首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
Massive blooms of the dinoflagellate Cochlodinium polykrikoides occur annually in the Chesapeake Bay and its tributaries. The initiation of blooms and their physical transport has been documented and the location of bloom initiation was identified during the 2007 and 2008 blooms. In the present study we combined daily sampling of nutrient concentrations and phytoplankton abundance at a fixed station to determine physical and chemical controls on bloom formation and enhanced underway water quality monitoring (DATAFLOW) during periods when blooms are known to occur. While C. polykrikoides did not reach bloom concentrations until late June during 2009, vegetative cells were present at low concentrations in the Elizabeth River (4 cells ml−1) as early as May 27. Subsequent samples collected from the Lafayette River documented the increase in C. polykrikoides abundance in the upper branches of the Lafayette River from mid-June to early July, when discolored waters were first observed. The 2009 C. polykrikoides bloom began in the Lafayette River when water temperatures were consistently above 25 °C and during a period of calm winds, neap tides, high positive tidal residuals, low nutrient concentrations, and a low dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorous (DIP) ratio. The pulsing of nutrients associated with intense but highly localized storm activity during the summer months when water temperatures are above 25 °C may play a role in the initiation of C. polykrikoides blooms. The upper Lafayette River appears to be an important area for initiation of algal blooms that then spread to other connected waterways.  相似文献   

2.
3.
Autonomous underwater gliders with customized sensors were deployed in October 2011 on the central West Florida Shelf to measure a Karenia brevis bloom, which was captured in satellite imagery since late September 2011. Combined with in situ taxonomy data, satellite measurements, and numerical circulation models, the glider measurements provided information on the three-dimensional structure of the bloom. Temperature, salinity, fluorescence of colored dissolved organic matter (CDOM) and chlorophyll-a, particulate backscattering coefficient, and K. brevis-specific chlorophyll-a concentrations were measured by the gliders over >250 km from the surface to about 30-m water depth on the shallow shelf. At the time of sampling the bloom was characterized by uniform vertical structures, with relatively high chlorophyll-a and CDOM fluorescence, low temperature, and high salinity. Satellite data extracted along the glider tracks demonstrated coherent spatial variations as observed by the gliders. Further, the synoptic satellite observations revealed the bloom evolution during the 7 months between late September 2011 and mid April 2012, and showed the maximum bloom size of ∼3000 km2 around 23 November. The combined satellite and in situ data also confirmed that the ratio of satellite-derived fluorescence line height (FLH) to particulate backscattering coefficient at 547 nm (bbp(547)) could be used as a better index than FLH alone to detect K. brevis blooms. Numerical circulation models further suggested that the bloom could have been initiated offshore and advected onshore via the bottom Ekman layer. The case study here demonstrates the unique value of an integrated coastal ocean observing system in studying harmful algal blooms (HABs).  相似文献   

4.
《Harmful algae》2009,8(1):103-110
Cultural eutrophication is frequently invoked as one factor in the global increase in harmful algal blooms, but is difficult to definitively prove due to the myriad of factors influencing coastal phytoplankton bloom development. To assess whether eutrophication could be a factor in the development of harmful algal blooms in California (USA), we review the ecophysiological potential for urea uptake by Pseudo-nitzschia australis (Bacillariophyceae), Heterosigma akashiwo (Raphidophyceae), and Lingulodinium polyedrum (Dinophyceae), all of which have been found at bloom concentrations and/or exhibited noxious effects in recent years in California coastal waters. We include new measurements from a large (Chlorophyll a > 500 mg m−3) red tide event dominated by Akashiwo sanguinea (Dinophyceae) in Monterey Bay, CA during September 2006. All of these phytoplankton are capable of using nitrate, ammonium, and urea, although their preference for these nitrogenous substrates varies. Using published data and recent coastal time series measurements conducted in Monterey Bay and San Francisco Bay, CA, we show that urea, presumably from coastal eutrophication, was present in California waters at measurable concentrations during past harmful algal bloom events. Based on these observations, we suggest that urea uptake could potentially sustain these harmful algae, and that urea, which is seldom measured as part of coastal monitoring programs, may be associated with these harmful algal events in California.  相似文献   

