首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Thingvallavatn supports four trophic morphs of Arctic charr, Salvelinus alpinus (L.); two of the morphs are benthic (small and large benthivorous charr) one exploits pelagic waters (planktivorous charr) and the fourth is found in both habitats (piscivorous charr). The morphological variation among these morphs was analysed by use of principal component analysis and canonical discriminant analysis. The benihic morphs have a short lower jaw and long pectoral fins. The benthic fish also have fewer gillrakers than the other morphs. Small and large benthivorous charrs attain sexual maturity from 2 and 6 years of age, and at fork lengths from 7 and 22 cm, respectively. Small benthivorous charr retain their juvenile parr marks as adults, have beige ventral colours, and are frequently melanized under the lower jaw. Planktivorous and piscivorous charr attain sexual maturity from 4 and 6 years of age, from fork lengths of 15 and 23 cm, respectively. This phenotypic polymorphism is associated with habitat utilization and diet of the fish, and has probably arisen within the lake system through diversification and niche specialization. The pelagic morphs apparently stem from a single population, and are possibly diversified through conditional niche shifts which affect ontogeny. Juveniles reaching a body length of 23 cm may change from zooplankton to fish feeding. Asymptotic length increases thereby from 20.5 cm in planktivorous charr to 30.2 cm in piscivorous charr. The benthic morphs appear to represent separate populations, although both feed chiefly on the gastropod Lymnaea peregra. Their co-existence seems to be facilitated by size dependent constraints on habitat use. The small morph (asymptotic length 13.3 cm) exploit the interstitial crevices in the lava block substratum, whereas the large morph (asymptotic length 55.4 cm) live epibenthically.  相似文献   

2.
Planktivorus Arctic charr had larger eggs than small benthivorous charr and the progeny of the former were longer (total length) at days 125, 145 and 159 after fertilization. Size differences remained significant after the removal of egg size effect on embryo size. Size of hybrid progeny tended to be similar to their maternal pure progeny group, suggesting maternal effects not directly related to yolk volume. In general, fin ray number increased faster in small benthivorous charr progeny than in planktivorous charr progeny, hybrid progeny tending to have intermediate fin ray numbers. The results indicate that morph differences in embryonic growth and skeletal development have a genetic and maternal component. Results support the hypothesis that in the period from hatching until just after first external feeding small benthivorous charr allocate more energy towards bone development, e.g. formation of fin rays, while planktivorous charr allocate more energy to body growth. The different developmental trajectories may reflect adaptations to discrete differences in habitats between the morphs.  相似文献   

3.
Genetic variation in resistance against parasite infections is a predominant feature in host–parasite systems. However, mechanisms maintaining genetic polymorphism in resistance in natural host populations are generally poorly known. We explored whether differences in natural infection pressure between resource‐based morphs of Arctic charr (Salvelinus alpinus) have resulted in differentiation in resistance profiles. We experimentally exposed offspring of two morphs from Lake Þingvallavatn (Iceland), the pelagic planktivorous charr (“murta”) and the large benthivorous charr (“kuðungableikja”), to their common parasite, eye fluke Diplostomum baeri, infecting the eye humor. We found that there were no differences in resistance between the morphs, but clear differences among families within each morph. Moreover, we found suggestive evidence of resistance of offspring within families being positively correlated with the parasite load of the father, but not with that of the mother. Our results suggest that the inherited basis of parasite resistance in this system is likely to be related to variation among host individuals within each morph rather than ecological factors driving divergent resistance profiles at morph level. Overall, this may have implications for evolution of resistance through processes such as sexual selection.  相似文献   

4.
Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow‐, deep‐water resource axis in a subarctic postglacial lake (Norway). The two deep‐water (profundal) spawning morphs, a benthivore (PB‐morph) and a piscivore (PP‐morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep‐water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small‐sized PB‐morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep‐water sediments. The PP‐morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO‐morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep‐water morphs, the LO‐morph had smaller head relative to body size. The LO‐morph exhibited traits typical for both shallow‐water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep‐water habitat for the PB‐ and PP‐morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep‐water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep‐water piscivore morph has to our knowledge not been described elsewhere.  相似文献   

