rich cells are far less frequent than in the omnivorous or herbivorous isopods (Sphaeroma, Idothea, Asellidae, Oniscoidea).  相似文献   

5.
In the present study we examined carbohydrase activities during a complete 24-h cycle and during the first days of starvation in both adult and juvenile snails. The results indicated the predominant role of the digestive gland in the secretions of the enzymes responsible for degradation of most of the carbohydrates tested. Salivary glands secreted some digestive enzymes but in amounts lower than secreted by the digestive gland. Enzymatic activities fluctuated during the first hours of digestion and also after the digestive tract was empty. The relatively high enzymatic activities recorded 24 h after the intake of food and during starvation could be due to the circadian rhythm of this species and/or to the participation of an existing microflora in the digestive tract of Helix lucorum. The double origin (exogenous and endogenous) of some digestive enzymes such as cellulases is discussed.Abbreviations CMC Carboxymethyl cellulose - LSD-test least significant difference test - PNP p-nitrophenyl - SA specific activity - U units  相似文献   

6.
Enzymes responsible for digestion of food protein were evaluated and characterized in red lobster (Panulirus interruptus). Several tissues, organs, and body fluids were analyzed. The same composition of proteases was found in gastric juice, midgut gland, and intestinal contents. Using specific substrates and inhibitors, we indentified several isotrypsins and isochymotrypsins by gel electrophoresis. Protease activity was found at pH 3 and reduced by using pepstatin A. Operational variables of enzymes were characterized for management of future studies and potential biotechnologies. Types and activities of lobster digestive enzymes constitute background information to study the digestive abilities of the organism further, and will lead to understanding nutritional needs and feeding ecology, mainly because decapods display unique morphologic, metabolic, and behavioral changes during their life cycle. Also, such enzymes become alternative tools for use in biotechnologies.  相似文献   

7.
Digestion is an important process in understanding the feeding ecology of animals. We examined digesta passage time, digestibility, and total gut fill in Japanese macaques (Macaca fuscata; n = 4) under 4 dietary conditions representing the seasonal and regional variations in the diets of wild populations to determine the effects of food type and food intake on these digestive features. Food type is associated with mean retention time (MRT), digestibility, and total gut fill. Dry matter intake (DMI) of food correlates positively with total gut fill but not with MRT or digestibility. Conversely, indigestible DMI affected MRT negatively. Thus, when Japanese macaques consume high-fiber foods, MRT becomes shorter and digestibility is lower than when eating low-fiber foods. Moreover, macaques experience increases in total gut fill when they consume high-fiber diets or a large amount of food. Japanese macaques may excrete difficult-to-digest food components quickly; they nevertheless buffer an increase in food intake by an increase in gut fill. Our study offers new insights into the relationship between feeding ecology and nutritional physiology in primates by simultaneously examining the effects of food type and intake level on MRT and digestibility.  相似文献   

8.
Summary The digestive tract of the common woodlouse, Tracheoniscus rathkei Brandt (Isopoda: Oniscoidea), contains digestive enzymes active against -1,4-glucans, which are the chief storage polysaccharides of vascular plants, algae, fungi, and animals, and -1,3-glucans, which are present in algae and fungi. Digestive tract extracts also exhibit significant activity toward xylan and carboxymethyl-cellulose but negligible activity toward microcrystalline cellulose, substrates representative of the major structural polysaccharides of vascular plants. Low activity was detected toward pectin, and no activity was detected toward chitin. Activity toward xylan is due in part to microbial enzymes acquired from the leaf litter which was the isopod's normal food. Although ingested microbial xylanases are stable and active in the gut fluid, they do not make a quantitatively significant contribution to the isopod's ability to assimilate the hemicellulosic component of its diet. However, the assimilation of carbon from labeled plant fiber is enhanced in isopods which have acquired a cellulase by ingestion of leaf litter amended with a commercial preparation of the cellulase complex from the fungus, Penicillium funiculosum. This result demonstrates the potential contribution of acquired enzymes to the digestion of plant fiber in terrestrial detritivores. We urge caution, however, in assigning an important digestive function to ingested enzymes on the basis of evidence that only indicates that such enzymes are present in the gut fluid without additional evidence that their presence results in an enhancement of digestive efficiency.  相似文献   

