首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carotid body chemoreceptors are complex secondary receptors. There are chemical and electric connections between glomus cells (GC/GC) and between glomus cells and carotid nerve endings (GC/NE). Chemical secretion of glomus cells is accompanied by GC/GC uncoupling. Chemical GC/NE transmission is facilitated by concomitant electric coupling. Chronic hypoxia reduces GC/GC coupling but increases G/NE coupling. Therefore, carotid body chemoreceptors use chemical and electric transmission mechanisms to trigger and change the sensory discharge in the carotid nerve.  相似文献   

2.
Ionic currents of enzymatically dispersed type I and type II cells of the carotid body have been studied using the whole cell variant of the patch-clamp technique. Type II cells only have a tiny, slowly activating outward potassium current. By contrast, in every type I chemoreceptor cell studied we found (a) sodium, (b) calcium, and (c) potassium currents. (a) The sodium current has a fast activation time course and an activation threshold at approximately -40 mV. At all voltages inactivation follows a single exponential time course. The time constant of inactivation is 0.67 ms at 0 mV. Half steady state inactivation occurs at a membrane potential of approximately -50 mV. (b) The calcium current is almost totally abolished when most of the external calcium is replaced by magnesium. The activation threshold of this current is at approximately -40 mV and at 0 mV it reaches a peak amplitude in 6-8 ms. The calcium current inactivates very slowly and only decreases to 27% of the maximal value at the end of 300-ms pulses to 40 mV. The calcium current was about two times larger when barium ions were used as charge carriers instead of calcium ions. Barium ions also shifted 15-20 mV toward negative voltages the conductance vs. voltage curve. Deactivation kinetics of the calcium current follows a biphasic time course well fitted by the sum of two exponentials. At -80 mV the slow component has a time constant of 1.3 +/- 0.4 ms whereas the fast component, with an amplitude about 20 times larger than the slow component, has a time constant of 0.16 +/- 0.03 ms. These results suggest that type I cells have predominantly fast deactivating calcium channels. The slow component of the tails may represent the activity of a small population of slowly deactivating calcium channels, although other possibilities are considered. (c) Potassium current seems to be mainly due to the activity of voltage-dependent potassium channels, but a small percentage of calcium-activated channels may also exist. This current activates slowly, reaches a peak amplitude in 5-10 ms, and thereafter slowly inactivates. Inactivation is almost complete in 250-300 ms. The potassium current is reversibly blocked by tetraethylammonium. Under current-clamp conditions type I cells can spontaneously fire large action potentials. These results indicate that type I cells are excitable and have a variety of ionic conductances. We suggest a possible participation of these conductances in chemoreception.  相似文献   

3.
4.
We have assessed the expression, molecular identification and functional role of Na+ channels (Na(v)) in carotid bodies (CB) obtained from normoxic and chronically hypoxic adult rats. Veratridine evoked release of catecholamines (CA) from an in vitro preparation of intact CBs obtained from normoxic animals, the response being Ca2+ and Na+-dependent and sensitive to tetrodotoxin (TTX). TTX inhibited by 25-50% the CA release response evoked by graded hypoxia. Immunoblot assays demonstrated the presence of Na(v)alpha-subunit (c. 220 kDa) in crude homogenates from rat CBs, being evident an up-regulation (60%) of this protein in the CBs obtained from chronically hypoxic rats (10% O2; 7 days). This up-regulation was accompanied by an enhanced TTX-sensitive release response to veratridine, and by an enhanced ventilatory response to acute hypoxic stimuli. RT-PCR studies demonstrated the expression of mRNA for Na(v)1.1, Na(v)1.2, Na(v)1.3, Na(v)1.6 and Na(v)1.7 isoforms. At least three isoforms, Na(v)1.1, Na(v)1.3 and Na(v)1.6 co-localized with tyrosine hydroxylase in all chemoreceptor cells. RT-PCR and immunocytochemistry indicated that Na(v)1.1 isoform was up-regulated by chronic hypoxia in chemoreceptor cells. We conclude that Na(v) up-regulation represents an adaptive mechanism to increase chemoreceptor sensitivity during acclimatization to sustained hypoxia as evidenced by enhanced ventilatory responses to acute hypoxic tests.  相似文献   