5.
Trophic polymorphism amongst Arctic charr from Loch Rannoch, Scotland   总被引:5,自引:0,他引:5  
This paper describes the results of a multivariate and univariate morphometric analysis of three groups of Arctic charr Salvelinus alpinus from Loch Rannoch, Perthshire, Scotland, distinguished a priori on the basis of coloration (bright v. cryptic) and site of capture (from two locations 12 km apart). The analysis produced a clear and highly significant distinction, not only between brightly and cryptically coloured charr, but also between the two cryptically coloured groups, one of which was more robust in terms of several size-independent head measurements. Stomach analysis showed that the brightly coloured charr fed entirely on zooplankton, the less robust, cryptically coloured fish, fed on benthic macroinvertebrates, whereas a significant proportion of the diet of the more robust cryptically-coloured form consisted of other fish. Differences in length at age also distinguished the three forms, with the robust, piscivorous charr, which live longer and potentially reach a larger final size, attaining smaller sizes at a given age. These data clearly confirm the previous identification of a distinct planktivorous morph of Arctic charr in Loch Rannoch and extend the morph analysis by distinguishing two additional morphs, a benthivorous morph and a piscivorous morph that are morphologically and ecologically distinct. The results are discussed in the context of other systems in which sympatric morphs of Arctic charr have been described.  相似文献   

6.
Evolutionary theory predicts that alternative trophic morphologies are adaptive because they allow a broad use of resources in heterogeneous environments. The development of a cannibal morphology is expected to result in cannibalism and high individual fitness, but conflicting results show that the situation is more complex. The goal of the present study was to increase our understanding of the ultimate benefits of a cannibalistic polyphenism by determining temporal changes in the feeding habits and biomass intake in a population of tiger salamanders ( Ambystoma tigrinum nebulosum ). Cannibals in this species develop a larger head than typicals and have prominent teeth, both useful for consuming large prey. Although cannibalism was only detected in cannibal morphs, large temporal variation in resource partitioning was found between morphs. The two morphs always differed in their foraging habits, but cannibalism mainly occurred immediately after the ontogenetic divergence between morphs. Cannibals shifted their foraging later to a more planktivorous diet (i.e. the primarily prey of the typical morph). Cannibals also obtained more prey biomass than typicals. These results indicate that the cannibalistic morph is advantageous over the typical development, but that these advantages vary ontogenetically. Although the results obtained are consistent with models predicting the maintenance of cannibalism polyphenism in natural populations, they show that the foraging tactics utilized by cannibal morphs, and the fitness consequences accrued by such tactics, are likely to be more complex and dynamic than previous studies have suggested.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 373–382.  相似文献   

7.
Two reproductive isolated morphs of Arctic charr (Salvelinus alpinus), termed profundal and littoral charr according to their different spawning habitats, co-occur in the postglacial lake Fjellfr?svatn in North Norway. All profundal charr live in deep water their entire life and have a maximum size of 14cm, while the littoral charr grow to 40cm. Some small and young littoral charr move to the profundal zone in an ontogenetic habitat shift in the ice-free season and the rest of the population remains in epilimnic waters. The two morphs had different diet niches in the profundal zone: the profundal charr ate typical soft-bottom prey (chironomid larvae, pea mussels and benthic copepods), while the young littoral charr mainly consumed crustacean zooplankton. In four other lakes without a profundal morph (i.e. monomorphic populations), young charr also performed ontogenetic habitat shifts to the profundal zone and fed on zooplankton. The profundal morph of Fjellfr?svatn therefore utilize a food resource niche that neither the littoral morph nor comparable monomorphic populations exploit. This suggests that intraspecific resource competition has driven incipient ecological speciation of the profundal charr of Fjellfr?svatn. The exploitation of the soft-bottom resources by the profundal charr supports earlier experimental findings that the profundal morph is genetically different in trophic behaviour and morphology. The sympatric ecological divergence within the profundal habitat is possible because unexploited food resources (soft-bottom profundal prey) are available. Apparently, this represents a case of incipient segregation by expansion to new resource types (niche invasion), and not by subdivision of one broad ancestral niche.  相似文献   