5.
Fjordic coastlines provide an ideal protected environment for both finfish and shellfish aquaculture operations. This study reports the results of a cruise to the Scottish Clyde Sea, and associated fjordic sea lochs, that coincided with blooms of the diarrhetic shellfish toxin producing dinoflagellate Dinophysis acuta and the diatom genus Chaetoceros, that can generate finfish mortalities. Unusually, D. acuta reached one order of magnitude higher cell abundance in the water column (2840 cells L−1) than the more common Dinophysis acuminata (200 cells L−1) and was linked with elevated shellfish toxicity (maximum 601 ± 237 μg OA eq/kg shellfish flesh) which caused shellfish harvesting closures in the region. Significant correlations between D. acuta abundance and that of Mesodinium rubrum were also observed across the cruise transect potentially supporting bloom formation of the mixotrophic D. acuta. Significant spatial variability in phytoplankton that was related to physical characteristics of the water column was observed, with a temperature-driven frontal region at the mouth of Loch Fyne being important in the development of the D. acuta, but not the Chaetoceros bloom. The front also provided important protection to the aquaculture located within the loch, with neither of the blooms encroaching within it. Analysis based on a particle-tracking model confirms the importance of the front to cell transport and shows significant inter-annual differences in advection within the region, that are important to the harmful algal bloom risk therein.  相似文献   

6.
The toxic marine dinoflagellate, Karenia brevis (the species responsible for most of red tides or harmful algal blooms in the Gulf of Mexico), is known to be able to swim vertically to adapt to the light and nutrient environments, nearly all such observations have been made through controlled experiments using cultures. Here, using continuous 3-dimensional measurements by an ocean glider across a K. brevis bloom in the northeastern Gulf of Mexico between 1 and 8 August 2014, we show the vertical migration behavior of K. brevis. Within the bloom where K. brevis concentration is between 100,000 and 1,000,000 cells L−1, the stratified water shows a two-layer system with the depth of pycnocline ranging between 14–20 m and salinity and temperature in the surface layer being <34.8 and >28 °C, respectively. The bottom layer shows the salinity of >36 and temperature of <26 °C. The low salinity is apparently due to coastal runoff, as the top layer also shows high amount of colored dissolved organic matter (CDOM). Within the top layer, chlorophyll-a fluorescence shows clear diel changes in the vertical structure, an indication of K. brevis vertical migration at a mean speed of 0.5–1 m h−1. The upward migration appears to start at sunrise at a depth of 8–10 m, while the downward migration appears to start at sunset (or when surface light approaches 0) at a depth of ∼2 m. These vertical migrations are believed to be a result of the need of K. brevis cells for light and nutrients in a stable, stratified, and CDOM-rich environment.  相似文献   

7.
Annual blooms of the toxic dinoflagellate Karenia brevis in the eastern Gulf of Mexico represent one of the most predictable global harmful algal bloom (HAB) events, yet remain amongst the most difficult HABs to effectively monitor for human and environmental health. Monitoring of Karenia blooms is necessary for a variety of precautionary, management and predictive purposes. These include the protection of public health from exposure to aerosolized brevetoxins and the consumption of toxic shellfish, the protection and management of environmental resources, the prevention of bloom associated economic losses, and the evaluation of long term ecosystem trends and for potential future bloom forecasting and prediction purposes. The multipurpose nature of Karenia monitoring, the large areas over which blooms occur, the large range of Karenia cell concentrations (from 5 × 103 cells L?1 to >1 × 106 cells L?1) over which multiple bloom impacts are possible, and limitations in resources and knowledge of bloom ecology have complicated K. brevis monitoring, mitigation and management strategies. Historically, K. brevis blooms were informally and intermittently monitored on an event response basis in Florida, usually in the later bloom stages after impacts (e.g. fish kills, marine mammal mortalities, respiratory irritation) were noted and when resources were available. Monitoring of different K. brevis bloom stages remains the most practical method for predicting human health impacts and is currently accomplished by the state of Florida via direct microscopic counts of water samples from a state coordinated volunteer HAB monitoring program. K. brevis cell concentrations are mapped weekly and disseminated to stakeholders via e-mail, web and toll-free phone numbers and provided to Florida Department of Agriculture and Consumer Services (FDACS) for management of both recreational and commercial shellfish beds in Florida and to the National Oceanic and Atmospheric Administration (NOAA) for validation of the NOAA Gulf of Mexico HAB bulletin for provision to environmental managers. Many challenges remain for effective monitoring and management of Karenia blooms, however, including incorporating impact specific monitoring for the diverse array of potential human and environmental impacts associated with blooms, timely detection of offshore bloom initiation, sampling of the large geographic extent of blooms which often covers multiple state boundaries, and the involvement of multiple Karenia species other than K. brevis (several of which have yet to be isolated and described) with unknown toxin profiles. The implementation and integration of a diverse array of optical, molecular and hybrid Karenia detection technologies currently under development into appropriate regulatory and non-regulatory monitoring formats represents a further unique challenge.  相似文献   