5.
G Hanson  L Jones  S Fidone 《Peptides》1986,7(5):767-769
Neuroactive peptides, including the enkephalins (Met- and Leu-enkephalin; ME, LE) and substance P (SP) are known to be present in the mammalian carotid body, an arterial chemoreceptor organ sensitive to the O2, CO2 and pH levels in blood. The principal parenchymal (type I) cells of the organ, which receive sensory innervation from the carotid sinus nerve (CSN), have been shown to contain both ME and SP; SP is also present in CSN afferent fibers. In the present study, rabbits were exposed in a chamber to a physiological chemoreceptor stimulus (5% O2 in N2) for one hour, then anesthetized during surgical removal of both carotid bodies for later RIA measurement of ME and SP levels in the tissue; control animals were exposed to air in the chamber, but otherwise treated as the hypoxic animals. Both ME and SP levels were significantly reduced (approximately 40%) in the carotid bodies from hypoxic rabbits, compared to their normoxic controls. The results suggest that these neuroactive peptides are released from carotid body elements during physiological stimulation, and consequently may play a role in the transduction of chemosensory information between the type I cells and their apposed afferent terminals.  相似文献   

6.
7.
The carotid body (CB) is a chemosensory organ that detects changes in chemical composition of arterial blood and maintains homeostasis via reflex control of ventilation. Thus, in response to a fall in arterial PO(2) (hypoxia), CB chemoreceptors (type I cells) depolarize, and release neurotransmitters onto afferent sensory nerve endings. Recent studies implicate ATP as a key excitatory neurotransmitter released during CB chemoexcitation, but direct evidence is lacking. Here we use the luciferin-luciferase bioluminescence assay to detect ATP, released from rat chemoreceptors in CB cultures, fresh tissue slices, and whole CB. Hypoxia evoked an increase in extracellular ATP, that was inhibited by L-type Ca(2+)channel blockers and reduced by the nucleoside hydrolase, apyrase. Additionally, iberiotoxin (IbTX; 100 nM), a blocker of O(2)-sensitive Ca(2+)-dependent K(+) (BK) channels, stimulated ATP release and largely occluded the effect of hypoxia. These data strongly support a neurotransmitter role for ATP in carotid body function.  相似文献   

8.
9.
10.
11.
In the present study we investigated the effects of infantile/prepubertal chronic oestrogen treatment, chemical sympathectomy with guanethidine and combined sympathectomy and chronic oestrogen treatment on developing sensory nerves of the rat uterus. Changes in sensory innervation were assessed quantitatively on uterine cryostat tissue sections stained for calcitonin gene-related peptide (CGRP). Uterine levels of NGF protein, using immunohistochemistry and ELISA, and mRNA, using Northern blots and in situ hybridization, were also measured. Finally, levels of TrkA NGF receptor in sensory neurons of T13 and L1 dorsal root ganglia (DRG), which supply the uterus, were assessed using densitometric immunohistochemistry. These studies showed that: (1) chronic oestrogen treatment led to an 83% reduction in the intercept density of CGRP-immunoreactive nerves; (2) sympathectomy had no effect on the density of uterine sensory nerves or on the pattern of oestrogen-induced changes; (3) NGF mRNA and protein increased following sympathectomy or chronic oestrogen treatment; and (4) oestrogen produced increased intensity of labelling (28%) for TrkA receptors in small-diameter sensory neurons, but decreased labelling (13%) in medium-sized neurons, which represent the large majority of the DRG neurons supplying the upper part of the uterine horn. Contrary to expectations, increased levels of NGF after sympathectomy and oestrogen treatment did not lead to increased sensory innervation of the uterus. The possibility that alterations in neuronal levels of TrkA contribute to the lack of response of uterine sensory nerves to the oestrogen-induced increase in NGF levels is discussed.This work was supported by The Wellcome Trust, UK (CRIG Grant 058122/Z/99/Z/JC/KO), and PEDECIBA, Universidad de la República, Montevideo, Uruguay  相似文献   