8.
The expression of two or more discrete phenotypes amongst individuals within a species (morphs) provides multiple modes upon which selection can act semi‐independently, and thus may be an important stage in speciation. In the present study, we compared two sympatric morph systems aiming to address hypotheses related to their evolutionary origin. Arctic charr in sympatry in Loch Tay, Scotland, exhibit one of two discrete, alternative body size phenotypes at maturity (large or small body size). Arctic charr in Loch Awe segregate into two temporally segregated spawning groups (breeding in either spring or autumn). Mitochondrial DNA restriction fragment length polymorphism analysis showed that the morph pairs in both lakes comprise separate gene pools, although segregation of the Loch Awe morphs is more subtle than that of Loch Tay. We conclude that the Loch Awe morphs diverged in situ (within the lake), whereas Loch Tay morphs most likely arose through multiple invasions by different ancestral groups that segregated before post‐glacial invasion (i.e. in allopatry). Both morph pairs showed clear trophic segregation between planktonic and benthic resources (measured by stable isotope analysis) but this was significantly less distinct in Loch Tay than in Loch Awe. By contrast, both inter‐morph morphological and life‐history differences were more subtle in Loch Awe than in Loch Tay. The strong ecological but relatively weak morphological and life‐history divergence of the in situ derived morphs compared to morphs with allopatric origins indicates a strong link between early ecological and subsequent genetic divergence of sympatric origin emerging species pairs. The emergence of parallel specialisms despite distinct genetic origins of these morph pairs suggests that the effect of available foraging opportunities may be at least as important as genetic origin in structuring sympatric divergence in post‐glacial fishes with high levels of phenotypic plasticity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

9.
F ST and RST estimates for Arctic charr from six microsatelite markers collected from two neighbouring Scottish lakes, Loch Maree and Loch Stack, confirm the presence of two distinct genetic groupings representing separate populations within each lake. In both lakes, there was also a clear body size dimorphism, with large and small body size forms that segregated according to genetic grouping. There was evidence of only subtle foraging ecology differences between morphs, with the small body size morph in both lakes being more generalist in its foraging in the summer (consuming mostly plankton but also some macrobenthos) than the large body size morph, which specialized on planktonic prey. Trophic morphology (head and mouth shape) did not differ significantly between morphs (although the small sample size for Maree makes this a preliminary finding). Cluster analysis of the microsatelite data and the presence of private alleles showed that morphologically similar forms in different lakes were not genetically similar, as would be expected under a multiple invasion hypothesis. Thus, the data do not support a hypothesis of a dual invasion of both lakes by two common ancestors but instead suggest an independent origin of the two forms in each lake. Thus parallel sympatric divergence as a result of common selection pressures in both lakes is the most parsimonious explanation of the evolutionary origin of these polymorphisms. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 748–757.  相似文献   

10.
11.
Synopsis The degree of genetic differentiation among four morphs of Arctic charr (small benthivorous, large benthivorous, piscivorous, and planktivorous) from Thingvallavatn, Iceland, was determined electrophoretically. Five of 36 enzyme loci were found to be polymorphic (Est2, Gpi3, Ldh4, Mdh4, 5 and Pgm2). However, only Est2 and Mdh4,5 showed enough variability to permit statistical analysis of divergence among morphs. All four morphs are very closely related; the values of Nei's (D) range from 0.00004 to 0.00126. These morphs are conspecific and do not represent different evolutionary lineages. There is significant genetic differentiation between the small benthivorous charr and the other three morphs. The relative relatedness of morphs based on gene frequency data is only partially concordant with that based on morphology and ecological specialization. The biological significance of this result is unclear because of the limited number of polymorphic loci upon which the genetic analysis is based and the high degree of relatedness among morphs.  相似文献   

12.
The helminth endoparasite fauna in four Arctic charr morphs, Salvelinus alpinus (L.), small benthivorous (SB), large benthivorous (LB), planktivorous (PL) and piscivorous (PI) charr, from Thingvallavatn, Iceland consisted of: Crepidostomum farionis (Trematoda: Allocreadiidae); Diplosttomum sp. (Trematoda: Diplostomatidae); Eubothrium salvelini; Diphyllobothrium dendriticum; D. ditremum (Cestoda: Pseudophyllidae); Proteocephalus longicollis (Cestoda: Proteocepha-lidae): and Philonema oncorhynchi (Nematoda: Filariidae). The morphs exhibited distinctive patterns in prevalences and parasite burdens (mean intensity and mean relative density of parasites). SB charr had high prevalence and parasite burden of the eye fluke Diplostomum sp. and none to very light infections of the other parasite species. LB charr had relatively high prevalence and parasite burden of the intestinal fluke C. farionis , whereas infections of the remaining parasite species were light to moderate. PL and PI charr had high prevalences and worm burdens of Diphyllobothrium spp. and P. longicollis . PL charr differed from PI charr in higher worm burden off P. longicollis and lighter burden of £. salvelini . Prevalences of P. oncorhynchi were high in PL and PI charr. Association of parasite intensities and age and length offish were investigated. The different infection patterns among the morphs agree well with their partitioning in food and habitat utilization, and confirm that there is a high degree of ecological segregation between the morphs. The results demonstrate the importance of ecological factors influencing transmission efficiency of parasites to the fish host.  相似文献   

