首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of the relaxase operon and the leader operon which are part of the Tra1 region of the promiscuous plasmid RP4 was determined. These two polycistronic operons are transcribed divergently from an intergenic region of about 360 bp containing the transfer origin and six close-packed genes. A seventh gene completely overlaps another one in a different reading frame. Conjugative DNA transfer proceeds unidirectionally from oriT with the leader operon heading the DNA to be transferred. The traI gene of the relaxase operon includes within its 3' terminal region a promoter controlling the 7.2-kb polycistronic primase operon. Comparative sequence analysis of the closely related IncP plasmid R751 revealed a similarity of 74% at the nucleotide sequence level, indicating that RP4 and R751 have evolved from a common ancestor. The gene organization of relaxase- and leader operons is conserved among the two IncP plasmids. The transfer origins and the genes traJ and traK exhibit greater sequence divergence than the other genes of the corresponding operons. This is conceivable, because traJ and traK are specificity determinants, the products of which can only recognize homologous oriT sequences. Surprisingly, the organization of the IncP relaxase operons resembles that of the virD operon of Agrobacterium tumefaciens plasmid pTiA6 that mediates DNA transfer to plant cells by a process analogous to bacterial conjugation. Furthermore, the IncP TraG proteins and the product of the virD4 gene share extended amino acid sequence similarity, suggesting a functional relationship.  相似文献   

2.
3.
The conjugative transfer region 1 (Tra1) of the IncHI1 plasmid R27 was subjected to DNA sequence analysis, mutagenesis, genetic complementation, and an H-pilus-specific phage assay. Analysis of the nucleotide sequence indicated that the Tra1 region contains genes coding for mating pair formation (Mpf) and DNA transfer replication (Dtr) and a coupling protein. Insertional disruptions of 9 of the 14 open reading frames (ORFs) in the Tra1 region resulted in a transfer-deficient phenotype. Conjugative transfer was restored for each transfer mutant by genetic complementation. An intergenic region between traH and trhR was cloned and mobilized by R27, indicating the presence of an origin of transfer (oriT). The five ORFs immediately downstream of the oriT region are involved in H-pilus production, as determined by an H-pilus-specific phage assay. Three of these ORFs encode proteins homologous to Mpf proteins from IncF plasmids. Upstream of the oriT region are four ORFs required for plasmid transfer but not H-pilus production. TraI contains sequence motifs that are characteristic of relaxases from the IncP lineage but share no overall homology to known relaxases. TraJ contains both an Arc repressor motif and a leucine zipper motif. A putative coupling protein, TraG, shares a low level of homology to the TraG family of coupling proteins and contains motifs that are important for DNA transfer. This analysis indicates that the Mpf components of R27 share a common lineage with those of the IncF transfer system, whereas the relaxase of R27 is ancestrally related to that of the IncP transfer system.  相似文献   

4.
5.
The conjugative IncN plasmids pKM101 and pCU1 have previously been shown to contain identical oriT sequences as well as conserved restriction endonuclease cleavage patterns within their tra regions. Complementation analysis and sequence data presented here indicate that these two plasmids encode essentially identical conjugal DNA-processing proteins. This region contains three genes, traI, traJ, and traK, transcribed in the same orientation from a promoter that probably lies within or near the conjugal transfer origin (oriT). Three corresponding proteins were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and complementation analysis confirmed that this region contains three tra complementation groups. All three proteins resemble proteins of the IncW plasmid R388 and other plasmids thought to have roles in processing of plasmid DNA during conjugation. The hydropathy profile of TraJ suggests a transmembrane topology similar to that of several homologous proteins. Both traK and traI were required for efficient interplasmid site-specific recombination at oriT, while traJ was not required. The leading region of pKM101 contains three genes (stbA, stbB, and stbC), null mutations in which cause elevated levels of plasmid instability. Plasmid instability was observed only in hosts that are proficient in interplasmid recombination, suggesting that this recombination can potentially lead to plasmid loss and that Stb proteins somehow overcome this, possibly via site-specific multimer resolution.  相似文献   