8.
Major cyanobacterial blooms (biovolume > 4 mm3 L−1) occurred in the main water reservoirs on the upper Murray River, Australia during February and March 2010. Cyanobacterial-infested water was released and contaminated rivers downstream. River flow velocities were sufficiently high that in-stream bloom development was unlikely. The location has a temperate climate but experienced drought in 2010, causing river flows that were well below the long-term median values. This coupled with very low bed gradients meant turbulence was insufficient to destroy the cyanobacteria in-stream. Blooms in the upper 500 km of the Murray and Edward Rivers persisted for 5 weeks, but in the mid and lower Murray blooms were confined to a small package of water that moved progressively downstream for another 650 km. Anabaena circinalis was the dominant species present, confirmed by 16S rRNA gene sequencing, but other potentially toxic species were also present in smaller amounts. Saxitoxin (sxtA), microcystin (mcyE) and cylindrospermopsin (aoaA) biosynthesis genes were also detected, although water sample analysis rarely detected these toxins. River water temperature and nutrient concentrations were optimal for bloom survival. The operational design of weirs and retention times within weir pools, as well as tributary inflows to and diversions from the Murray River all influenced the distribution and persistence of the blooms. Similar flow, water quality and river regulation factors were underlying causes of another bloom in these rivers in 2009. Global climate change is likely to promote future blooms in this and other lowland rivers.  相似文献   

9.
The toxic HAB dinoflagellate Karenia brevis (Davis) G. Hansen & Ø. Moestrup (formerly Gymnodinium breve) exhibits a migratory pattern atypical of dinoflagellates: cells concentrate in a narrow (∼0–5 cm) band at the water surface during daylight hours due to phototactic and negative geotactic responses, then disperse downward at night via non-tactic, random swimming. The hypothesis that this daylight surface aggregation behavior significantly influences bacterial and algal productivity and nutrient cycling within blooms was tested during a large, high biomass (chlorophyll a >19 μg L−1) K. brevis bloom in October of 2001 by examining the effects of this surface layer aggregation on inorganic and organic nutrient concentrations, cellular nitrogen uptake, primary and bacterial productivity and the stable isotopic signature (δ15N, δ13C) of particulate material. During daylight hours, concentrations of K. brevis and chlorophyll a in the 0–5 cm surface layer were enhanced by 131% (±241%) and 32.1% (±86.1%) respectively compared with an integrated water sample collection over a 0–1 m depth. Inorganic (NH4, NO3+2, PO4, SiO4) and organic (DOP, DON) nutrient concentrations were also elevated within the surface layer as was both bacterial and primary productivity. Uptake of nitrogen (NH4+, NO3, urea, dissolved primary amines, glutamine and alanine) compounds by K. brevis was greatest in the surface layer for all compounds tested, with the greatest enhancement evident in urea uptake rates, from 0.08 × 10−5 ng N K. brevis cell−1 h−1 to 3.1 × 10−5 ng N K. brevis cell−1 h−1. These data suggests that this surface aggregation layer is not only an area of concentrated cells within K. brevis blooms, but also an area of increased biological activity and nutrient cycling, especially of nitrogen. Additionally, the classic dinoflagellate migration paradigm of a downward migration for access to elevated NO3 concentrations during the dark period may not apply to certain dinoflagellates such as K. brevis in oligotrophic nearshore areas with no significant nitricline. For these dinoflagellates, concentration within a narrow surface layer in blooms during daylight hours may enhance nutrient supply through biological cycling and photochemical nutrient regeneration.  相似文献   

