首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Expression of one specific isoform of plastidic glucose 6-phosphate dehydrogenase (G6PDH) was manipulated in transgenic tobacco. Antisense and sense constructs of the endogenous P2 form of G6PDH were used to transform plants under the control of the cauliflower mosaic virus (CaMV) 35S promotor. Recombinant plants with altered expression were taken through to homozygosity by selective screening. Northern analyses revealed substantial changes in the expression of the P2 form of G6PDH, with no apparent impact on the activity of the cytosolic isoenzyme. Analysis of G6PDH activity in chloroplasts showed that despite the large changes in expression of P2-G6PDH, the range of enzyme activity varied only from approximately 50 to 200% of the wild type, reflecting the presence of a second G6PDH chloroplastic isoform (P1). Although none of the transgenic plants showed any visible phenotype, there were marked differences in metabolism of both sense and antisense lines when compared with wild-type/control lines. Sucrose, glucose and fructose contents of leaves were higher in antisense lines, whereas in overexpressing lines, the soluble sugar content was reduced below that of control plants. Even more striking was the observation that contents of glucose 6-phosphate (Glc6P) and 6-phosphogluconate (6PG) changed, such that the ratio of Glc6P:6PG was some 2.5-fold greater in the most severe antisense lines, compared with those with the highest levels of overexpression. Because of the distinctive biochemical properties of P2-G6PDH, we investigated the impact of altered expression on the contents of antioxidants and the response of plants to oxidative stress induced by methyl viologen (MV). Plants with decreased expression of P2-G6PDH showed increased content of reduced glutathione (GSH) compared to other lines. They also possessed elevated contents of ascorbate and exhibited a much higher ratio of reduced:oxidised ascorbate. When exposed to MV, leaf discs of wild-type and overexpressing lines demonstrated increased oxidative damage as measured by lipid peroxidation. Remarkably, leaf discs from plants with decreased P2-G6PDH did not show any change in lipid peroxidation in response to increasing concentrations of up to 15 micro m MV. The results are discussed from the perspective of the role of G6PDH in carbohydrate metabolism and oxidative stress. It is suggested that the activity of P2-G6PDH may be crucial in balancing the redox poise in chloroplasts.  相似文献   

2.
The tolerance of crops to a shortage of boron (B) in the soil varies markedly among species. This variation in tolerance is due, in part, to a species ability to form phloem mobile B-sugar-alcohol complexes (such as B-mannitol or B-sorbitol) which enhance the remobilization of B within the plant. Species lacking the capacity to form B-sugar alcohol complexes are intolerant of even short-term deficits in soil B supply. Here we have genetically engineered rice ( Oryza sativa L.) cultivar Taipei 309 (TP309) with the sorbitol-6-phosphate dehydrogenase (S6PDH) gene, a key enzyme for sorbitol production, and determined the effect of this transformation on the physiology of B remobilization. Sorbitol was detected in the S6PDH transgenic plants as well as in vector-transformed plants and wild-type (TP 309) plants, although the concentration of sorbitol in the S6PDH transgenic plants was significantly enhanced. Remobilization of B from mature leaves to flag leaves correlated with increased levels of sorbitol. The presence of sorbitol and detection of B remobilization in the wild-type and vector-transformed plants suggests that rice utilizes an unknown pathway for sorbitol synthesis and may partly explain the relative insensitivity of rice to B deficits when compared to other graminaceous crops.  相似文献   