9.
Temperature sensitivity of digestive processes has important ramifications for digestive performance in ectothermic vertebrates. We conducted a comparative analysis of temperature effects on digestive processes [gut passage times (GPTs) and apparent digestive efficiencies (ADEs)] in five lacertid lizards occurring in insular (Podarcis erhardii, P. gaigeae), and mainland (P. muralis, P. peloponnesiaca, Lacerta graeca) Mediterranean environments. GPTs were negatively correlated to temperature with mainland taxa having 10–20% longer GPTs than island taxa. In contrast to previous studies that estimate ADEs using bomb calorimetry, we compare ADEs by analyzing discrete efficiencies for lipids, sugars and proteins at three temperature regimes (20, 25, and 30°C); each of these categories produces different results. ADEs for lipids and sugars showed a monotonic increase with temperature whereas ADEs for proteins decreased with temperature. Island taxa had consistently higher ADEs than their mainland counterparts for lipids and for proteins but not for sugars. They are characterized by superior energy acquisition abilities despite significantly shorter GPTs. Their increased digestive performance relative to the mainland species appears to allow them to maximize energy acquisition in unproductive island environments where food availability is spatially and seasonally clustered.  相似文献   

10.
Management of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), an invasive, agricultural pest in the United States, has presented significant challenges. This polyphagous insect uses both extra‐oral and gut‐based digestion thwarting protein‐ or nucleotide‐based control strategies. The objective of this study was to biochemically characterize the digestive enzymes (proteases and nucleases) from the saliva, salivary gland and the gut of H. halys. Enzyme profiles for the two tissues and saliva radically differ: The pH optimum for proteases in the gut was six, with cysteine proteases predominant. In contrast, the alkaline pH optima for protease activity in the salivary gland (8–10) and saliva (7) reflected abundant serine protease and cathepsin activities. RNase enzymes were most abundant in saliva, while dsRNase and DNase activities were higher in the salivary gland and saliva compared to those in the gut. These very different enzyme profiles highlight the biphasic digestive system used by this invasive species for efficient processing of plant nutrients. Knowledge of H. halys digestive physiology will allow for counteractive measures targeting digestive enzymes or for appropriate protection of protein‐ or nucleotide‐based management options targeting this pest.  相似文献   

11.
【背景】马蜂(Vespa mandarinia Smith)可以防治多种田间害虫,还具有药用价值,其肠道菌群结构和功能还有待研究。【目的】获得马蜂肠道可培养细菌并筛选出具有产消化酶功能的菌株,为理解肠道菌对宿主的影响机理及功能菌株的利用提供科学依据和研究材料。【方法】采用传统细菌分离培养法获得马蜂肠道菌,结合形态学以及16S rRNA基因序列分析进行鉴定;利用水解圈法分别筛选产蛋白酶、脂肪酶、淀粉酶和纤维素酶菌株;通过测量水解圈D与菌落直径d的比值,比较不同细菌的产酶能力。【结果】在马蜂肠道中共分离出6属10种细菌,其中芽孢杆菌属5种,肠球菌属、葡萄球菌属、明串珠菌属、乳球菌属和不动杆菌属各1种。从获得的61个菌株中筛选出6个具有产消化酶功能的菌株。其中,苏云金芽孢杆菌V44具有产蛋白酶、淀粉酶、脂肪酶和纤维素酶4种消化酶的能力;粪肠球菌V6具有产淀粉酶、蛋白酶和脂肪酶3种消化酶的能力;蜡样芽孢杆菌V43具有产蛋白酶、淀粉酶和纤维素酶3种消化酶的能力;粪肠球菌V20、蜡样芽孢杆菌V19和维德曼氏芽孢杆菌V22均具有产蛋白酶的能力。【结论】马蜂肠道细菌资源较丰富,部分有产消化酶的功能,可帮助马蜂消化食物,对宿主健康有一定影响。本研究筛选的6个菌株都能产蛋白酶,其中菌株V43和V44分别具有最强产淀粉酶和脂肪酶的能力,是可进一步开发利用的肠道功能菌株资源。  相似文献   