10.
Harmful algal blooms (HABs) are globally expanding, compromising water quality worldwide. HAB dynamics are determined by a complex interplay of abiotic and biotic factors, and their emergence has often been linked to eutrophication, and more recently to climate change. The dinoflagellate Alexandrium is one of the most widespread HAB genera and its success is based on key functional traits like allelopathy, mixotrophy, cyst formation and nutrient retrieval migrations. Since 2012, dense Alexandrium ostenfeldii blooms (up to 4500 cells mL−1) have recurred annually in a creek located in the southwest of the Netherlands, an area characterized by intense agriculture and aquaculture. We investigated how physical, chemical and biological factors influenced A. ostenfeldii bloom dynamics over three consecutive years (2013–2015). Overall, we found a decrease in the magnitude of the bloom over the years that could largely be linked to changing weather conditions during summer. More specifically, low salinities due to excessive rainfall and increased wind speed corresponded to a delayed A. ostenfeldii bloom with reduced population densities in 2015. Within each year, highest population densities generally corresponded to high temperatures, low DIN:DIP ratios and low grazer densities. Together, our results demonstrate an important role of nutrient availability, absence of grazing, and particularly of the physical environment on the magnitude and duration of A. ostenfeldii blooms. Our results suggest that predicted changes in the physical environment may enhance bloom development in future coastal waters and embayments.  相似文献   

11.
All three macroalgal clades (Chlorophyta, Rhodophyta, and Phaeophyceae) contain bloom-forming species. Macroalgal blooms occur worldwide and have negative consequences for coastal habitats and economies. Narragansett Bay (NB), Rhode Island, USA, is a medium sized estuary that is heavily influenced by anthropogenic activities and has been plagued by macroalgal blooms for over a century. Over the past decade, significant investment has upgraded wastewater treatment from secondary treatment to water-quality based limits (i.e. tertiary treatment) in an effort to control coastal eutrophication in this system. The goal of this study was to improve the understanding of multi-year macroalgal bloom dynamics through intensive aerial and ground surveys conducted monthly to bi-monthly during low tides in May–October 2006–2013 in NB. Aerial surveys provided a rapid characterization of macroalgal densities across a large area, while ground surveys provided high resolution measurements of macroalgal identity, percent cover, and biomass.Macroalgal blooms in NB are dominated by Ulva and Gracilaria spp. regardless of year or month, although all three clades of macroalgae were documented. Chlorophyta cover and nutrient concentrations were highest in the middle and upper bay. Rhodophyta cover was highest in the middle and lower bay, while drifting Phaeophyceae cover was patchy. Macroalgal blooms of >1000 g fresh mass (gfm)/m2 (max = 3510 gfm/m2) in the intertidal zone and >3000 gfm/m3 (max = 8555 gfm/m3) in the subtidal zone were observed within a heavily impacted embayment (Greenwich Bay). Macroalgal percent cover (intertidal), biomass (subtidal), and diversity varied significantly between year, month-group, site, and even within sites, with the highest species diversity at sites outside of Greenwich Bay. Total intertidal macroalgal percent cover, as well as subtidal Ulva biomass, were positively correlated with temperature. Dissolved inorganic nitrogen concentrations were correlated with the total biomass of macroalgae and the subtidal biomass of Gracilaria spp. but not the biomass of Ulva spp. Despite seasonal reductions in the nutrient output of wastewater treatment facilities emptying into upper Narragansett Bay in recent years, macroalgal blooms still persist. Continued long-term monitoring of water quality, macroalgal blooms, and ecological indicators is essential to understand the changes in macroalgal bloom dynamics that occur after nutrient reductions from management efforts.  相似文献   