3.
Recent evidence that some species can retranslocate boron as complexes with sugar alcohols in the phloem suggests a possible mechanism for enhancing boron efficiency. We investigated the relationship between sugar alcohol (sorbitol) content, boron uptake and distribution, and translocation of foliar-applied, isotopically enriched 10B in three lines of tobacco (Nicotiana tabacum) plants differing in sorbitol production. In tobacco line S11, transformed with sorbitol-6-phosphate dehydrogenase, the production of sorbitol was accompanied by an increase in the concentration of boron in plant tissues and an increased uptake of boron compared with either tobacco line A4, transformed with antisense orientation of sorbitol-6-phosphate dehydrogenase, or wild-type tobacco (line SR1, zero-sorbitol producer). Foliar application of 10B to mature leaves was translocated to the meristematic tissues only in line S11. These results demonstrate that the concentration of the boron-complexing sugar alcohol in the plant tissue has a significant effect on boron uptake and distribution in plants, whereas the translocation of the foliar-applied 10B from the mature leaves to the meristematic tissues verifies that boron is mobile in sorbitol-producing plants (S11) as we reported previously. This suggests that selection or transgenic generation of cultivars with an increased sugar alcohol content can result in increased boron uptake, with no apparent negative effects on short-term growth.  相似文献   

4.
Many efforts have been made to engineer stress tolerance by accumulating polyols. Transformants that accumulate polyols often show growth inhibition, because polyols are synthesized as a dead-end product in plants that do not naturally accumulate polyols. Here, we show a novel strategy in which a sorbitol cycle was engineered by introducing apple cDNA encoding NAD-dependent sorbitol dehydrogenase (SDH) in addition to sorbitol-6-phosphate dehydrogenase (S6PDH). Tobacco plants transformed only with S6PDH showed growth inhibition, and very few transformants were obtained. In contrast, many transgenic plants with both S6PDH and SDH were easily obtained, and their growth was normal despite their accumulation of sorbitol. Interestingly, the engineered sorbitol cycle enhanced the accumulation of sucrose instead of fructose that was expected to be increased. Sucrose, rather than fructose, was also increased in the immature fruit of tomato plants transformed with an antisense fructokinase gene in which the phosphorylation of fructose was inhibited. A common phenomenon was observed in the metabolic engineering of two different pathways, showing the presence of homeostatic regulation of fructose levels.  相似文献   

5.
Phosphoglucomutase (PGM, EC 2.7.5.1) is one of the enzymes constituting the carbohydrate synthesis pathway in higher plants. It catalyzes the reversible conversion of glucose 6-phosphate (Glc6P) to glucose 1-phosphate (Glc1P). Previously, metabolic turnover analysis using (13)CO(2) in tobacco leaves demonstrated that conversion of Glc6P to Glc1P may limit carbon flow into carbohydrate synthesis. In order to assess the effects of PGM, Arabidopsis thaliana cytosolic or plastidial PGM was expressed under the control of cauliflower mosaic virus 35S promoter in tobacco plants (Nicotiana tabacum cv. Xanthi) and phenotypic analysis was performed. The transgenic plants expressing Arabidopsis plastidial PGM showed 3.5-8.2-fold higher PGM activity than that of wild-type, and leaf starch and sucrose contents increased 2.3-3.2-fold and 1.3-1.4-fold, respectively over wild-type levels. In vivo(13)C-labeling experiments indicated that photosynthetically fixed carbon in the transgenic plants could be converted faster to Glc1P and adenosine 5'-diphosphate glucose than in wild-type, suggesting that elevation of plastidial PGM activity should accelerate conversion of Glc6P to Glc1P in chloroplasts and increase carbon flow into starch. On the other hand, transgenic plants expressing Arabidopsis cytosolic PGM showed a 2.1-3.4-fold increase in PGM activity over wild-type and a decrease of leaf starch content, but no change in sucrose content. These results suggest that plastidial PGM limits photosynthetic carbon flow into starch.  相似文献   

6.
蔷薇科植物中山梨醇代谢酶的研究进展   总被引:6,自引:0,他引:6  
蔷薇科植物中,与山梨醇代谢相关的酶主要有:6-磷酸山梨醇脱氢酶、山梨醇脱氢酶和山梨醇氧化酶。综述了近些年来国内外关于这几种酶的研究进展,涉及的内容有:酶的性质与作用、酶的活性变化与转录的关系,及其在生物技术方面的研究成果,并对今后的研究工作进行了展望。  相似文献   