12.
Plecoptera (Perlidae) are among the major macroinvertebrate predators in stream ecosystems and one of the insect families with lower tolerance to environmental alterations, being usually employed as bioindicators of high water ecological quality. The differences in the trophic roles of the coexisting species have been exclusively studied from their gut contents, while no data are available on the comparative digestive capacity. In the present paper, we make a comparative study of the activity of several digestive enzymes, namely proteases (at different pH), amylase, lipase, trypsin and chymotrypsin, in two species of stoneflies, Perla bipunctata and Dinocras cephalotes, which cohabit in the same stream. The study of digestive enzyme activity together with the analysis of gut contents can contribute to a better understanding of the ecology of these aquatic insects and their role in freshwater food webs. Thus, our results show that the two studied predator species inhabiting in the same stream present specializations on their feeding behaviors, facilitating their coexistence, and also differences in their capacity of use the resources. One of the main findings of this study is that D. cephalotes is able to assimilate a wider trophic resource spectrum and this could be one of the reasons why this species has a wider global distribution in all its geographical range.  相似文献   

13.
The diets of the mangrove crabs, Metopograpsus frontalis Miers and Perisesarma bidens de Haan, were investigated monthly for 13 months at two Hong Kong mangroves, to examine possible spatial and temporal influences on their feeding ecology. In both species, a higher degree of gut fullness was observed in summer (May–September) than in winter, suggesting a reduction in winter foraging activity. M. frontalis was omnivorous, with animal and plant materials and inorganic sediments being the major food items. P. bidens was detritivorous, with plant materials and inorganic sediment dominating the gut contents. M. frontalis is, therefore, an opportunistic feeder, whilst P. bidens, like many other members of the Sesarmidae, is a detritivore. Some degree of seasonal variation was shown in the diet of M. frontalis (with more algal material in winter) and P. bidens (with more sediments in summer), but diets were similar between sexes in both species. The dietary pattern of M. frontalis also varied between sites. The diets of the crabs, therefore, appear to be a result of the interplay between the seasonal, physical climate and biological factors, especially food availability and the crabs’ ecology. Results suggest that the predatory role of Metopograpsus, which has been poorly studied, is potentially important to estuarine food webs; whilst the trophic importance of sesarmid crabs, such as Perisesarma, especially in mangrove outwelling, should be critically re-evaluated.  相似文献   

14.
Insects are often associated with symbiotic micro‐organisms, which allow them to utilize nutritionally marginal diets. Adult fruit flies (Diptera: Tephritidae) associate with extracellular bacteria (Enterobacteriaceae) that inhabit their digestive tract. These flies obtain nutrients by foraging for plant exudates, honeydew and bird droppings scattered on leaves and fruit – a nutritional niche which offers ample amounts of carbohydrates, but low quantities of available nitrogen. We identified the bacteria resident in the gut of the olive fly (Bactrocera oleae) – a worldwide pest of olives and examined their contribution to nitrogen metabolism in the adult insect. By suppressing bacteria in the gut and monitoring female fecundity, we demonstrate that bacteria contribute essential amino acids and metabolize urea into an available nitrogen source for the fly, thus significantly elevating egg production. In an ecological context, bacteria were found to be beneficial to females subsisting on bird droppings, but not on honeydew – two natural food sources. We suggest that a main gut bacterium (Candidatus Erwinia dacicola) forms an inseparable, essential part of this fly's nutritional ecology. The evolution of this symbiosis has allowed adult flies to utilize food substrates which are low or imbalanced in assimilable nitrogen and thereby to overcome the nitrogen limitations of their natural diet.  相似文献   

