首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular distribution and nature of proteoglycans synthesised by human breast cancer cells in culture were studied. Proteoglycans were labelled with [35S] sulfate, purified, and characterised after ion-exchange chromatography followed by gel-filtration chromatography and treatment with glycosaminoglycan degrading enzymes. Proteoglycans were isolated from the culture medium and from cell layers of the hormono-dependent well-differentiated MCF-7 cell line, the hormono-independent poorly-differentiated MDA-MB-231 and the HBL-100 cell line which is derived from non malignant breast epithelium. HBL-100 and MDA-MB-231 cells produced larger amounts of proteoglycans which had a lower degree of sulfation than MCF-7 cells. Gel-filtration chromatography on Sepharose CL-6B indicated that HBL-100 and MDA-MB-231 cells accumulated cell surface heparan sulfate proteoglycans (HSPG), with a high apparent molecular weight (Kav 0.1). In contrast, the MCF-7 cell monolayers synthesised small sulfated macromolecules (Kav 0.4) which possessed mostly chondroitin sulfate chains. Moreover, considerable differences in the nature of the sulfated proteoglycans released into the culture medium of these breast epithelial cell lines were observed. MCF-7 cells released into the culture medium HSPG as the main proteoglycan component while MDA-MB-231 and HBL-100 cells released mainly chondroitin sulfate proteoglycans. In these three cell lines, medium-released sulfated macromolecules have a higher hydrodynamic size than cell-associated ones. Proteoglycans purified by ion-exchange chromatography were tested for their ability to bind 125I FGF-2. We demonstrated that HBL-100 and MDA-MB-231 cells bind more FGF-2 to their heparan sulfate proteoglycans than MCF-7 cells. Taken together, these results suggest that differences in proteoglycan synthesis of human breast epithelial cells could be responsible for differences in their proliferative and/or invasive properties. J. Cell. Biochem. 64:605–617. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Mouse neuroblastoma Neuro 2a cells are known to extend neurite-like processes in response to gangliosides added to the culture medium. We compared the structural features of proteoglycans (PG) synthesized by conventional Neuro 2a cells with those of neurite-bearing cells. Two different proteoglycans labeled with [35S]sulfate, namely, chondroitin sulfate proteoglycan (CS-PG) and heparan sulfate proteoglycan (HS-PG), were found both in the cell layer and in the culture medium of the conventional cells. CS-PG isolated from the cell layer had a Kav value of 0.38 on Sepharose CL-6B, and had CS side chains with Mr of 27,000. HS-PG in the cell layer was slightly larger (Kav of 0.33) in terms of hydrodynamic size than CS-PG, and the apparent Mr of the heparan sulfate side chains was 10,000. The structural parameters of CS-PG and HS-PG isolated from the medium were almost identical to those of the PGs in the cell layer. In addition to these PGs, single-chain HS, with an average Mr of 2,500, was observed only in the cell layer and this component was the major sulfated component in the cell layers of both control and ganglioside treated cells. The neurite-bearing cells also synthesized both CS-PG and HS-PG which were very similar in hydrodynamic size to those synthesized by the conventional cells, but the size of HS side chains was greater. Radioactivity, as35S, of each sulfated component from the gangliosideteated culture seemed to be slightly less than that of the corresponding component from the control culture. These findings indicate that the marked morphological change in Neuro 2a cells, induced by gangliosides is not accompanied by major changes in the synthesis of PGs.  相似文献   

3.
Biosynthetically radiolabelled heparan sulphate proteoglycans have been isolated from the growth medium and the cell lysate of a human neuroblastoma cell line (CHP100). Chromatography on Sepharose CL-4B identified two heparan sulphate proteoglycans in the medium (Kav 0.220 and 0.3890, whereas in the cell lysate the major proteoglycan species were more heterogenous and of a smaller overall molecular size (Kav 0.407) than the medium-derived counterparts. Chromatography on Sepharose CL-6B of free heparan sulphate glycosaminoglycan chains showed that the majority of cell-layer-derived material heparan sulphate 2, Kav=0.509) was smaller than medium heparan sulphates (heparan sulphate 1 and heparan sulphate 2, Kav 0.230 and 0.317). Analysis of the patterns of polymer sulphation by nitrous acid treatment, gel chromatography and high-voltage electrophoresis established that in each heparan sulphate fraction there was on average 1.1 sulphate residues per disaccharide with an N:O sulphate ratio of 1.1 Heparan sulphate in the medium had a high proportion of di-O-sulphated disaccharides in regions of the chain with repeat disaccharide sequences of structure GlcA-GlcNSO3, whereas cell-associated material was enriched in di-O-sulphated tetrasaccharides of alternating sequences GlcA-GlcNAc-GlcA-GlcNSO3. The identification of several populations of heparan sulphate proteoglycans differing in molecular size and glycosaminoglycan fine structure may reflect the functional diversity of this family of macromolecules in the nervous system.  相似文献   