7.
Transgenic tobacco (Nicotiana tabacum L, cv. SR-1) expressing mannitol 1-phosphate dehydrogenase, MTLD, in chloroplasts and myo-inositol O-methyltransferase, IMT1, in the cytosol after crossing of lines which expressed these foreign genes separately has been analysed. Plants expressing both enzymes accumulated mannitol and D-ononitol in amounts comparable to those following single gene transfer and showed phenotypically normal growth during the vegetative stage. Induction of flowering for transgenovar and wild-type occurred at the same time, but during flowering the phenotype of the transformed plants changed. Compared to wild-type, transgenic plants were characterized by curled, smaller upper leaves and elongated stems during flowering; incomplete development of flower buds with shorter sepals and pedicels resulted in increased abortion. Flowers completing development were normal. The vegetative biomass of the transformed plants was slightly higher than that of wild-type. Concentrations of soluble sugars and potassium were lower than in wild-type only in the apical parts of the transgenic plants. Both enzymes, under control of the CaMV 35S promoter, promoted accumulation of mannitol and D-ononitol in the youngest leaves close to the vegetative meristem and in flowers, suggesting that their presence could signal lower sink demand leading to a decrease in carbon import to flowers and developing seed capsules. The interpretation here is that increases of inert carbohydrates in developing sinks interfere with metabolism, such as respiration or glycolysis. This interference may be less significant in source tissues during vegetative growth than in sink tissues during seed development.  相似文献   

8.
In order to investigate the relationship between the lipid composition in thylakoid membrane and thermostability of pho-tosynthetic apparatus, tobacco transformed with sweet pepper sense glycerol-3-phosphate acyltransferase (GPA T) gene were used to analyze the lipid composition in thylakoid membrane, the net photosynthetic rate and chlorophyll fluorescence parameters under high temperature stress. The results showed that the saturated extent of monogalactosyldiacylglycerol (MGDG), suifoquinovosyldiacylglycerol, digalactosyldiacylglycerol and phosphatidylglycerol in thylakoid membrane of transgenic tobacco T1 lines increased generally. Particularly, the saturated extent in MGDG increased obviously by 16.2% and 12.0% in T1-2 and T1-1, respectively. With stress temperature elevating, the maximum efficiency of photosystem Ⅱ the two lines and wild type tobacco plants decreased gradually, but those parameters decreased much less in transgenic plants. Even though the recovery process appeared differently in the donor and acceptor side of PSII in transgenic tobacco compared with wild-type plants, the entire capability of PSII recovered faster in transgenic tobacco, which was shown in Increase in saturated extent of thylakoid membrane Iipids in transgenic plants enhanced the stability of photosynthetic apparatus under high temperature stress.  相似文献   

9.
The mobility of elements within plants contributes to a plant species' tolerance of nutrient deficiencies in the soil. The genetic manipulation of within-plant nutrient movement may therefore provide a means to enhance plant growth under conditions of variable soil nutrient availability. In these experiments tobacco (Nicotiana tabacum) was engineered to synthesize sorbitol, and the resultant effect on phloem mobility of boron (B) was determined. In contrast to wild-type tobacco, transgenic tobacco plants containing sorbitol exhibit a marked increase in within-plant B mobility and a resultant increase in plant growth and yield when grown with limited or interrupted soil B supply. Growth of transgenic tobacco could be maintained by reutilization of B present in mature tissues or from B supplied as a foliar application to mature leaves. In contrast, B present in mature leaves of control tobacco lines could not be used to provide the B requirements for new plant growth. 10B-labeling experiments verified that B is phloem mobile in transgenic tobacco but is immobile in control lines. These results demonstrate that the transgenic enhancement of within-plant nutrient mobility is a viable approach to improve plant tolerance of nutrient stress.  相似文献   