6.
7.
Transfer-defective mutants of the Tra1 region of RP1 were isolated. Complementation studies involving stable heterozygotes combined with the mapping of Tn5 insertion mutations revealed two pilus cistrons, pilA and pilB, at positions 46.9 to 48.2 kb and 46.0 to 46.4 kb, respectively. All pilB mutants were Dps- (i.e., resistant to donor-specific phages PR4 and PRR1), whereas pilA mutants were Dps- (promoter-proximal mutations), Dps+/- (sensitive only to PR4 [more centrally located mutations]), or Dps+ (sensitive to both phages [promoter-distal mutations]). The correlation between the site mutated and the Dps phenotype, together with the finding that certain Dps+ pilA mutants continued to mobilize nonconjugative plasmids, suggested that pilA is bifunctional, contributing both to pilus function (at the promoter-proximal end) and to RP1 mobilization. It was also shown that the 43.5- to 49.5-kb region that includes pilA and pilB encodes all of the Tra1 pilus functions required for propagation of donor-specific phages and hence, probably, for pili that are active in conjugation. Finally, three cistrons that specifically affect RP1 mobilization were identified. Two of these, mobA and mobB, occur immediately anticlockwise to oriT and probably correspond to the traJ and traI genes characterized by other workers. The third cistron, mobC, occurs clockwise to oriT and may be a new mobilization gene, since its function can be substituted by IncP beta plasmids, a feature different from that of the traK mobilization gene which occurs in the same region but is RP1 specific. None of the mob cistrons was required for mobilization of nonconjugative plasmids, except for mobB, which was required by pVS99.  相似文献   

8.
Transfer genes of the IncP plasmid RP4 are grouped in two separate regions, designated Tra1 and Tra2. Tra2 gene products are proposed to be mainly responsible for the formation of mating pairs in conjugating cells. To provide information relevant to understanding the function of Tra2 gene products, the nucleotide sequence of the entire RP4 Tra2 region is presented here. Twelve open reading frames were identified in the Tra2 core region, being essential for intraspecific Escherichia coli matings. Predicted sizes of 11 of the 12 Tra2 polypeptides could be verified by expression in E. coli. Based on hydropathy plot analysis, most of the Tra2 open reading frames encode proteins that may interact with membranes. Interestingly, six of the predicted Tra2 gene products exhibited significant sequence similarities to gene products encoded by the VirB operon of the Agrobacterium Ti plasmid. VirB proteins are thought to function in the formation of a transmembrane structure that mediates the passage of T-DNA molecules from bacteria into plant cells. Because of this analogy and the hydropathy of Tra2 gene products, we assume that the DNA transfer machineries acting in bacterial conjugation and T-DNA transfer are structurally and functionally similar. Therefore, the data presented here, support the hypothesis that Ti vir and IncP tra genes evolved from a common ancestor. This suggestion is favored by previous findings of sequence similarities between the IncP and Ti DNA transfer system.  相似文献   

9.
We have determined the DNA sequences of two unlinked regions of octopine-type Ti plasmids that contain genes required for conjugal transfer. Both regions previously were shown to contain sequences that hybridize with tra genes of the nopaline-type Ti plasmid pTiC58. One gene cluster (designated tra) contains a functional oriT site and is probably required for conjugal DNA processing, while the other gene cluster (designated trb) probably directs the synthesis of a conjugal pilus and mating pore. Most predicted Tra and Trb proteins show relatively strong sequence similarity (30 to 50% identity) to the Tra and Trb proteins of the broad-host-range IncP plasmid RP4 and show significantly weaker sequence similarity to Vir proteins found elsewhere on the Ti plasmid. An exception is found in the Ti plasmid TraA protein, which is predicted to be a bifunctional nickase-helicase that has no counterpart in IncP plasmids or among Vir proteins but has homologs in at least six other self-transmissible and mobilizable plasmids. We conclude that this Ti plasmid tra system evolved by acquiring genes from two or three different sources. A similar analysis of the Ti plasmid vir region indicates that it also evolved by appropriating genes from at least two conjugal transfer systems. The widely studied plasmid pTiA6NC previously was found to be nonconjugal and to have a 12.65-kb deletion of DNA relative to other octopine-type Ti plasmids. We show that this deletion removes the promoter-distal gene of the trb region and probably accounts for the inability of this plasmid to conjugate.  相似文献   