12.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

13.
An unarmored dinoflagellate bloom of Cochlodinium geminatum (Schütt) Schütt has been identified in the Pearl River Estuary, South China Sea during the severe dry season, from late October to early November, 2009, when temperature and salinity ranged between 20.0–27.2 °C and 10.6–33.4, respectively. Light and scanning electron microscopy were used to identify the characteristics of C. geminatum and provided the clear morphological structure for this species. The organism was primarily found in chains of two cells or single cell, and no longer chains were observed. Cells were irregularly spherical or slightly dorso-ventrally, with size ranged between 28 and 36 μm and longer than wide. A large nucleus in the center with numerous golden chloroplasts was present, and the cingulum made 1.5 turns around the cell. The concentration of C. geminatum ranged from 102 to greater than 107 cells l−1 during the bloom period. Nutrient concentration ranges during the bloom were 1.29–81.00 μM NO3, 0.14–12.14 μM NO2, 0.21–6.29 μM NH4, 0.23–6.26 μM PO4 and 3.29–171.43 μM SiO3, respectively. Total biomass expressed in terms of chlorophyll a ranged from 2.44 to 135.45 μg l−1, with an average 19.9 μg l−1 in surface water throughout the PRE. Two main clusters corresponding to the water sectors were defined with multivariate analysis (cluster and nMDS). Based on the composition and abundance of phytoplankton, spatial variations were observed at a significant level (ANOSIM, R = 0.44, P < 0.01). Although the pairwise correlation analysis detected no significant effect of any single environmental variable on the abundance of C. geminatum, the multivariate analysis (BIO-ENV) between biotic and abiotic variables resulted in the best variables combination with all measured factors involved (temperature, salinity, turbidity, NO3, NO2, NH4, PO4 and SiO3) which showed a combined effect during the bloom of C. geminatum in the Pearl River Estuary (ρw = 0.477).  相似文献   

14.
Since resting cysts are a potential seeding source for blooms, the presence of these cysts in sediments is a marker of an established population for a number of harmful algal species. The spatial patterns of cyst density in relation to sediment characteristics and hydrodynamics are still largely misunderstood. This study investigated the spatial distribution of resting cysts belonging to the Alexandrium tamarense species complex (Dinophyceae) in sediments of a Mediterranean coastal lagoon (Thau Lagoon, France). This lagoon, hosting shellfish farming, is regularly impacted by toxic Alexandrium catenella blooms. The average cyst density across the whole lagoon was rather low, <20 cysts g−1 of dry sediment (DS). However, densities varied widely among sampled stations, with the highest density (∼440 cysts g−1 DS) recorded in a shallow cove named Crique-de-l’Angle, which is the only area where dense blooms of A. catenella and A. tamarense have been recorded in the years preceding this survey. An analysis using spatial autoregressive models demonstrated that cyst densities were highly spatially autocorrelated (indicating that close stations tended to have more similar cyst densities) with accumulation sites. With respect to sediment characteristics (5 granulometric fractions <2 mm and biochemical components), the highest densities were found in silty sediments containing high proportions of water and organic matter. Nevertheless, the linkage between cyst density and sediment structure was not always verified; this reflected the influence of hydrodynamics on the sedimentation of cysts and sediment particles, and on the dispersal of cysts away from the bloom area by wind-induced currents, suggesting that hydrodynamics was responsible for the spatially autocorrelated distribution of cyst densities.  相似文献   