10.
We previously reported that overexpression of the rice homeobox gene OSH1 led to altered morphology and hormone levels in transgenic tobacco (Nicotiana tabacum L.) plants. Among the hormones whose levels were changed, GA1 was dramatically reduced. Here we report the results of our analysis on the regulatory mechanism(s) of OSH1 on GA metabolism. GA53 and GA20, precursors of GA1, were applied separately to transgenic tobacco plants exhibiting severely changed morphology due to overexpression of OSH1. Only treatment with the end product of GA 20-oxidase, GA20, resulted in a striking promotion of stem elongation in transgenic tobacco plants. The internal GA1 and GA20 contents in OSH1-transformed tobacco were dramatically reduced compared with those of wild-type plants, whereas the level of GA19, a mid-product of GA 20-oxidase, was 25% of the wild-type level. We have isolated a cDNA encoding a putative tobacco GA 20-oxidase, which is mainly expressed in vegetative stem tissue. RNA-blot analysis revealed that GA 20-oxidase gene expression was suppressed in stem tissue of OSH1-transformed tobacco plants. Based on these results, we conclude that overexpression of OSH1 causes a reduction of the level of GA1 by suppressing GA 20-oxidase expression.  相似文献   

11.
The aim of this work was to examine the role of sucrose-6-phosphate phosphatase (SPP; EC 3.1.3.24) in photosynthetic carbon partitioning. SPP catalyzes the final step in the pathway of sucrose synthesis; however, until now the importance of this enzyme in plants has not been studied by reversed-genetics approaches. With the intention of conducting such a study, transgenic tobacco plants with reduced SPP levels were produced using an RNA interference (RNAi) strategy. Transformants with less than 10% of wild-type SPP activity displayed a range of phenotypes, including those that showed inhibition of photosynthesis, chlorosis, and reduced growth rates. These plants had strongly reduced levels of sucrose and hexoses but contained 3–5 times more starch than the control specimens. The leaves were unable to export transient starch during extended periods of darkness and as consequence showed a starch- and maltose-excess phenotype. This indicates that no alternative mechanism for carbon export was activated. Inhibition of SPP resulted in an approximately 1,000-fold higher accumulation of sucrose-6-phosphate (Suc6P) compared to wild-type leaves, whereas the content of hexose-phosphates was reduced. Although the massive accumulation of Suc6P in the cytosol of transgenic leaves was assumed to impair phosphate-recycling into the chloroplast, no obvious signs of phosphate-limitation of photosynthesis became apparent. 3-Phosphoglycerate (3-PGA) levels dropped slightly and the ATP/ADP ratio was not reduced in the transgenic lines under investigation. It is proposed that in SPP-deficient plants, long-term compensatory responses give rise to the observed acceleration of starch synthesis, increase in total cellular Pi content, decrease in protein content, and related reduction in photosynthetic activity.  相似文献   

12.
Matringe M  Ksas B  Rey P  Havaux M 《Plant physiology》2008,147(2):764-778
Vitamin E is a generic term for a group of lipid-soluble antioxidant compounds, the tocopherols and tocotrienols. While tocotrienols are considered as important vitamin E components in humans, with functions in health and disease, the protective functions of tocotrienols have never been investigated in plants, contrary to tocopherols. We took advantage of the strong accumulation of tocotrienols in leaves of double transgenic tobacco (Nicotiana tabacum) plants that coexpressed the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene (PDH) and the Arabidopsis (Arabidopsis thaliana) hydroxyphenylpyruvate dioxygenase gene (HPPD) to study the antioxidant function of those compounds in vivo. In young leaves of wild-type and transgenic tobacco plants, the majority of vitamin E was stored in thylakoid membranes, while plastoglobules contained mainly delta-tocopherol, a very minor component of vitamin E in tobacco. However, the vitamin E composition of plastoglobules was observed to change substantially during leaf aging, with alpha-tocopherol becoming the major form. Tocotrienol accumulation in young transgenic HPPD-PDH leaves occurred without any significant perturbation of photosynthetic electron transport. Tocotrienols noticeably reinforced the tolerance of HPPD-PDH leaves to high light stress at chilling temperature, with photosystem II photoinhibition and lipid peroxidation being maintained at low levels relative to wild-type leaves. Very young leaves of wild-type tobacco plants turned yellow during chilling stress, because of the strongly reduced levels of chlorophylls and carotenoids, and this phenomenon was attenuated in transgenic HPPD-PDH plants. While sugars accumulated similarly in young wild-type and HPPD-PDH leaves exposed to chilling stress in high light, a substantial decrease in tocotrienols was observed in the transgenic leaves only, suggesting vitamin E consumption during oxygen radical scavenging. Our results demonstrate that tocotrienols can function in vivo as efficient antioxidants protecting membrane lipids from peroxidation.  相似文献   