10.
11.
Replicons that contain Tn4399, a conjugal mobilizing transposon isolated from Bacteroides fragilis, can be mobilized in the presence of broad-host-range IncP plasmids RP4 and R751 in Escherichia coli to B. fragilis or E. coli recipients (C. G. Murphy and M. H. Malamy, J. Bacteriol. 175:5814-5823, 1993). To identify the initial DNA processing events involved in Tn4399-mediated mobilization in E. coli, plasmid DNA from pCGM328 (a pUC7 vector that contains the mobilization region of Tn4399) was isolated from donor cells following the release of plasmid DNA from the relaxation complex. Site- and strand-specific cleavage within the oriT region of Tn4399 was detected by denaturing gel electrophoresis and Southern hybridization analysis of this DNA in the presence or absence of IncP plasmids. Mutations in either mocA or mocB, two genes which are encoded by Tn4399 and are required for mobilization, significantly decrease the amount of specifically nicked DNA detected. These results suggest roles for the MocA and MocB gene products in specific processing of Tn4399-containing plasmid DNA prior to mobilization. By isolation of the nicked strand and primer extension of this template, we mapped the precise 5' end of the single-stranded cleavage reaction. The nucleotide position of nicTn4399 is adjacent to two sets of inverted repeats, a genetic arrangement similar to those of previously characterized oriT regions. Two site-directed mutations which remove nicTn4399 (oriT delta 1 and oriT delta 2) cannot be mobilized to recipients when they are present in trans along with functional MocA and MocB proteins and an IncP mobilizing plasmid; they are cis-dominant loss-of-function mutations.  相似文献   

12.
Plasmid pTC-F14 is a 14.2-kb plasmid isolated from Acidithiobacillus caldus that has a replicon that is closely related to the promiscuous, broad-host-range IncQ family of plasmids. The region containing the mobilization genes was sequenced and encoded five Mob proteins that were related to those of the DNA processing (Dtr or Tra1) region of IncP plasmids rather than to the three-Mob-protein system of the IncQ group 1 plasmids (e.g., plasmid RSF1010 or R1162). Plasmid pTC-F14 is the second example of an IncQ family plasmid that has five mob genes, the other being pTF-FC2. The minimal region that was essential for mobilization included the mobA, mobB, and mobC genes, as well as the oriT gene. The mobD and mobE genes were nonessential, but together, they enhanced the mobilization frequency by approximately 300-fold. Mobilization of pTC-F14 between Escherichia coli strains by a chromosomally integrated RP4 plasmid was more than 3,500-fold less efficient than the mobilization of pTF-FC2. When both plasmids were coresident in the same E. coli host, pTC-F14 was mobilized at almost the same frequency as pTF-FC2. This enhanced pTC-F14 mobilization frequency was due to the presence of a combination of the pTF-FC2 mobD and mobE gene products, the functions of which are still unknown. Mob protein interaction at the oriT regions was unidirectionally plasmid specific in that a plasmid with the oriT region of pTC-F14 could be mobilized by pTF-FC2 but not vice versa. No evidence for any negative effect on the transfer of one plasmid by the related, potentially competitive plasmid was obtained.  相似文献   