12.
Thenotion that intracellular Ca2+ (Cai2+)stores play a significant role in the chemoreception process inchemoreceptor cells of the carotid body (CB) appears in the literaturein a recurrent manner. However, the structural identity of theCa2+ stores and their real significance in the function ofchemoreceptor cells are unknown. To assess the functional significanceof Cai2+ stores in chemoreceptor cells, we havemonitored 1) the release of catecholamines (CA) from thecells using an in vitro preparation of intact rabbit CB and2) the intracellular Ca2+ concentration([Ca2+]i) using isolated chemoreceptor cells;both parameters were measured in the absence or the presence of agentsinterfering with the storage of Ca2+. We found thatthreshold [Ca2+]i for high extracellularK+ (Ke+) to elicit a release response is250 nM. Caffeine (10-40 mM), ryanodine (0.5 µM), thapsigargin(0.05-1 µM), and cyclopiazonic acid (10 µM) did not alter thebasal or the stimulus (hypoxia, high Ke+)-inducedrelease of CA. The same agents produced Cai2+transients of amplitude below secretory threshold; ryanodine (0.5 µM), thapsigargin (1 µM), and cyclopiazonic acid (10 µM) did notalter the magnitude or time course of the Cai2+responses elicited by high Ke+. Several potentialactivators of the phospholipase C system (bethanechol, ATP, andbradykinin), and thereby of inositol 1,4,5-trisphosphate receptors,produced minimal or no changes in [Ca2+]i anddid not affect the basal release of CA. It is concluded that, in therabbit CB chemoreceptor cells, Cai2+ stores do not playa significant role in the instant-to-instant chemoreception process.

  相似文献   

13.
14.
To determine the mechanism(s) underlying enhanced oxidative stress in kidneys of salt-sensitive hypertension, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg sc) on the first and second days of life. After being weaned, male rats were assigned into four groups and treated for 2 wk with the following: vehicle + a normal sodium diet (NS, 0.4%, CON-NS), vehicle + a high-sodium diet (HS, 4%, CON-HS), CAP + NS (CAP-NS), and CAP + HS (CAP-HS). Systolic blood pressure was significantly increased in CAP-HS but not CAP-NS or CON-HS rats. Plasma and urinary 8-iso-prostaglandin F(2alpha) levels increased by approximately 40% in CON-HS and CAP-HS rats compared with their respective controls fed a NS diet (P < 0.05), and these parameters were higher in CAP-HS compared with CON-HS rats. Superoxide (O(2)(-)*) levels in the renal cortex and medulla increased by approximately 45% in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). Enhanced O(2)(-)* levels in the cortex and medulla in CAP-HS rats were prevented by preincubation of renal tissues with apocynin, a selective NAD(P)H oxidase inhibitor. Protein expression of NAD(P)H oxidase subunits, including p47(phox) and gp91(phox) in the renal cortex and medulla, was significantly increased in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats. In contrast, protein expression and activities of Cu/Zn SOD and Mn SOD were significantly increased in the renal medulla in both CAP-HS and CON-HS but in the cortex in CAP-HS rats only. Creatinine clearance decreased by approximately 45% in CAP-HS rats compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). O(2)(-)* levels in the renal cortex of CAP-HS rats negatively correlated with creatinine clearance (r = -0.76; P < 0.001). Therefore, regardless of enhanced SOD activity to suppress oxidative stress, increased oxidative stress in the kidney of CAP-treated rats fed a HS diet is likely the result of increased expression and activities of NAD(P)H oxidase, which may contribute to decreased renal function and increased blood pressure in these rats. Our results suggest that sensory nerves may play a compensatory role in attenuating renal oxidative stress during HS intake.  相似文献   