15.
Small filter-feeding zooplankton organisms like the cladoceran Daphnia spp. are key members of freshwater food webs. Although several interactions between Daphnia and bacteria have been investigated, the importance of the microbial communities inside Daphnia guts has been studied only poorly so far. In the present study, we characterised the bacterial community composition inside the digestive tract of a laboratory-reared clonal culture of Daphnia magna using 16S rRNA gene libraries and terminal-restriction length polymorphism fingerprint analyses. In addition, the diversity and stability of the intestinal microbial community were investigated over time, with different food sources as well as under starvation stress and death, and were compared to the community in the cultivation water. The diversity of the Daphnia gut microbiota was low. The bacterial community consisted mainly of Betaproteobacteria (e.g. Limnohabitans sp.), few Gammaproteobacteria (e.g. Pseudomonas sp.) and Bacteroidetes that were related to facultatively anaerobic bacteria, but did not contain typical fermentative or obligately anaerobic gut bacteria. Rather, the microbiota was constantly dominated by Limnohabitans sp. which belongs to the Lhab-A1 tribe (previously called R-BT065 cluster) that is abundant in various freshwaters. Other bacterial groups varied distinctly even under constant cultivation conditions. Overall, the intestinal microbial community did not reflect the community in the surrounding cultivation water and clustered separately when analysed via the Additive Main Effects and Multiplicative Interaction model. In addition, the microbiota proved to be stable also when Daphnia were exposed to bacteria associated with a different food alga. After starvation, the community in the digestive tract was reduced to stable members. After death of the host animals, the community composition in the gut changed distinctly, and formerly undetected bacteria were activated. Our results suggest that the Daphnia microbiota consists mainly of an aerobic resident bacterial community which is indigenous to this habitat.  相似文献   

16.
Differences in allometric scaling of physiological characters have the appeal to explain species diversification and niche differentiation along a body mass (BM) gradient — because they lead to different combinations of physiological properties, and thus may facilitate different adaptive strategies. An important argument in physiological ecology is built on the allometries of gut fill (assumed to scale to BM1.0) and energy requirements/intake (assumed to scale to BM0.75) in mammalian herbivores. From the difference in exponents, it has been postulated that the mean retention time (MRT) of digesta should scale to BM1.0–0.75 = BM0.25. This has been used to argue that larger animals have an advantage in digestive efficiency and hence can tolerate lower-quality diets. However, empirical data does not support the BM0.25 scaling of MRT, and the deduction of MRT scaling implies, according to physical principles, no scaling of digestibility; basing assumptions on digestive efficiency on the thus-derived MRT scaling amounts to circular reasoning. An alternative explanation considers a higher scaling exponent for food intake than for metabolism, allowing larger animals to eat more of a lower quality food without having to increase digestive efficiency; to date, this concept has only been explored in ruminants. Here, using data for 77 species in which intake, digestibility and MRT were measured (allowing the calculation of the dry matter gut contents (DMC)), we show that the unexpected shallow scaling of MRT is common in herbivores and may result from deviations of other scaling exponents from expectations. Notably, DMC have a lower scaling exponent than 1.0, and the 95% confidence intervals of the scaling exponents for intake and DMC generally overlap. Differences in the scaling of wet gut contents and dry matter gut contents confirm a previous finding that the dry matter concentration of gut contents decreases with body mass, possibly compensating for the less favorable volume–surface ratio in the guts of larger organisms. These findings suggest that traditional explanations for herbivore niche differentiation along a BM gradient should not be based on allometries of digestive physiology. In contrast, they support the recent interpretation that larger species can tolerate lower-quality diets because their intake has a higher allometric scaling than their basal metabolism, allowing them to eat relatively more of a lower quality food without having to increase digestive efficiency.  相似文献   

17.
All living organisms need to consume nutrients to grow, survive, and reproduce, making the successful acquisition of food resources a powerful selective pressure. However, acquiring food is only part of the challenge. While all animals spend much of their daily activity budget hunting, searching for, or otherwise procuring food, a large part of what is involved in overall nutrition occurs once the meal has been swallowed. Most nutritional components are too complex for immediate use and must be broken down into simpler compounds, which can then be absorbed by the body. This process, digestion, is catalyzed by enzymes that are either endogenous or produced by the host's microbial population .1 Research shows that the nutritional value of food is partially constrained by the digestive abilities of the microbial community present in the host's gut and that these microbes rapidly adapt to changes in diet and other environmental pressures .2 An accumulating body of evidence suggests that endogenously produced digestive enzymes also have been, and still are, common targets of natural selection, further cementing their crucial role in an organism's digestive system .3–5  相似文献   