13.
Trophic polymorphism was recently reported in introduced bluegill (Lepomis macrochirus) in Lake Biwa, Japan, where three morphs are specialized in benthic invertebrates (benthivorous type), submerged aquatic plants (herbivorous type), and zooplankton (planktivorous type). We evaluated the long-term effects of food resource utilization by these trophic morphs using stable isotope ratios, δ15N and δ13C. A significant difference in δ15N was found between the benthivorous and planktivorous types. The planktivorous type had the higher δ15N value, which corresponded with the value expected from its prey, zooplankton. The lower δ15N value of the benthivorous type would be derived from the lower δ15N values of benthic prey organisms compared to zooplankton. These results support previous findings that the benthivorous and planktivorous types have different food resource utilization. In contrast, the δ15N and δ13C values of the herbivorous type were distinctly different from the expected values, indicating that this type was unlikely to utilize aquatic plants substantially, contradicting the results of the dietary analysis.  相似文献   

14.
Synopsis Habitat use by four morphs of arctic charr,Salvelinus alpinus, was investigated in Thingvallavatn, Iceland, by sampling with pelagic and benthic gill nets. Sampling was done in May/June and August/September. Greatest abundance of fish was recorded in the littoral and epipelagic zone in early autumn. Catches were low in early summer. The four morphs are partly segregated in habitat. Small (SB-) and large benthivorous (LB-) charr have a more restricted spatial distribution than piscivorous (PI-), and especially planktivorous (PL-) charr. Both benthivorous morphs are mainly found in the littoral zone, and occur in largest numbers in stony shallows at depths between 0 and 10 m. PL-charr usually dominates in numbers in all habitats. PI-charr is most abundant in epibenthic habitats, although numbers are always low. All morphs are caught in higher numbers at night than during the day, but the diurnal activity difference is highest among SB-charr. The habitat use by different morphs is as may be expected from their morphology and diets. Within the population of PL-charr, young and small fish are more abundant on the bottom than in the pelagic zone, and there is a surplus of females in the pelagic zone. Along the benthic profile, young, small and immature PL-charr are more abundant in deep than in shallow waters. The results are discussed in relation to food supply, competition and predation. Possible reasons for the occurrence of four arctic charr morphs are also discussed.Contribution from the Thingvallavatn project.  相似文献   

15.
Several models of speciation suggest that in species that are phenotypically plastic, selection can act on phenotypic variation that is environmentally induced in the earliest stages of divergence. One trait that could be subject to this process is foraging behaviour, where discrete foraging strategies are common. One species which is highly plastic in the expression of phenotype, the Arctic charr, Salvelinus alpinus (L.), is characterized by discrete variation in the anatomy of the head and mouthparts. These traits have been shown to have a functional significance, but the expression of which is thought to be at least partly phenotypically plastic. Here we test the hypothesis that foraging behaviour may regulate the anatomy of the head and mouthparts in Arctic charr. In a dyad experiment, size‐matched pairs of fish from a mixed family group were fed a diet of either Mysis (a hard‐bodied shrimp) or Chironomid larvae. Nine morphometric measures of head dimensions that describe wild trophic morphs were measured at the start of the experiment and 24 weeks later. Principal component scores of size‐corrected morphometric measures showed highly significant differences between fish exposed to the two diets. Univariate ANOVA analysis of the head morphometric variables showed that fish fed on Chironomids developed longer, wider jaws, longer heads and a larger eye for a given body length than did those fish fed upon Mysis. We conclude that foraging anatomy in Arctic charr is phenotypically plastic and that variation in foraging behaviour that results in feeding specialization in the wild could induce variation in head anatomy. This in turn could reinforce foraging specialization. Very rapid epigenetic divergence into distinct feeding morphs (as demonstrated here) would allow selection to act at more than one mode and thus could promote rapid evolutionary divergence, initially prior to genetic segregation, in species which are highly plastic. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78 , 43–49.  相似文献   

