首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
R. R. Jackson    A. Van  Olphen 《Journal of Zoology》1992,227(1):163-170
The predatory behaviour of Chrysilla lauta and Sliersemiglaucus from Sri Lanka, and four species of Natta from Kenya, was studied in the laboratory for the first time. These salticids eat ants, a prey most salticids avoid. These species' specialized behaviour for catching ants is described and compared to their behaviour for catching other insects. Three different types of tests of prey preference were carried out and, in each type, ants were taken in preference to other insects. Preference for ants, and prey-specific predatory behaviour did not depend on prior experience with ants. Results from this study are discussed in relation to recent findings on other ant-eating salticids.  相似文献   

2.
Daiqin  Li  R. R. Jackson    Bruce  Cutler 《Journal of Zoology》1996,240(3):551-562
The prey-catching techniques and prey preferences of Habrocestum pulex (Hentz), ant-eating jumping spider (Araneae: Salticidae) from North America, were studied in the laboratory. H. pulex uses prey-specific, prey-catching behaviour against ants. Ants, but not other insects, were consistently attacked head-on. After attacking an ant, but not after attacking other insects, H. pulex kept its forelegs extended laterally and forwards without touching the ground. H. pulex feeds on ants in preference to other insects. Preference for ants and prey-specific predatory behaviour do not depend on prior experience with ants. As in earlier studies of other ant-eating salticids, three different types of tests for prey preference were carried out, using active, living prey: Type 1 (one type of prey presented to salticid at a time on alternate days); Type 2 (two types of prey presented to salticid simultaneously); and Type 3 (salticid feeding on one type of prey presented with alternative prey of another type). However, newly-designed apparatus made testing more efficient. Preference for ants over other insects is shown not to depend on level of activity or any other cues from prey movement pattern: Type 1 and Type 2 tests were carried out using motionless (dead) lures, and again ants were taken in preference to other insects. Findings from this study are discussed in relation to recent findings on other ant-eating salticids.  相似文献   

3.
The predatory behaviour of 31 species of Myrmarachne , ant-like salticids, was studied in the laboratory and the field. The ant-like morphology and locomotion of these spiders appears to function primarily in Batesian mimicry. No evidence was found of Myrmarachne feeding on ants. However, predatory sequences were found to differ considerably from those typical of salticids. Instead of stalking and leaping on prey, Myrmarachne lunged at prey from close range. Myrmarachne used its legs I to tap prey before lunging, another unusual behaviour for a salticid. Myrmarachne fed on a wide range of arthropod prey in nature and the laboratory, but appears to be especially efficient at catching moths. Also, Myrmarachne tends to open up, or enter into, other spiders' nests and eat other spiders' eggs. Myrmarachne males were less efficient than females, in laboratory tests, at catching various types of arthropod prey, but they appear to be as efficient as females at oophagy. Myrmarachne tend to use webs of other spiders as nest sites, but no evidence was found of Myrmarachne preying on spiders in webs. It appears that the unusual features of Myrmarachne's predatory and nesting behaviour are important in enabling these spiders to preserve their ant-like appearance.  相似文献   

4.
Predatory versatility occurs in Pholcus phalangioides (Fuesslin). In addition to building prey-catching space webs, P. phalangioides invades webs of other spiders and feeds on the occupants. It acts as an aggressive mimic by performing specialized vibratory behaviours to which the prey-spider responds as it normally would to its own prey. Prey (spiders and insects) is attacked by wrapping. Prey that trips over lines at the edge of a web of P. phalangioides , but fails to enter the web, is successfully attacked: P. phalangioides leans out of its web to throw silk over the prey, keeping as few as two legs on the silk. However, P. phalangioides does not attack prey that is completely away from webs. Occasionally, P. phalangioides feeds on eggs of other spiders and on ensnared insects it encounters in alien webs. Experimental evidence indicates that vision is of little or no importance in the predatory behaviour of P. phalangioides . Although P. phalangioides invades diverse types of webs, in addition to using its own web, its efficiency as a predator varies with web-type. It is most efficient as a predator of spiders and, especially, insects on its own web, and least efficient as a predator of amaurobiids on their cribellate sheet webs. Sensory, locomotory and other factors which influence differential predatory efficiency are discussed. The behaviour of P. phalangioides is compared to that of Portia , an araneophagic web-invading salticid, and the results of this study are discussed in relation to hypotheses concerning salticid evolution.  相似文献   