13.
d-Sorbitol-6-phosphate 2-dehydrogenase (S6PDH, E.C. 1.1.1.140) catalyzes the NADH-dependent conversion of d-fructose 6-phosphate (F6P) to d-sorbitol 6-phosphate (S6P). In this work, recombination and characterization of Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase are reported. Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase was expressed in P. pastoris and Arabidopsis thaliana. Enzyme assay indicated that HmS6PDH catalyzes the reduction of d-fructose 6-phosphate to d-sorbitol 6-phosphate and HmS6PDH activity was enhanced by NaCl. Furthermore, transgenic A. thaliana ectopic expressing HmS6PDH accumulate more sorbitol under salt stress. These results suggest that the ectopic expression of HmS6PDH in plants can facilitate future studies regarding the engineering and breeding of salt-tolerant crops.  相似文献   

14.
15.
Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed.  相似文献   

16.
A cryoprotective protein, HIC6, was expressed transgenically in tobacco, a cold-sensitive plant, and the localization of the protein within the cell as well as freezing tolerance of the transgenic tobacco was investigated. For constitutive expression of HIC6 in tobacco, its corresponding gene was subcloned into pBI121. Through the transformation with pBI121/hiC6, fifteen transgenic tobacco lines were acquired, out of which twelve lines expressed the HIC6 protein. None of the transgenic tobacco lines, however, showed significant differences in freezing tolerance from the control plants (wild-type and transformed with pBI121) at ?1, ?3, and ?4°C, with the exception that their freezing temperature was ?2°C. In order to increase the accumulation level of HIC6, pBE2113 with a stronger promoter was used. Eight lines expressed the protein out of thirteen lines transformed with pBE2113/hiC6. The accumulation levels of the protein were clearly higher in the tobacco plants transformed with pBE2113/hiC6 than in those with pBI121/hiC6. The HIC6 protein seemed to be localized in mitochondria of the transgenic tobacco plants. Freezing-tolerance test at ?1 - ?4°C showed that the degree of electrolyte leakage was significantly lower in the plants with pBE2113/hiC6 than in the control plants. A leaf browning observation also showed that high accumulation of HIC6 significantly suppressed injury caused by freezing to the transgenic tobacco at ?3°C.  相似文献   

17.
A cryoprotective protein, HIC6, was expressed transgenically in tobacco, a cold-sensitive plant, and the localization of the protein within the cell as well as freezing tolerance of the transgenic tobacco was investigated. For constitutive expression of HIC6 in tobacco, its corresponding gene was subcloned into pBI121. Through the transformation with pBI121/hiC6, fifteen transgenic tobacco lines were acquired, out of which twelve lines expressed the HIC6 protein. None of the transgenic tobacco lines, however, showed significant differences in freezing tolerance from the control plants (wild-type and transformed with pBI121) at -1, -3, and -4 degrees C, with the exception that their freezing temperature was -2 degrees C. In order to increase the accumulation level of HIC6, pBE2113 with a stronger promoter was used. Eight lines expressed the protein out of thirteen lines transformed with pBE2113/hiC6. The accumulation levels of the protein were clearly higher in the tobacco plants transformed with pBE2113/hiC6 than in those with pBI121/hiC6. The HIC6 protein seemed to be localized in mitochondria of the transgenic tobacco plants. Freezing-tolerance tests at -1 - -4 degrees C showed that the degree of electrolyte leakage was significantly lower in the plants with pBE2113/hiC6 than in the control plants. A leaf browning observation also showed that high accumulation of HIC6 significantly suppressed injury caused by freezing to the transgenic tobacco at -3 degrees C.  相似文献   