4.
The study addressed the question of whether35SO4 labeled molecules that the have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a souluble fraction (soluble after centrifugation at 105,000g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000g) and a final 105,000g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatographys was resolved into a fraction of sulfated glycoproteins eluting at 0–0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32–0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated35SO4, showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the result support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system.  相似文献   

5.
The properties of aortic proteoglycans synthesized in vitro were examined to demonstrate synthesis of intact proteoglycans by aortic tissue in culture and to compare labeling and synthetic rates of two different populations of proteoglycan. Following 3, 6, or 9 h of incubation in medium containing [35S]sodium sulfate and [3H]serine, the tissue was extracted with 4.0 M guanidine hydrochloride containing protease inhibitors. Extracts were chromatographed on Sepharose CL-4B and subjected to buoyant density centrifugation under dissociative conditions. Radioactive precursors were incorporated into two major populations of aortic proteoglycan, one of high molecular weight eluting near the void volume of Sepharose CL-4B (Protooglycan I) and one of lower molecular weight (Proteoglycan II) having a Kav of 0.40–0.44. The radioactively labeled proteoglycans were localized at densities 1.50–1.56 g/ml (Preparation 1) and 1.43–1.49 g/ml (Preparation 2) following CsCl buoyant density centrifugation. Both proteoglycan populations had increased incorporation of 35S and 3H over time. At all times the lower molecular weight proteoglycan had a higher specific activity (dpm 35S and 3H/μg hexuronic acid). At 3, 6, and 9 h, the specific activity of Proteoglycan II was 8.2-, 6.7- and 3.0-fold higher than Proteoglycan I using 35S and 13.0-, 8.1- and 2.7-fold higher using 3H, suggesting different synthetic rates for the two proteoglycans. The results illustrate synthesis of intact proteoglycans during short-term artery culture. The proteoglycan types have size and buoyant density characteristics as described for artery, but based upon changes in specific activity ratios, the two proteoglycan populations differ in rates of synthesis.  相似文献   

6.
The failure of cartilage mineralization in osteochondrotic cartilage may be due to an impaired proteoglycan production. Thein vitro production of proteoglycans was therefore studied in the joint cartilage of growing pigs, aged 9–18 weeks, after incubation of cartilage samples with35S-sulfate. Cartilage was obtained from different areas of the femoral condyles and samples from these areas were further divided into three layers, where the superficial layer contains articular cartilage and the basal layers consist of growth cartilage. There was no significant difference in the overall amount of35S-proteoglycans synthesized in different areas of the condyles. However, the total production of35S-proteoglycans per mg tissue was highest in the basal layer in all areas. This was not due to a larger number of cells; the superficial layer contained more DNA per mg tissue than the basal layer. Gel chromatography on Sepharose CL-2B of the cartilage extracts, which resulted in the separation of large proteoglycans (K av 0.4) from proteoglycans of small hydrodynamic size (K av 0.8), showed that the relative amount of large proteoglycans increased with the distance from the articular surface. Again, no difference in the relative amounts of large and small proteoglycans were found when cartilage from different areas were compared. Osteochondrotic cartilage was detected in the pigs aged 12–18 weeks. In areas where osteochondrotic cartilage were present, the total production of35S-proteoglycans was lowered and the relative amount of large proteoglycans was less than that found in the adjoining areas devoid of osteochondrotic lesions. The data available indicate that the higher relative amount of small proteoglycans in the osteochondrotic cartilage was partly caused by degradation of the large proteoglycans (aggrecan).  相似文献   