15.
Two current hypotheses of O2 sensing in the carotid body (CB) chemoreceptors suggest participation of oxygen reactive (ROS) species, but they are mechanistically opposed. One postulates that hypoxia decreases ROS levels; the other that hypoxia increases them. Yet, both propose that the ensuing alteration in the cellular redox environment is the key signal triggering hypoxic chemoreception. Since the glutathione redox pair is the main cellular buffer for ROS and the main determinant of the general redox environment of the cells, a way to test whether ROS participate in chemoreception is to determine glutathione levels and to correlate them with the activity of CB chemoreceptor cells. We found that hypoxia does not alter the glutathione reduction potential but that it activates chemoreceptor cell neurosecretion. Incubation of tissues with reduced glutathione increases the glutathione-reducing potential but does not activate chemoreceptor cells in normoxia nor does it modify hypoxic activation. Like reduced glutathione, N-acetylcysteine promoted a general reducing environment in the cells without alteration of chemoreceptor cell activity. N-(mercaptopropionyl)-glycine, like the two previous agents, increases the reduction potential of glutathione. In contrast, the compound activated chemoreceptor cells in normoxia, promoting a dose- and Ca(2+)-dependent neurosecretion and a potentiation of the hypoxic responses. The existence of multiple relationships between glutathione reduction potential in the cells and their activity indicates that the general cellular redox environment is not a factor determining chemoreceptor cell activation. It cannot be excluded that the local redox environments of restricted microdomain(s) in the cells with specific regulating mechanisms are important signals for chemoreceptor cell activity.  相似文献   

16.
The hypothesis that changes in environmental O2 tension (pO2) could affect the ionic conductances of dissociated type I cells of the carotid body was tested. Cells were subjected to whole-cell patch clamp and ionic currents were recorded in a control solution with normal pO2 (pO2 = 150 mmHg) and 3-5 min after exposure to the same solution with a lower pO2. Na and Ca currents were unaffected by lowering pO2 to 10 mmHg, however, in all cells studied (n = 42) exposure to hypoxia produced a reversible reduction of the K current. In 14 cells exposed to a pO2 of 10 mmHg peak K current amplitude decreased to 35 +/- 8% of the control value. The effect of low pO2 was independent of the internal Ca2+ concentration and was observed in the absence of internal exogenous nucleotides. Inhibition of K channel activity by hypoxia is a graded phenomenon and in the range between 70 and 120 mmHg, which includes normal pO2 values in arterial blood, it is directly correlated with pO2 levels. Low pO2 appeared to slow down the activation time course of the K current but deactivation kinetics seemed to be unaltered. Type I cells subjected to current clamp generate large Na- and Ca-dependent action potentials repetitively. Exposure to low pO2 produces a 4-10 mV increase in the action potential amplitude and a faster depolarization rate of pacemaker potentials, which leads to an increase in the firing frequency. Repolarization rate of individual action potentials is, however, unaffected, or slightly increased. The selective inhibition of K channel activity by low pO2 is a phenomenon without precedents in the literature that explains the chemoreceptive properties of type I cells. The nature of the interaction of molecular O2 with the K channel protein is unknown, however, it is argued that a hemoglobin-like O2 sensor, perhaps coupled to a G protein, could be involved.  相似文献   

17.
The Olfactory Receptor Database (ORDB) is a WWW-accessible database that has been expanded from an olfactory receptor resource to a chemoreceptor resource. It stores data on six classes of G-protein-coupled sensory chemoreceptors: (i) olfactory receptor-like proteins, (ii) vomeronasal receptors, (iii) insect olfactory receptors, (iv) worm chemo-receptors, (v) taste papilla receptors and (vi) fungal pheromone receptors. A complementary database of the ligands of these receptors (OdorDB) has been constructed and is publicly available in a pilot mode. The database schema of ORDB has been changed from traditional relational to EAV/CR (Entity-Attribute-Value with Classes and Relationships), which allows the interoperability of ORDB with other related databases as well as the creation of intra-database associations among objects. This inter-operability facilitates users to follow information from odor molecule binding to its putative receptor, to the properties of the neuron expressing the receptor, to a computational model of activity of olfactory bulb neurons. In addition, tools and resources have been added allowing users to access interactive phylogenetic trees and alignments of sensory chemoreceptors. ORDB is available via the WWW at http://ycmi.med. yale.edu/senselab/ordb/  相似文献   