13.
Conjugative transfer of the self-transmissible IncP plasmid RP4 requires the product of the RP4 traK gene. By using the phage T7 expression system, the traK gene product was efficiently overproduced and purified to near homogeneity. traK encodes a basic protein (pI = 10.7) of 14.6 kDa that, as shown by DNA fragment retention assay, interacts exclusively with its cognate transfer origin. The apparent equilibrium constant K(app) for the complex of TraK and oriT-DNA was estimated to be 4 nM. Footprinting experiments using DNase I or hydroxyl radicals indicate that several TraK molecules interact specifically with an intrinsically bent region of oriT, covering a range of almost 200 base pairs. The TraK target sequence maps in the leading region adjacent to the relaxation nick site and recognition sequences involved in relaxosome formation but does not overlap them. Specific interactions between TraK and the DNA occur only on one side of the double helix. Electron microscopy of TraK-oriT complexes demonstrates that binding of TraK to its recognition region apparently shrinks the length of the target DNA, suggesting that the nucleic acid becomes wrapped around a core of TraK molecules. Formation of this structure could be favored by the presence of the sequence-directed bend in the TraK recognition region.  相似文献   

14.
The origin of transfer (oriT) of the 18-kb conjugative transposon Tn916 has been localized to a 466-bp region which spans nucleotides 15215 to 15681 on the transposon map. The oriT lies within an intercistronic region between open reading frames ORF20 and ORF21 that contains six sets of inverted repeats ranging from 10 to 20 bp in size. The segment contains three sequences showing identity in 9 of 12 bp to the consensus nicking site (nic) of the IncP family of conjugative plasmids found in gram-negative bacteria. Overlapping one of these sequences is a region similar to the nic site of the F plasmid. Functionality was based on the ability of the oriT-containing sequence to provide a cis-acting mobilization of chimeras involving the shuttle vector pWM401 in response to activation in trans by an intact chromosome-borne transposon Tn916 delta E. Cloned segments of 466 or 376 nucleotides resulted in unselected cotransfer of the plasmid at levels of about 40% when selection was for Tn916 delta E, whereas a 110-bp segment resulted in cotransfer at a frequency of about 7%. Mobilization was specific in that gram-positive plasmids, such as pAD1 and pAM beta 1, and the gram-negative plasmids pOX38 (a derivative of F) and RP1 did not mobilize oriT-containing chimeras.  相似文献   

15.
The complete conjugal transfer gene region of the IncW plasmid R388 has been cloned in multicopy vector plasmids and mapped to a contiguous 14.9-kilobase segment by insertion mutagenesis. The fertility of the cloned region could still be inhibited by a coresident IncP plasmid. The transfer region has been dissected into two regions, one involved in pilus synthesis and assembly (PILW), and the other involved in conjugal DNA metabolism (MOBW). They have been separately cloned. PILW also contains the genes involved in entry exclusion. MOBW contains oriT and the gene products required for efficient mobilization by PILW. MOBW plasmids could also be mobilized efficiently by PILN, the specific pilus of the IncN plasmid pCU1, but not by PILP, the specific pilus of the IncP plasmid RP1.  相似文献   

16.
Bacterial conjugation normally involves the unidirectional transfer of DNA from donor to recipient. Occasionally, conjugation results in the transfer of DNA from recipient to donor, a phenomenon known as retrotransfer. Two distinct models have been generally considered for the mechanism of retrotransfer. In the two-way conduction model, no transfer of the conjugative plasmid is required. The establishment of a single conjugation bridge between donor and recipient is sufficient for the transfer of DNA in both directions. In the one-way conduction model, transfer of the conjugative plasmid to the recipient is required to allow the synthesis of a new conjugation bridge for the transfer of DNA from recipient to donor. We have tested these models by the construction of a mutant of the self-transmissible, IncP plasmid RK2lac that allows the establishement of the conjugation bridge but is incapable of self-transfer. Four nucleotides of the nic region of the origin of transfer (oriT) were changed directly in the 67-kb plasmid RK2lac by a simple adaptation of the vector-mediated excision (VEX) strategy for precision mutagenesis of large plasmids (E. K.Ayres, V. J. Thomson, G. Merino, D. Balderes, and D. H. Figurski, J. Mol. Biol. 230:174-185, 1993). The resulting RK2lac oriT1 mutant plasmid mobilizes IncQ or IncP oriT+ plasmids efficiently but transfers itself at a frequency which is 10(4)-fold less than that of the wild type. Whereas the wild-type RK2lac oriT+ plasmid promotes the retrotransfer of an IncQ plasmid from Escherichia coli or Pseudomonas aeruginosa recipients, the RK2lac oriT1 mutant is severely defective in retrotransfer. Therefore, retrotransfer requires prior transfer of the conjugative plasmid to the recipient. The results prove that retrotransfer occurs by two sequential DNA transfer events.  相似文献   