16.
The relationships among time of spawning, incubation temperature, timing of first feeding and early growth were examined in four sympatric morphs of Arctic charr in Thingvallavatn, Iceland. Large benthivorous charr spawn in July-August at sites with cold ground-water flow. Planktivorous and piscivorous charr spawn in September-November and are not confined to ground-water sites. The spawning of small benthivorous charr overlaps with that of other morphs. Progeny of large benthivorous charr start feeding 2-3 months earlier than the progeny of autumn spawners. This results in differential size distribution and growth rates of young in the spring.  相似文献   

17.
Planktivorous and benthivorous morphs of wild Arctic charr Salelinus alpinus from Loch Rannoch, Perthshire, Scotland, reared in the laboratory from artificially fertilized eggs under identical conditions, were morphologically distinct (based on a series of head measurements) from an early age. For some morphometric characters, these differences became more marked with increasing body size, reflecting differences in the allometric growth patterns of the two forms. These data show that the observed phenotypic differences between these two trophic variants were, to some extent at least, inherited. Thus it is concluded that the mechanisms regulating expression of phenotype in the sympatric morphs of Loch Rannoch are significantly different from the environmentally determined body size polymorphisms reported from Norway but are closer to the more completely divergent forms from Thingvalavatn, Iceland.  相似文献   

18.
A. Meyer 《Oecologia》1989,80(3):431-436
Summary The feeding performance on soft and hard prey of two morphs of the trophically polymorphic Neotropical cichlid fish, Cichlasoma citrinellum, was investigated in the laboratory. The molariform morphs, specialized to feed on hard prey, are able to crack snail shells that are twice as hard as those cracked by the papilliform morphs. During ecological bottlenecks in food resources this ability should allow molariform morphs to exploit alternate, less preferred prey sources that are not available to papilliform morphs. Analysis of stomach contents revealed that molariform morphs feed significantly more often on hard snails than do papilliform morphs (Meyer 1989a). The performance advantage of the trophically specialized morphs when feeding on hard prey is countered by their less efficient performance on soft diets. The morphologically generalized papilliform morph feeds more efficiently on soft prey. The abundance of preferred soft prey, seasonal fluctuations in prey availability and the frequency of ecological bottlenecks may determine the relative abundance of these two morphs in natural populations in Nicaraguan lakes.  相似文献   

19.
Interspecific morph variations in trophic morphology related to skull-bones and head traits is associated to ecological segregation of Arctic charr morphs (genus Salvelinus) in two sub-arctic lakes (Fjellfrøsvatn and Skogsfjordvatn, Norway). The replicated morph pair, the profundal spawning benthivorous PB-morph and the littoral spawning omnivorous LO-morph of Arctic charr, diverge along the shallow-deep-water resource axis. In Skogsfjordvatn there is also a profundal spawning piscivorous PP-morph. The PB-morphs from both lakes have similar skull-bone traits and head morphology such as elongated jaw-bones, small opercular bones and relatively longer heads. The PP-morph also has an elongated head, relatively small opercular bones as well as larger jaw-bones. In contrast, the LO-morphs in both lakes have shorter jaw-bones, larger opercular bones in addition to relatively small heads. However, some small non-parallel differences exist among the morphs from the two lakes. Overall, all profundal morphs (PB and PP) have relatively similar skull-bone structures, suggesting adaptations to the deep-water environment but also to their separated dietary niches. There is strong evidence for parallel evolution with some local adaptations in skull-bones and head morphology of the PB-morph and the LO-morph from separate lakes.  相似文献   

20.
Variation in foraging behavior in a population of the scale-eaterPerissodus microlepis was studied on the northwest coast of Lake Tanganyika. Differences in body coloration were found among adult and subadult individuals, which were classified into 4 color morphs designated as Beige, Dark, Grey and Stripe. These color morphs were not strictly related to either sex or size. Each morph spent much time in specific microhabitats and had a major hunting technique that differed from other morphs. Beige morph. which predominated in number, ambushed prey at open surfaces of the substrate, whereas Dark morph used the shade of rock as an ambush site. Grey morph mixed in schools of fisheds hovering in midwater to attack school members, and Stripe morph cruised in the water column and stooped mainly at bottom-fishes. Prey preference differed among the morphs corresponding to their hunting techniques but successful attack rates were similar among them. Observations of marked individuals demonstrated adherence to particular hunting techniques and, in some cases, to particular hunting sites. Intraspecific foraging specialization is discussed in relation to the function of body color and diversity of life styles of prey fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号