18.
A 1,697-bp cDNA sequence, designated as PsG6PDH, was amplified from Populus suaveolens. Multiple sequence alignment and phylogenetic analysis indicated that PsG6PDH encodes a cytosolic G6PDH isoform, with Southern blot analysis demonstrating that the gene is single or low copy in Populus. Transgenic tobacco plants over-expressing PsG6PDH exhibited enhanced cold tolerance. In both transgenic and wild-type (WT) tobacco plants, cold stress increased leaf malondialdehyde (MDA) content, electrolyte leakage (EL), and peroxide (POD) and superoxide dismutase (SOD) activities; relative to WT, however, transgenic lines had lower MDA content and EL and higher SOD and POD activities. In addition, PsG6PDH activated the expression of stress-related genes, including NtERD10b, NtERD10c, and NtSOD, in tobacco plants. Our results provide evidence regarding PsG6PDH regulatory function in plants during low temperature stress.  相似文献   

19.
An efficient in planta sugarcane-based production system may be realized by coupling the synthesis of alternative products to the metabolic intermediates of sucrose metabolism, thus taking advantage of the sucrose-producing capability of the plant. This was evaluated by synthesizing sorbitol in sugarcane (Saccharum hybrids) using the Malus domestica sorbitol-6-phosphate dehydrogenase gene (mds6pdh). Mature transgenic sugarcane plants were compared with untransformed sugarcane variety Q117 by evaluation of the growth, metabolite levels and extractable activity of relevant enzymes. The average amounts of sorbitol detected in the most productive line were 120 mg/g dry weight (equivalent to 61% of the soluble sugars) in the leaf lamina and 10 mg/g dry weight in the stalk pith. The levels of enzymes involved in sucrose synthesis and cleavage were elevated in the leaves of plants accumulating sorbitol, but this did not affect sucrose accumulation in the culm. The activity of oxidative reactions in the pentose phosphate pathway and the non-reversible glyceraldehyde-3-phosphate dehydrogenase reaction were elevated to replenish the reducing power consumed by sorbitol synthesis. Sorbitol-producing sugarcane generated 30%-40% less aerial biomass and was 10%-30% shorter than control lines. Leaves developed necrosis in a pattern characteristic of early senescence, and the severity was related to the relative quantity of sorbitol accumulated. When the Zymomonas mobilis glucokinase (zmglk) gene was co-expressed with mds6pdh to increase the production of glucose-6-phosphate, the plants were again smaller, indicating that glucose-6-phosphate deficiency was not responsible for the reduced growth. In summary, sorbitol hyperaccumulation affected sugarcane growth and metabolism, but the outcome was not lethal for the plant. This work also demonstrated that impressive yields of alternative products can be generated from the intermediates of sucrose metabolism in Saccharum spp.  相似文献   

20.
Laminarin, a beta-1,3 glucan with single beta-glucose branches at position 6, was chemically sulfated to produce PS3 with a degree of sulfation of 2.4. PS3 has previously been shown to activate the salicylic acid (SA) signaling pathway in infiltrated tobacco and Arabidopsis thaliana leaf tissues. Here, we investigated whether PS3 induces systemic defense and resistance responses in tobacco. Using a radiolabeled compound, it was first demonstrated that PS3 remains strictly localized to the infiltrated tissues. PS3 is also resistant to beta-glucanase degradation. In transgenic PR1-beta-glucuronidase (GUS) tobacco plants, PS3 causes a strong increase in GUS activity in treated tissues but none in untreated leaves. PS3-infiltrated tissues challenged with tobacco mosaic virus (TMV) 8 d after elicitor application show a decrease in both the lesion number and the lesion size, whereas treatment with laminarin, the unsulfated native glucan, affected only the lesion number. PS3 does not induce systemic acquired resistance to TMV. PS3 and laminarin show synergistic effects in promoting the oxidative burst in tobacco cell suspensions and in increasing the expression of genes encoding O-methyltransferases of the phenylpropanoid pathway in tobacco plants. No synergistic effect was observed on the expression of either the SA-dependent acidic PR1 gene or the ethylene-dependent basic PR5 gene in tobacco plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号