15.
The dinoflagellate Alexandrium ostenfeldii is a well-known harmful algal species that can potentially cause paralytic shellfish poisoning (PSP). Usually A. ostenfeldii occurs in low background concentrations only, but in August of 2012 an exceptionally dense bloom of more than 1 million cells L−1 occurred in the brackish Ouwerkerkse Kreek in The Netherlands. The A. ostenfeldii bloom produced both saxitoxins and spirolides, and is held responsible for the death of a dog with a high saxitoxin stomach content. The Ouwerkerkse Kreek routinely discharges its water into the adjacent Oosterschelde estuary, and an immediate reduction of the bloom was required to avoid contamination of extensive shellfish grounds. Previously, treatment of infected waters with hydrogen peroxide (H2O2) successfully suppressed cyanobacterial blooms in lakes. Therefore, we adapted this treatment to eradicate the Alexandrium bloom using a three-step approach. First, we investigated the required H2O2 dosage in laboratory experiments with A. ostenfeldii. Second, we tested the method in a small, isolated canal adjacent to the Ouwerkerkse Kreek. Finally, we brought 50 mg L−1 of H2O2 into the entire creek system with a special device, called a water harrow, for optimal dispersal of the added H2O2. Concentrations of both vegetative cells and pellicle cysts declined by 99.8% within 48 h, and PSP toxin concentrations in the water were reduced below local regulatory levels of 15 μg L−1. Zooplankton were strongly affected by the H2O2 treatment, but impacts on macroinvertebrates and fish were minimal. A key advantage of this method is that the added H2O2 decays to water and oxygen within a few days, which enables rapid recovery of the system after the treatment. This is the first successful field application of H2O2 to suppress a marine harmful algal bloom, although Alexandrium spp. reoccurred at lower concentrations in the following year. The results show that H2O2 treatment provides an effective emergency management option to mitigate toxic Alexandrium blooms, especially when immediate action is required.  相似文献   

16.
《Harmful algae》2010,9(6):916-925
Blooms of benthic dinoflagellates belonging to the tropical genus Ostreopsis are an increasingly common phenomenon in temperate regions worldwide. This is reflected in the rapid upsurge of publications on Ostreopsis from temperate regions since 2000. Relatively little is known about these blooms or their effects on other organisms. An unprecedented bloom of Ostreopsis siamensis occurred on shallow reefs in northern New Zealand in 2004 providing an opportunity to examine the dynamics of an O. siamensis bloom and its effect on community structuring sea urchins (Evechinus chloroticus). The bloom occurred following a period of calm sea conditions with warmer than average water temperatures. The cover of O. siamensis was highly ephemeral and strongly related to temporal and spatial variation in wave action. Blooms were most prevalent at sites protected from prevailing swells where O. siamensis covered 30–60% of the reef with the concentrations on macroalgae reaching 1.4 × 106 cells g−1 wet weight, some of the highest recorded worldwide. Surveys of the health of sea urchins in relation to the cover of O. siamensis suggested strong negative effects on this ecologically important herbivore and urchin densities declined by 56–60% at bloom sites over the study period. Further research is needed to examine the factors controlling the distribution and intensity of this new phenomenon, and into the ecological effects of such blooms on marine communities and the potential mechanisms responsible.  相似文献   

17.
Phytoplankton bloom is one of the most serious threats to water resource, and remains a global challenge in environmental management. Real-time monitoring and forecasting the dynamics of phytoplankton and early warning the risks are critical steps in an effective environmental management. Automated online sondes have been widely used for in situ real-time monitoring of water quality due to their high reliability and low cost. However, the knowledge of using real-time data from those sondes to forecast phytoplankton blooms has been seldom addressed. Here we present an integrated system for real-time observation, early warning and forecasting of phytoplankton blooms by integrating automated online sondes and the ecological model. Specifically, based on the high-frequency data from automated online sondes in Xiangxi Bay of Three Gorges Reservoir, we successfully developed 1–4 days ahead forecasting models for chlorophyll a (chl a) concentration with hybrid evolutionary algorithms (HEAs). With the predicted concentration of chl a, we achieved a high precision in 1–7 days ahead early warning of good (chl a < 25 μg/L) and eutrophic (chl a 8–25 μg/L) conditions; however only achieved an acceptable precision in 1–2 days ahead early warning of hypertrophic condition (chl a  25 μg/L). Our study shows that the optimized HEAs achieved an acceptable performance in real-time short-term forecasting and early warning of phytoplankton blooms with the data from the automated in situ sondes. This system provides an efficient way in real-time monitoring and early warning of phytoplankton blooms, and may have a wide application in eutrophication monitoring and management.  相似文献   