18.
1. Improving our understanding of dietary differences among omnivorous, benthic crustacea can help to define the scope of their trophic influence in benthic food webs. In this study, we examined the trophic ecology of two non‐native decapod crustaceans, the Chinese mitten crab (Eriocheir sinensis) (CMC) and the red swamp crayfish (Procambarus clarkii) (RSC), in the San Francisco Bay ecosystem to describe their food web impacts and explore whether these species are functionally equivalent in their impacts on aquatic benthic communities. 2. We used multiple methods to maximise resolution of the diet of these species, including N and C stable isotope analysis of field data, controlled feeding experiments to estimate isotopic fractionation, mesocosm experiments, and gut content analysis (GCA). 3. In experimental enclosures, both CMC and RSC caused significant declines in terrestrially derived plant detritus (P < 0.01) and algae (P < 0.02) relative to controls, and declines in densities of the caddisfly Gumaga nigricula by >50% relative to controls. 4. Plant material dominated gut contents of both species, but several sediment‐dwelling invertebrate taxa were also found. GCA and mesocosm results indicate that CMC feed predominantly on surface‐dwelling invertebrates, suggesting that trophic impacts of this species could include a shift in invertebrate community composition towards sediment‐dwelling taxa. 5. Stable isotope analysis supported a stronger relationship between CMC and both algae and algal‐associated invertebrates than with allochthonous plant materials, while RSC was more closely aligned with terrestrially derived detritus. 6. The trophic ecology and life histories of these two invasive species translate into important differences in potential impacts on aquatic food webs. Our results suggest that the CMC differs from the RSC in exerting new pressures on autochthonous food sources and shallow‐dwelling invertebrates. The crab's wide‐ranging foraging techniques, use of intertidal habitat, and migration out of freshwater at sexual maturity increases the distribution of the impacts of this important invasive species.  相似文献   

19.
Some aspects of the biology and ecology (life cycle, feeding and production) of a population of Isoptena serricornis in the Rudava River (Slovakia) are studied, reported and discussed. The life cycle is annual, with slow growth in autumn‐winter and fast growth in late summer and spring. The growth decreased two weeks before the Fall Equinox and increased two weeks after the Spring Equinox. The flight period spans from the end of May to the beginning of July. The presence of large sand particles in the gut of all studied nymphs is of note, and indicates that I. serricornis acts as a deposit‐collector species. Nymphal food is principally composed of detritus, unicellular organisms and, in nymphs of intermediate or large size, Chironomidae larvae. Adult food is composed fundamentally of different types of pollen grains. Males usually have lower food content than females. Annual production of this species (∼694–750 mg · m−2) is very high in relation to other previously studied Chloroperlidae. This is probably largely responsible for I. serricornis being one of the most abundant components of the macroinvertebrate community in its habitat in the Rudava River. A negative correlation between production and temperature was observed.  相似文献   

20.
In order to examine the influence of differences in food conditions on gut characteristics in Porcellio scaber, pH-manipulated and microbially inoculated leaf litter from three different tree species were offered. Microbial activity was clearly influenced by the pH levels of the leaves. Analyses of the pH levels in the gut indicated the ability of P. scaber to buffer the pH value in the intestinal tract to about 5.5–6.0 in the anterior hindgut, and to about 6.0–6.5 in the posterior hindgut. The pH levels of the gut sections remained in this range, within a range of food pH from 4.0 to 7.5, no matter what kind of leaves the animals were fed. Homeostatic responses to changes in food pH guarantee optimized digestion of leaf litter. However, when the pH level of the litter dropped below 3.5, P. scaber was not able to maintain the pH conditions in the gut. Furthermore, microorganisms colonizing the litter biased the pH level in the anterior hindgut where digestive processes mainly take place. These results indicate a decline of litter quality with regard to the nutrition of terrestrial isopods, caused by acidification and consequently reduced microbial activity. Accepted: 19 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号