7.
We have measured the kinetics of specific globin mRNA and Friend virus (FV) RNA synthesis by hybridization to immobilized cDNA after induction of differentiation of two erythroleukemia cell lines (F4N, B8) by butyrate and Me2SO. The induction with butyrate in these cell lines occurs very rapidly (16–24 h). Cell cycle analysis was made of the populations throughout induction by flow cytofluorometry. The kinetics of commitment of cell populations to terminal differentiation by butyrate was determined by removal of inducer at various times and scoring of benzidine staining cells (hemoglobin producing). In addition, the cell cycle dependence of commitment was determined by flow sorting out of G1 and S+G2 cells various times after addition of inducer and scoring benzidine-stained colonies after growth in methylcellulose. Cells exposed to inducer were also sorted by cell cycle phase using an elutriator rotor. The amount of globin mRNA synthesis in the different cell populations was then determined.
1. 1. It was found that an 8–12 h period in butyrate was required before (a) globin specific mRNA was synthesized; and (b) commitment to differentiation occurred. The time course of globin mRNA synthesis was positively correlated with G1 arrest, as has been also found by others.
2. 2. The increase of FV RNA synthesis was not found during G1 arrest. It occurred early and before commitment.
3. 3. Commitment of cells to irreversible differentiation upon butyrate induction occurs only during the G1 phase of the cell cycle.
4. 4. Globin mRNA synthesis occurs first only in G1 cells.
5. 5. Globin mRNA is synthesized later in all phases of the cell cycle.
These data suggest that (a) commitment to differentiation and globin mRNA accumulation are coupled; and (b) that both events occur only in G 1 cells after a pre-commitment phase of about 12 h.  相似文献   

8.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

9.
We report further analysis of axonally transported proteoglycans in soluble and membranous subfractions of goldfish optic tectum. Distribution of transported35SO4 radioactivity was 35.2% soluble, 63.4% Triton-NaCl extractable and 1.4% unextracted. Proteoglycans isolated on DEAE cellulose were treated with chondroitinase AC or nitrous acid and remaining heparan sulfate proteoglycans (HSPGs) and chondroitin sulfate proteoglycans (CSPGs) were sized on Sepharose CL-6B. Kav values and estimated molecular weights were: Soluble CSPG-0.36 (160 kDa), Triton-NaCl extracted CSPG-.031 (200 kDa), Soluble HSPG-0.37 (150 kDa), Triton-NaCl extracted HSPG-0.37 (150 kDa). For constituent CS and HS chains the Kav values and estimated molecular weights on CL-6B were: Soluble CS-0.55 (15 kDa), Triton-NaCl extracted CS-0.55 (15 kDa), Soluble HS-0.59 (13 kDa) and Triton-NaCl extracted HS-0.65 (9 kDa). CS was shown to be sulfated exclusively at carbon 4 for both soluble and Triton NaCl extracted fractions.  相似文献   

10.
Aortic proteoglycans, from the growth medium of cultured smooth muscle cells and from sequential associative and dissociative extracts of the tissue of origin, the pig aorta, were isolated and purified by precipitation with cetylpiridinium chloride. After isopycnic CsCl gradient centrifugation under associative conditions 94% of the cell-secreted proteoglycans were recuperated in the bottom one fifth (?av = 1.62 g/ml) fraction. In contrast 80% of the tissue proteoglycans of both extracts, fractionated into two fractions: the bottom one fifth (?av = 1.60 g/ml) fraction and three fifths (?av = 1.42 g/ml) fraction. Fractionated tissue proteoglycans were composed predominantly of chondroitin sulfate-dermatan sulfate (83–90%) with lower proportions of heparan sulfate (5–11%) and hyaluronic acid (3–6%) whilst cell-secreted proteoglycans showed a similar glycosaminoglycan composition but with a higher proportion of hyaluronic acid (11–13%). Sepharose 2B and C1-2B chromatography of tissue proteoglycans of high buoyant density showed the presence of only subunit proteoglycans whilst those of intermediate density contained a complex species, partially dissociable in 4 M guanidinium chloride, along with Kav 0.50 subunit species. The latter was also observed for cell-secreted proteoglycans although obtained at high buoyant density. The cell-secreted subunit proteoglycans became separated into two distinct populations when chromatographed on Sepharose 4B and C1-4B, half of which eluted in the column Vo and the rest at a Kav of 0.34.. The majority of subunit macromolecules eluted at the Vo fractions of Sepharose 6B and C1-6B columns. Unlike the major species of cartilage proteoglycans, only approx. 20% of purified arterial proteoglycans formed complexes. This proportion could be increased by only 4–7% by interaction, of a mixture of subunit cell-secreted and tissue-extracted proteoglycans, with hyaluronic acid. These results suggest that proteoglycans secreted by cultured aortic smooth muscle cells and present in the aortic tissue possess certain similar physicochemical properties and are present in the form of complex and several subunit species.  相似文献   