18.
cAMP production in rabbit carotid body: role of adenosine   总被引:2,自引:0,他引:2  
Chen, J., B. Dinger, and S. J. Fidone. cAMP productionin rabbit carotid body: role of adenosine. J. Appl.Physiol. 82(6): 1771-1775, 1997.In the presentstudy, we have investigated the possible role of adenosine in thehypoxia-mediated increase in adenosine 3,5-cyclicmonophosphate (cAMP) in the carotid body. cAMP levels in rabbit carotidbodies superfused in vitro for 10 min were increased in the presence ofadenosine (100 µM and 1.0 mM; maximum increase = 127%,P < 0.01). These effects werereduced by the nonspecific adenosine-receptor antagonist 1,3-dipropyl-8[p-sulfophenyl]xanthine(DPSPX; 10 µM). The specific A2-receptor agonist2-[4(2-carboxymethyl)phenylethylamino]-5-N-ethylcarboxamido adenosine (CGS-21680; 100 nM) also elevated carotid body cAMP levels,an effect that was blocked by the specificA2-antagonist 3,7-dimethyl-L-propargyl-xanthine(DMPX; 50 µM). Hypoxia-evoked elevations in cAMP were potentiated inthe presence of the adenosine-uptake inhibitor dipyridamole (100 nM)and blocked by exposure to adenosine-receptor antagonists. Our datasuggest that the rabbit carotid body contains specific adenosinereceptors (A2 subtype) that arepositively coupled to adenylate cyclase and that increases in cAMPassociated with hypoxia are mediated by the release of endogenousadenosine.

  相似文献   

19.
Chronic exposure to ultraviolet radiation (UVR) plays a significant role in aging and carcinogenesis of the skin. Sensory nerve fibers densely innervate all layers of the skin and get in close anatomical as well as functional contact with cellular components of the epidermis and dermis. In this review, we address the impact of acute and chronic UVR exposure on the cutaneous sensory nervous system and its mediators. We suggest that skin cell-derived nerve growth factor (NGF) and skin nerve-derived neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP) may play a central role in intrinsic aging as well as extrinsic (photo-) aging of the skin. In addition, we discuss the possible role of these mediators in photocarcinogenesis.  相似文献   

20.
While orthostatic tachycardia is the hallmark of postural tachycardia syndrome (POTS), orthostasis also initiates increased minute ventilation (Ve) and decreased end-tidal CO(2) in many patients. We hypothesized that chemoreflex sensitivity would be increased in patients with POTS. We therefore measured chemoreceptor sensitivity in 20 POTS (16 women and 4 men) and 14 healthy controls (10 women and 4 men), 16-35 yr old by exposing them to eucapneic hyperoxia (30% O(2)), eucapneic hypoxia (10% O(2)), and hypercapnic hyperoxia (30% O(2) + 5% CO(2)) while supine and during 70° head-upright tilt. Heart rate, mean arterial pressure, O(2) saturation, end-tidal CO(2), and Ve were measured. Peripheral chemoreflex sensitivity was calculated as the difference in Ve during hypoxia compared with room air divided by the change in O(2) saturation. Central chemoreflex sensitivity was determined by the difference in Ve during hypercapnia divided by the change in CO(2). POTS subjects had an increased peripheral chemoreflex sensitivity (in l·min(-1)·%oxygen(-1)) in response to hypoxia (0.42 ± 0.38 vs. 0.19 ± 0.17) but a decreased central chemoreflex sensitivity (l·min(-1)·Torr(-1)) CO(2) response (0.49 ± 0.38 vs. 1.04 ± 0.18) compared with controls. CO(2) sensitivity was also reduced in POTS subjects when supine. POTS patients are markedly sensitized to hypoxia when upright but desensitized to CO(2) while upright or supine. The interactions between orthostatic baroreflex unloading and altered chemoreflex sensitivities may explain the hyperventilation in POTS patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号