17.
Many Bacteroides clinical isolates carry large conjugative transposons that, in addition to transferring themselves, excise, circularize, and transfer smaller, unlinked chromosomal DNA segments called NBUs (nonreplicating Bacteroides units). We report the localization and DNA sequence of a region of one of the NBUs, NBU1, that was necessary and sufficient for mobilization by Bacteroides conjugative transposons and by IncP plasmids. The fact that the mobilization region was internal to NBU1 indicates that the circular form of NBU1 is the form that is mobilized. The NBU1 mobilization region contained a single large (1.4-kbp) open reading frame (ORF1), which was designated mob. The oriT was located within a 220-bp region upstream of mob. The deduced amino acid sequence of the mob product had no significant similarity to those of mobilization proteins of well-characterized Escherichia coli group plasmids such as RK2 or of either of the two mobilization proteins of Bacteroides plasmid pBFTM10. There was, however, a high level of similarity between the deduced amino acid sequence of the mob product and that of the product of a Bacteroides vulgatus cryptic open reading frame closely linked to a cefoxitin resistance gene (cfxA).  相似文献   

18.
DNA transfer by bacterial conjugation requires a mating pair formation (Mpf) system that specifies functions for establishing the physical contact between the donor and the recipient cell and for DNA transport across membranes. Plasmid RP4 (IncP alpha) contains two transfer regions designated Tra1 and Tra2, both of which contribute to Mpf. Twelve components are essential for Mpf, TraF of Tra1 and 11 Tra2 proteins, TrbB, -C, -D, -E, -F, -G, -H, -I, -J, -K, and -L. The phenotype of defined mutants in each of the Tra2 genes was determined. Each of the genes, except trbK, was found to be essential for RP4-specific plasmid transfer and for mobilization of the IncQ plasmid RSF1010. The latter process did not absolutely require trbF, but a severe reduction of the mobilization frequency occurred in its absence. Transfer proficiency of the mutants was restored by complementation with defined Tra2 segments containing single trb genes. Donor-specific phage propagation showed that traF and each of the genes encoded by Tra2 are involved. Phage PRD1, however, still adsorbed to the trbK mutant strain but not to any of the other mutant strains, suggesting the existence of a plasmid-encoded receptor complex. Strains containing the Tra2 plasmid in concert with traF were found to overexpress trb products as well as extracellular filaments visualized by electron microscopy. Each trb gene and traF are needed for the formation of the pilus-like structures. The trbK gene, which is required for PRD1 propagation and for pilus production but not for DNA transfer on solid media, encodes the RP4 entry-exclusion function. The components of the RP4 Mpf system are discussed in the context of related macromolecule export systems.  相似文献   

19.
In this study, the DNA sequence of one of the transfer regions of the IncHI1 plasmid R27 was determined. This region, which corresponds to coordinates 0-40 on the R27 map has been called the Tra2 region, and is believed to be involved in mating pair formation. DNA sequence analysis of the transfer region identified 11 open reading frames which showed similarities to the transfer genes from other conjugative systems. The R27 transfer genes appear to most closely resemble the genes from the F plasmid and Sphingomonas aromaticivorans plasmid pNL1, both within the individual genes and in the overall gene order. The Tra2 region is also distinct in that replication, partitioning, and stability genes are found in the middle of the transfer region. The R27 Tra2 region also contains a gene, trhF, which appears to be related to the TraF genes of Agrobacterium and Rhizobium species. This, along with the temperature-sensitive transfer system found in both H plasmids and Agrobacterium, leads to the speculation that the R27 transfer region evolved from both ancestral F-like and P-like plasmids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号