11.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

12.
Ethmodiscus spp. is an important contributor to oceanic tropical-ooze sediments and thus might be an important transport vehicle of carbon from the ocean surface to sediments. The knowledge of its cell cycle and growth rate, which is still lacking, is necessary to evaluate the importance of Ethmodiscus in nutrient cycling and to solve the discrepancy between its high sedimentary abundance and rarity in the plankton. We used immunofluorescence of a cell cycle protein, prolqerating cell nuclear antigen (PCNA), and DNA-specific staining to study the progression of the cell cycle and roughly estimate the growth rate for E. rex (Rattray) Wiseman and Hendey in the southwestern North Atlantic Ocean and Caribbean Sea in June 1994 and January 1995. During the cell division cycle, the chloroplasts appeared to synthesize DNA before the nucleus (S phase). Following the S phase, the nucleus moved from one end of the cell toward the center underneath the midline of the girdle band (G2 phase) where it divided (M phase). During a very brief period, the parent cell split and moved apart from the girdle midline, and two new valves were produced (late M phase). The two daughter nuclei apparently remained attached at the joint of the two newly produced valves, where they appeared to be responsible for coordinating the symmetrical formation of the new valves. The morphologically complete daughter cells remained joined for a short period of time before separating into solitary cells whose nucleus was located at one end of the cell. Derived from the phase fraction curves, the duration of the cell cycle phases decreased in the order from G1, S, G2, to M. A conservative estimate of the growth rate in the study area obtained by using PCNA immunostaining was 0.39–0.46 d?1 in June and 0.15 d?1 in January. The validity and implication of the growth rate estimates are discussed.  相似文献   

13.
Glycosaminoglycans (GAG) and proteoglycans, which are components of the extracellular bone matrix, are also localized in and at the membrane of osteoblasts and in the pericellular matrix. Due to their interaction with several growth factors, water and cations these molecules play an important role in regulating proliferation and differentiation of osteoblasts and bone development. The aim of this study was to assess in vitro the effects of two chemically sulfated hyaluronan (HyaS) derivatives on the proliferation of rat calvarial osteoblasts and to compare with those of native hyaluronan (Hya) and natural sulfated GAG such as chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), dermatan sulfate (DS) and heparan sulfate (HS). Moderately and highly sulfated HyaS derivatives caused a time-dependent reduction of osteoblast proliferation. The anti-proliferative effect of HyaS was accompanied by a cell cycle arrest in the G1 phase, but was not associated with cell death. Whereas non-sulfated high molecular weight (HMW)- and low molecular weight (LMW)-Hya as well as C4S, C6S, DS and HS showed no effect on the cell proliferation.  相似文献   

14.
Link proteins are glycoproteins which stabilize aggregates of proteoglycans and hyaluronic acid in cartilage. We recently identified link proteins in canine synovial cell cultures. We now find that link proteins and proteoglycans extracted from these cells under dissociative conditions sediment in the high-buoyant-density fractions of an associative cesium chloride density gradient, suggesting that link proteins interact with high-bouyant-density proteoglycans. In gradients containing [35S]sulfate-labeled synovial cell extracts, 76% of the labeled sulfate and 54% of the uronic acid is found in the high-buoyant-density fractions. Under associative conditions, Sepharose 2B elution profiles of the crude synovial cell extract, synovial cell high-buoyant-density fractions, and culture medium indicate that synovial cell proteoglycans are present in monomeric form, rather than in aggregates. Synovial cell link proteins co-elute with the [35S]sulfate-labeled material under the same conditions. These proteoglycans do not interact in vitro with exogenous hyaluronic acid. Dermatan sulfate, chondroitin sulfate and heparan sulfate are the major cell-associated sulfated glycosaminoglycans synthesized by cultured canine synovial cells, while hyaluronic acid is found in the culture medium. Although the proteoglycans synthesized by cultured synovial cells interact with link proteins, these data indicate that they do not interact with hyaluronic acid to form aggregates.  相似文献   

15.
16.
Chinese hamster ovary (CHO) cells synchronized by mitotic selection were monitored by [3H]TdR autoradiography for entry into S phase. Consistent with the transition probability model of cell cycle control [1], the percent of cells remaining in G1 vs time (plotted on semi-log scale) appears linear after a slight initial curve. Analysis of the labeling pattern of sister cells indicates the following.
1. 1. The labeling index, determined from scoring only cells distinguishable as sister pairs, is the same as that for the total population;
2. 2. the proportion of pairs in which one sister is labeled is less than that expected if labeling is random, while the proportion of pairs in which both sisters are labeled is greater than that expected if labeling is random.
These results indicate either exit from a hypothetical A state is not random, and/or transit through G1 subsequent to exit from the A state results in significant correlation of sister cell transit time.  相似文献   