5.
The distinctions between a predator's diet, its prey-choice behaviour and its preference are illustrated in a study of Aelurillus m-nigrum Kulczyn'ski, a salticid spider from Azerbaijan. The natural diet of A. m-nigrum was determined from records of individuals feeding in the field (N=58). Ten arthropod orders were represented. Nine were from the class Insecta (Coleoptera, Collembola, Diptera, Heteroptera, Homoptera, Hymenoptera, Lepidoptera, Orthoptera, Psocoptera) and one from the class Arachnida (Araneae). Of 50 insects among the prey, 21 (42%) were Hymenoptera, with ants (family Formicidae) alone accounting for 31% of all prey records. Although the majority (69%) of the natural prey were not ants, results from prey-choice testing in the laboratory implied that A. m-nigrum preferred ants as prey. However, this preference was evident only when the testing environment included sand and a small stone. Our findings illustrate the importance of not conflating the concept of a predator's preference with the concept of a predator's natural diet and illustrate that physical features of a predator's habitat may be an important factor in influencing how strongly preference is expressed.  相似文献   

6.
What to attack is one of the most basic decisions predators must make, and these decisions are reliant upon the predator's sensory and cognitive capacity. Active choice of spiders as preferred prey, or araneophagy, has evolved in several distantly related spider families, including jumping spiders (Salticidae), but has never been demonstrated in ant-like jumping spiders. We used prey-choice tests with motionless lures to investigate prey-choice behaviour in Myrmarachne melanotarsa , an East African ant-like salticid that normally lives in aggregations and often associates with other spider species. We show that M . melanotarsa chooses spiders as prey in preference to insects and, furthermore, discriminates between different types of spiders. Myrmarachne melanotarsa 's preferred prey were juvenile hersiliids and its second most preferred were other salticids. To date, all documented examples of araneophagic salticids have been from the basal subfamily Spartaeinae. Myrmarachne melanotarsa is the first non-spartaeine and also the first ant-like salticid for which araneophagy has been demonstrated.  相似文献   

7.
Portia is a genus of specialized web-invading salticids that use aggressive mimicry. Some other salticids leap into webs to catch spiders but do not use aggressive mimicry. Pholcus phalangioides is a web-building spider with a special defensive behaviour—called whirling—in which it swings its body around in a circle while keeping its long legs on the silk. Pholcus phalangioides is preyed on by Portia and probably other salticid spiders in nature. Interactions between P. phalangioides and 13 species of salticids were studied in the laboratory to compare how effective salticids with different styles of predation were at catching the pholcids. Four species of Portia were studied and each was more efficient at catching P. phalangioides than were the other nine salticids tested. For one species—Portia fimbriata—individuals from three different populations were studied. The Queensland P. fimbriata used aggressive mimicry more consistently and were more efficient at catching P. phalangioides than were the other species of Portia and the other populations of P. fimbriata . The salticids that were the most efficient at catching pholcids were also better able to avoid setting off whirling by the pholcids. An experiment in which pholcids were artificially induced to whirl whenever the predator was near provided additional evidence that whirling is an effective defence of pholcids against predation by salticids.  相似文献   

8.
Three species of web-invading salticid spiders, with different predatory strategies, were tested with Holocnemus pluchei in the laboratory: Portia fimbriata and Portia labiata , which practise aggressive mimicry, and Euyattus sp., which leaps from outside on to spiders in webs but does not practise aggressive mimicry. Portia was shown to be more efficient than Euryattus at catching H. pluchei. Portia fimbriata from Queensland was more consistent at using aggressive mimicry than was Portia labiata and was also more efficient at catching H. pluchei . The web-invaders that were more efficient at catching H. pluchei were also better able to avoid setting off bouncing, a special defence behaviour used by H. pluchei . An experiment, in which H. pluchei was artificially induced to bounce whenever the predator was near, provided additional evidence that bouncing is effective in defending H. pluchei against web-invaders.  相似文献   

9.
Captive Pteropus livingstonii and P. rodricensis were observed actively to catch and eat insects. Both species adopt the same technique to trap flying insects, using their wings to envelop them. The spontaneity of the response indicates that it is not an artefact of captivity. The behaviour was observed in captive-bred P. rodricensis which had no prior access to insects, suggesting that it is also innate. A higher rate of successful captures was recorded for an older, wild caught P. livingstonii female, indicating that the effectiveness of the technique used may improve with age. Significant differences in the amount of time spent catching insects by males and females were evident in this species. This study supports suggestions that insects are eaten by some megachiopterans in order to supplement their protein intake.  相似文献   