18.
Occurrence of toxic cyanobacterial blooms has become a worldwide problem, increasing the risk of human poisoning due to consumption of seafood contaminated with cyanotoxins. Though no such cases of human intoxication due to toxic blooms have been reported so far from India, most of the studies related to blooms have been restricted to reporting of a bloom and/or antimicrobial activity of its extract. Detailed toxicity study of cyanobacterial blooms are lacking. A study on the toxicity of a dense bloom (14.56 × 106 trichomes L−1) of the marine diazotrophic cyanobacteria, Trichodesmium erythraeum, observed in the coastal waters of Phoenix Bay, Port Blair, Andamans was undertaken. The significance of this bloom is that it was a single species and had conspicuously inhibited the growth of other phytoplankton and complete exclusion of zooplankton from the bloom region, intimating the involvement of toxins in the bloom. The cyanobacterial extracts showed prominent antimicrobial activity against certain human pathogenic bacteria and fungi. Studies on the toxicity of the cyanobacterial extracts was carried out using brine shrimp bioassay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and comet assay. The cyanobacterial extract exhibited toxic effect to Artemia salina causing mortality of up to 40% after 48 h at a concentration of 1 mg mL−1, while it induced cytotoxicity in cell lines (HepG2 and HaCat) and caused DNA damage in human lymphocytes in vitro.  相似文献   

19.
The dynamics of Dinophysis acuminata and its associated diarrhetic shellfish poisoning (DSP) toxins, okadaic acid (OA) and dinophysistoxin-1 (DTX1) as well as pectenotoxins (PTXs), were investigated within plankton and shellfish in Northport Bay, NY, USA, over a four year period (2008–2011). Over the course of the study, Dinophysis bloom densities ranged from ~104 to 106 cells L−1 and exceeded 106 L−1 in 2011 when levels of total OA, total DTX1, and PTX in the water column were 188, 86, and 2900 pg mL−1, respectively, with the majority of the DSP toxins present as esters. These cell densities exceed – by two orders of magnitude – those previously reported within thousands of samples collected from NY waters from 1971 to 1986. The bloom species was positively identified as D. acuminata via scanning electron microscopy and genetic sequencing (cox1 gene). The cox1 gene sequence from the D. acuminata populations in Northport Bay was 100% identical to D. acuminata from Narragansett Bay, RI, USA and formed a strongly supported phylogenetic cluster (posterior probability = 1) that included D. acuminata and Dinophysis ovum from systems along the North Atlantic Ocean. Shellfish collected from Northport Bay during the 2011 bloom had DSP toxin levels (1245 ng g−1 total OA congeners) far exceeding the USFDA action level (160 ng g−1 total OA of shellfish tissue) representing the first such occurrence on the East Coast of the U.S. D. acuminata blooms co-occurred with paralytic shellfish poisoning (PSP) causing blooms of Alexandrium fundyense during late spring each year of the study. D. acuminata cell abundances were significantly correlated with levels of total phytoplankton biomass and Mesodinium spp., suggesting food web interactions may influence the dynamics of these blooms. Given that little is known regarding the combined effects of DSP and PSP toxins on human health and the concurrent accumulation and depuration of these toxins in shellfish, these blooms represent a novel managerial challenge.  相似文献   

20.
Using ten years (2003–2012) of satellite Chlorophyll-a data, we report that annual phytoplankton bloom climax in the Northwest Pacific marginal seas (17°–58°N) delays northward at a rate of 22.98 ± 2.86 km day−1. The spring bloom is a dominant feature of the phytoplankton seasonal cycle in this region, except for the northern South China Sea, which features a winter bloom. The sea surface hourly Photosynthetically Available Radiation (PAR) intensity averaged over the bloom peak duration is nearly uniform (1.04 ± 0.10 W m−2 h−1) among the four sub-regions (i.e. the northern South China Sea, the Kuroshio waters, the Sea of Japan and the Sea of Okhotsk), although different algal species in these four distinct ecological provinces could adapt to a much larger change in other environmental parameters (including total daily PAR, day length, sea surface temperature, net surface heat flux, mixed layer depth, wind speed and euphotic depth). The differences of the hourly PAR intensity between the four provinces during their bloom periods are smaller than those during non-bloom seasons. In contrast, an increasing total daily PAR (W m−2 day−1), due to the longer day length at higher latitudes, may balance decreasing sea surface temperature and induce algal flowering. Our results point to an optimal hourly light intensity for the annual phytoplankton bloom peak timing in this entire region, which could potentially become an indicator for the requirement of these annual bloom peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号