17.
This study has examined changes in proteoglycan synthesis during megakaryocyte maturation in vivo. Guinea pigs were injected with Na235SO4, and megakaryocytes and platelets were isolated from 3 h to 5 days later. The proteoglycans and other sulfated molecules in both cells were characterized at each time point by gel filtration, ion-exchange chromatography, gel electrophoresis, and chemical and enzymatic digestions. Two populations of chondroitin 6-sulfate proteoglycans were found by DEAE-Sephacel chromatography. The major fraction was eluted with 4 M guanidine hydrochloride and the minor fraction with 4 M guanidine HCl, 2% Triton X-100. The Kav of the major proteoglycan peak in the platelets at 1 day after injection was 0.18-0.20 on Sepharose CL-6B and decreased gradually to 0.12 by 3 days, when proteoglycan radioactivity per cell was maximal. The peak for megakaryocyte proteoglycans at 3 h was broad, with Kav = 0.1-0.2. The appearance of different portions of the proteoglycan peak in platelets coincided with their disappearance from megakaryocytes. Proteoglycan size was a function of glycosaminoglycan chain length. The proteoglycans eluted with Triton X-100 from DEAE-Sephacel (Kav = 0.04-0.07 on Sepharose CL-6B) were not labeled in platelets until 2 days after injection. Our data suggest that megakaryocytes synthesize different-sized chondroitin sulfate proteoglycans at different stages of development. The proteoglycans of the major fraction were released from platelets in response to thrombin, and a small amount was released by ADP. The proteoglycans of the Triton X-100 eluate were not released by thrombin or ADP. About 20% of the sulfate radioactivity was incorporated into molecules that appear to be sulfated proteins and were not released by thrombin or ADP.  相似文献   

18.
Precise acid-base homeostasis is essential for maintaining normal cell proliferation and growth. Conversely, dysregulated acid-base homeostasis, with increased acid extrusion and marked extracellular acidification, is an enabling feature of solid tumors, yet the mechanisms through which intra- and extracellular pH (pHi, pHe) impact proliferation and growth are incompletely understood. The aim of this study was to determine the impact of pH, and specifically of the Na+/H+ exchanger NHE1 and Na+, HCO3? transporter NBCn1, on cell cycle progression and its regulators in human breast cancer cells. Reduction of pHe to 6.5, a common condition in tumors, significantly delayed cell cycle progression in MCF-7 human breast cancer cells. The NHE1 protein level peaked in S phase and that of NBCn1 in G2/M. Steady state pHi changed through the cell cycle, from 7.1 in early S phase to 6.8 in G2, recovering again in M phase. This pattern, as well as net acid extrusion capacity, was dependent on NHE1 and NBCn1. Accordingly, knockdown of either NHE1 or NBCn1 reduced proliferation, prolonged cell cycle progression in a manner involving S phase prolongation and delayed G2/M transition, and altered the expression pattern and phosphorylation of cell cycle regulatory proteins. Our work demonstrates, for the first time, that both NHE1 and NBCn1 regulate cell cycle progression in breast cancer cells, and we propose that this involves cell cycle phase-specific pHi regulation by the two transporters.  相似文献   

19.
20.
In cultures of normal adult human glia-like cells, density-dependent cell cycle inhibition (topoinhibition) and contact inhibition of ruffling occur almost simultaneously, suggesting a functional coupling between activities of the cell surface and the initiation of DNA synthesis. The present paper examines whether cytochalasin B (CB), which reversibly inhibits ruffling, also blocks the glia cell cycle.The effects of the drug (2 μg/ml) were the following:
1. 1. Initiation of DNA synthesis of subcultivated stationary cells was inhibited.
2. 2. Stimulation of DNA synthesis in stationary cells by medium change was suppressed.
3. 3. Migration of cells into a wound in a confluent cell layer was blocked as well as the initiation of DNA synthesis in cells lining the wound.
4. 4. Initiation (but not continuation) of DNA synthesis of exponentially growing cells was inhibited leading to a population mainly arrested in G 1 as determined by microspectrophotometry on Feulgen-stained cells. Topoinhibited cells were also blocked in G 1. Since cytokinesis was blocked by CB, a fraction of binuclear cells appeared.
The cell cycle block induced by CB was reversible, even after several weeks of treatment, with the exception that binuclear cells more reluctantly entered the S phase after release of the block.In conclusion, CB efficiently induces a reversible and probably physiologic cell cycle block. This finding strengthens the notion of a connection between cell membrane and cell proliferation. The underlying mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号