10.
The biology of an aberrant saltioid spider, Euryattus Thorell sp. indet., is described from observations in a Queensland rain forest and the laboratory. Pronounced morphological and behavioural changes occur during post-embryological development. Juveniles spin webs, but adult females make 'suspension nests' by suspending a curled-up leaf by heavy guylines from a rock ledge or vegetation. Adult males spin neither webs nor suspension nests. Females oviposit inside their suspension nests, but if denied access to leaves for suspension, they spin and oviposit in webs similar to those spun by juveniles. The flat, papery egg sacs of Euryattus are atypical for a salticid, being more like the egg sacs of many of the Gnaphosidae. Intraspecific display behaviour has characteristics in common with typical salticids, but also includes unique features. Male courtship includes vibratory displays performed on the surface of the suspended leaf. Mating occurs inside the curled-up leaf. Males co-habit with sub-adult females in suspension nests. Females take over suspension nests of other females and eat each other's eggs. Normal locomotion, intraspecific interactions, and predatory behaviour are characterized by frequent leaping. Euryattus routinely makes long and accurate leaps on to prey, including flying insects intercepted in mid-air and spiders and insects located in alien webs. The phylogenetic implications of the unusual characteristics of Euryattus are considered.  相似文献   

11.
A mimicry system was investigated in which the models were ants (Formicidae) and both the mimics and the predators were jumping spiders (Salticidae). By using motionless lures in simultaneous‐presentation prey‐choice tests, how the predators respond specifically to the static appearance of ants and ant mimics was determined. These findings suggest a rarely considered adaptive trade‐off for Batesian mimics of ants. Mimicry may be advantageous when it deceives ant‐averse potential predators, but disadvantageous in encounters with ant‐eating specialists. Nine myrmecophagic (ant‐eating) species (from Africa, Asia, Australia and North America) and one araneophagic (spider‐eating) species (Portia fimbriata from Queensland) were tested with ants (five species), with myrmecomorphic (ant‐like) salticids (six species of Myrmarachne) and with non‐ant‐like prey (dipterans and ordinary salticids). The araneophagic salticid chose an ordinary salticid and chose flies significantly more often than ants. Portia fimbriata also chose the ordinary salticid and chose flies significantly more often than myrmecomorphic salticids. However, there was no significant difference in how P. fimbriata responded to ants and to myrmecomorphic salticids. The myrmecophagic salticids chose ants and chose myrmecomorphic salticids significantly more often than ordinary salticids and significantly more often than flies, but myrmecophagic salticids did not respond significantly differently to myrmecomorphic salticids and ants.  相似文献   

12.
Sexual dimorphism is pronounced in Myrmarachne, a large genus of ant-like jumping spiders (Salticidae) and one of the major animal groups in which Batesian mimicry of ants has evolved. Although adult females and juveniles of both sexes are distinctly ant-like in appearance, Myrmarachne males have elongated chelicerae that might appear to detract from their resemblance to ants. Experimental findings suggest that the Myrmarachne male's solution is to adopt compound mimicry (i.e. the male's model seems to be not simply an ant worker but a combination of an ant and something carried in the ant's mandibles: an "encumbered ant"). By becoming a mimic of a particular subset of worker ants, Myrmarachne males may have retained their Batesian-mimicry defence against ant-averse predators, but at the price of receiving the unwanted attention of predators for which encumbered ants are preferred prey. Two salticid species were used as predators in the experiments. Portia fimbriata is known to choose other salticids as preferred prey and to avoid unencumbered ants and their mimics (Myrmarachne females). In experiments reported here, P. fimbriata avoided encumbered ants and Myrmarachne males. Ants are the preferred prey of Chalcotropis gulosus. In our experiments, C. gulosus chose safer encumbered ants in preference to more dangerous unencumbered ants, chose Myrmarachne males more often than Myrmarachne females and showed no evidence of distinguishing between Myrmarachne males and encumbered ants. The cost of reconciling sexual dimorphism with Batesian mimicry appears to be that Myrmarachne males attract the unwanted attention of specialist predators of their compound model.  相似文献   

13.
A range of web-invading jumping spiders with different predatory strategies was tested with A. appensa in the laboratory: Mimetus maculosus (Mimetidae), Pholcus phalangioides (Pholcidae), Taieria erebus (Gnaphosidae), and 11 species of salticids. Spiders that are known to specialize at web-invading, either by leaping into webs or by walking slowly into webs and practising aggressive mimicry, captured A. appensa ; three salticid species not known to be web-invaders never did. Web-invaders that practised aggressive mimicry were more efficient than were species that only leapt into webs. Portia fimbriata from Queensland was the most consistent at using aggressive mimicry and was also the most efficient at catching A. appensa . Web-invaders that were more efficient at catching A. appensa were also better able to avoid setting off pumping, a special defence behaviour used by A. appensa . Portia fimbriata from Queensland was especially efficient at avoiding setting off pumping: P. fimbriata more consistently than other Portia made its final approach toward A. appensa by coming down from above the web on a dragline and making minimal contact with the web. An experiment, in which A. appensa was artificially induced to pump whenever the predator was near, provided additional evidence that pumping is effective in defending A. appensa against web-invaders.  相似文献   

14.
Salt intake in Amazonian ants: too much of a good thing?   总被引:1,自引:0,他引:1  
Although herbivory is widespread among insects, plant tissues rarely provide the optimal balance of nutrients for insect growth and reproduction. As a result, many herbivorous insects forage elsewhere for particular amino acids and minerals. Recent studies have shown that both herbivory and recruitment to sodium are commonplace among tropical rainforest ants, but little is known about how ants regulate their sodium intake at the individual and colony levels. In social insects, foragers may respond not only to their own nutritional deficiencies but also to those of their nestmates, who may have different nutritional requirements depending on their developmental stage, sex, or caste. Here, we investigate how salt stress among rainforest ants affects their preferences for salt and subsequent survival. We found that ants recruited more to salt than to any other bait type tested, confirming the strong preference for salt of ants in this region. Initially, we observed similarly high recruitment to salt among workers of the arboreal, herbivorous/omnivorous ant species Camponotus mirabilis. However, when provided with unrestricted access to high concentrations of salt, C. mirabilis workers suffered significantly higher mortality relative to controls, suggesting that C. mirabilis workers forage for sodium to the point of toxicity. Nonetheless, surviving workers showed reduced preference for salt at the end of the experiment, so some but not all individuals were able to regulate their salt intake beneath lethal dosages. We discuss how salt intake regulation may depend on colony members other than workers.  相似文献   

15.
Batesian and aggressive mimicry are united by deceit: Batesian mimics deceive predators and aggressive mimics deceive prey. This distinction is blurred by Myrmarachne melanotarsa, an ant-like jumping spider (Salticidae). Besides often preying on salticids, ants are well defended against most salticids that might target them as potential prey. Earlier studies have shown that salticids identify ants by their distinctive appearance and avoid them. They also avoid ant-like salticids from the genus Myrmarachne. Myrmarachne melanotarsa is an unusual species from this genus because it typically preys on the eggs and juveniles of ant-averse salticid species. The hypothesis considered here is that, for M. melanotarsa, the distinction between Batesian and aggressive mimicry is blurred. We tested this by placing female Menemerus sp. and their associated hatchling within visual range of M. melanotarsa, its model, and various non-ant-like arthropods. Menemerus is an ant-averse salticid species. When seeing ants or ant mimics, Menemerus females abandoned their broods more frequently than when seeing non-ant-like arthropods or in control tests (no arthropods visible), as predicted by our hypothesis that resembling ants functions as a predatory ploy.  相似文献   

16.
Weaver ants (Oecophylla spp.) are managed in plantations to control insect pests and are sometimes harvested as a protein‐rich food source. In both cases, the amount of insect prey caught by the ants is imperative for returns, as more prey leads to more effective biocontrol and to a higher production of ants. Malaise‐like traps placed in trees may catch flying insects without catching ants, as ants may use pheromone trails to navigate in and out of the traps. Thus, ants may increase their prey intake if they are able to extract insects caught in traps. In a mango plantation in Tanzania, we estimated the amount of insects caught by simple traps (cost per trap = 3.9 USD), and whether Oecophylla longinoda was able to collect insects from them. On average, a trap caught 110 insects per month without catching any weaver ants. The number of insects found in traps with ant access was 25% lower than in control traps (ants excluded), showing that ants were able to gather prey from the traps. Ant activity in traps increased over time, showing that prey extraction efficiency may increase as ants customize to the traps. The prey removed from traps by ants constituted 5% of the number of prey items collected by O. longinoda under natural conditions (without traps), potentially increasing to 14% if ants learn to extract all insects. Thus, prey intake may be increased with 5–14% per 3.9 USD invested in traps. These numbers increased to 38 and 78%, respectively, when light was used to attract insects during night time. Combining ant predation with insect trapping is a new approach potentially building increased returns to ant biocontrol and to ant entomophagy.  相似文献   

17.
Portia fimbriata from Queensland, a previously studied jumping spider (Salticidae), routinely includes web-building spiders and cursorial salticids in its diet, both of these types of prey being dangerous and unusual prey for a salticid. The present paper is the first detailed study ofP. fimbriata's prey preferences. Three basic types of tests of prey preference were used, providing evidence that (1)P. fimbriata males and females prefer spiders (both web-building spiders in webs and salticids away from webs) to insects; (2)P. fimbriata males and females prefer salticids to web-building spiders; (3)P. fimbriata males and females prefer larger spiders to smaller spiders; (4) there are intersexual differences in the preferences ofP. fimbriata for prey size, females preferring larger prey and males preferring smaller prey; and (5)P. fimbriata's prey preferences are not affected by a prior period without food of 2 weeks. When preferences were tested for by using both living, active prey and dead, motionless lures, the same preferences were expressed, indicating thatP. fimbriata can distinguish among different types of prey independent of the different movement patterns of different prey.  相似文献   

18.
Previous research using computer animation and lures made from dead prey has demonstrated that the East African salticid Evarcha culicivora Wesolowska & Jackson (Araneae: Salticidae) feeds indirectly on vertebrate blood by actively choosing blood-carrying female mosquitoes as prey, and also that it singles out mosquitoes of the genus Anopheles (Diptera: Culicidae) by preference. Here, we demonstrate that E. culicivora's preference is expressed when the species is tested with living prey and that it is unique to E. culicivora. As an alternative hypothesis, we considered the possibility that the preference for blood-fed female anopheline mosquitoes might be widespread in East African salticids. When live-prey choice tests were carried out in 19 additional species, there were no instances in which blood-carrying mosquitoes were chosen significantly more often than other prey. Combined with the findings of previous work, these results suggest that it is possible that specialized predators play a role in the biological control of disease vectors.  相似文献   

19.
Summary We describe, for the first time, the predatory behaviour ofThaumatomyrmex ants on millipedes of the family Polyxenidae, based on field observations ofT. atrox and a field and laboratory study ofT. contumax. The capture of the prey and the removal process of its body-covering setae by the ants before they eat the millipede are described. This specialized behaviour in at least two species of the genus, belonging to two distinct groups of species, indicates a general trend inThaumatomyrmex. We coupled this study with a comparative morphological analysis of the mouthparts and digestive tube of these and otherThaumatomyrmex species. Also, we report the first case of sympatry in the genus, which suggests thatThaumatomyrmex includes several species, and not only one highly variable taxon, as hypothetized earlier.  相似文献   

20.
Mimetus sp. indet. and Mimetus maculosus , from New Zealand and Australia, respectively, were studied in the laboratory and in nature. Behaviourally, the two species were very similar. Each was found to be primarily an araneophagic spider which invaded alien webs, acted as an aggressive mimic by performing a variety of vibratory behaviours to which the prey-spider responded as it normally would to its own prey, and attacked by lunging at close range, subduing its victim with a strong, apparently spider-specific venom while holding the spider in a 'basket' formed by its spine-covered legs. In nature, these mimetids were observed to feed on a restricted range of spiders: orb web-building araneids and space web-building theridiids. Sometimes, they occupied other types of webs, but in the laboratory they captured only araneids and theridiids efficiently. They captured non-cribellate amaurobiids considerably less efficiently, and never captured other types of spiders. Occasionally, the mimetids fed on insects ensnared in araneid and theridiid webs and on eggs of theridiids. Experimental evidence indicated that vision was of little or no importance in the predatory behaviour of these mimetids. The behaviour of the mimetids is compared to that of Portia , an araneophagic web-invading salticid, and the results of this study are discussed in relation to hypotheses concerning salticid evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号