首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
  相似文献   

2.
    
The fluid nature of the ocean, combined with planktonic dispersal of marine larvae, lowers physical barriers to gene flow. However, divergence can still occur despite gene flow if strong selection acts on populations occupying different ecological niches. Here, we examined the population genomics of an ectoparasitic snail, Coralliophila violacea (Kiener 1836), that specializes on Porites corals in the Indo‐Pacific. Previous genetic analyses revealed two sympatric lineages associated with different coral hosts. In this study, we examined the mechanisms promoting and maintaining the snails’ adaptation to their coral hosts. Genome‐wide single nucleotide polymorphism (SNP) data from type II restriction site‐associated DNA (2b‐RAD) sequencing revealed two differentiated clusters of C. violacea that were largely concordant with coral host, consistent with previous genetic results. However, the presence of some admixed genotypes indicates gene flow from one lineage to the other. Combined, these results suggest that differentiation between host‐associated lineages of C. violacea is occurring in the face of ongoing gene flow, requiring strong selection. Indeed, 2.7% of all SNP loci were outlier loci (73/2,718), indicative of divergence with gene flow, driven by adaptation of each C. violacea lineage to their specific coral hosts.  相似文献   

3.
    
The rough periwinkle, Littorina saxatilis, is a model system for studying parallel ecological speciation in microparapatry. Phenotypically parallel wave‐adapted and crab‐adapted ecotypes that hybridize within the middle shore are replicated along the northwestern coast of Spain and have likely arisen from two separate glacial refugia. We tested whether greater geographic separation corresponding to reduced opportunity for contemporary or historical gene flow between parallel ecotypes resulted in less parallel genomic divergence. We sequenced double‐digested restriction‐associated DNA (ddRAD) libraries from individual snails from upper, mid, and low intertidal levels of three separate sites colonized from two separate refugia. Outlier analysis of 4256 SNP markers identified 34.4% sharing of divergent loci between two geographically close sites; however, these sites each shared only 9.9%–15.1% of their divergent loci with a third more‐distant site. STRUCTURE analysis revealed that genotypes from only three of 166 phenotypically intermediate mid‐shore individuals appeared to result from recent hybridization, suggesting that hybrids cannot be reliably identified using shell traits. Hierarchical AMOVA indicated that the primary source of genomic differentiation was geographic separation, but also revealed greater similarity of the same ecotype across the two geographically close sites than previously estimated with dominant markers. These results from a model system for ecological speciation suggest that genomic parallelism is affected by the opportunity for historical or contemporary gene flow between populations.  相似文献   

4.
    
Understanding the drivers of population divergence, speciation and species persistence is of great interest to molecular ecology, especially for species‐rich radiations inhabiting the world's biodiversity hotspots. The toolbox of population genomics holds great promise for addressing these key issues, especially if genomic data are analysed within a spatially and ecologically explicit context. We have studied the earliest stages of the divergence continuum in the Restionaceae, a species‐rich and ecologically important plant family of the Cape Floristic Region (CFR) of South Africa, using the widespread CFR endemic Restio capensis (L.) H.P. Linder & C.R. Hardy as an example. We studied diverging populations of this morphotaxon for plastid DNA sequences and >14 400 nuclear DNA polymorphisms from Restriction site Associated DNA (RAD) sequencing and analysed the results jointly with spatial, climatic and phytogeographic data, using a Bayesian generalized linear mixed modelling (GLMM) approach. The results indicate that population divergence across the extreme environmental mosaic of the CFR is mostly driven by isolation by environment (IBE) rather than isolation by distance (IBD) for both neutral and non‐neutral markers, consistent with genome hitchhiking or coupling effects during early stages of divergence. Mixed modelling of plastid DNA and single divergent outlier loci from a Bayesian genome scan confirmed the predominant role of climate and pointed to additional drivers of divergence, such as drift and ecological agents of selection captured by phytogeographic zones. Our study demonstrates the usefulness of population genomics for disentangling the effects of IBD and IBE along the divergence continuum often found in species radiations across heterogeneous ecological landscapes.  相似文献   

5.
    
Are the population genomic patterns underlying local adaptation and the early stages of speciation similar? Addressing this question requires a system in which (i) local adaptation and the early stages of speciation can be clearly identified and distinguished, (ii) the amount of genetic divergence driven by the two processes is similar, and (iii) comparisons can be repeated both taxonomically (for local adaptation) and geographically (for speciation). Here, we report just such a situation in the hamlets (Hypoplectrus spp), brightly colored reef fishes from the wider Caribbean. Close to 100,000 SNPs genotyped in 126 individuals from three sympatric species sampled in three repeated populations provide genome‐wide levels of divergence that are comparable among allopatric populations (Fst estimate = 0.0042) and sympatric species (Fst estimate = 0.0038). Population genetic, clustering, and phylogenetic analyses reveal very similar patterns for local adaptation and speciation, with a large fraction of the genome undifferentiated (Fst estimate ≈ 0), a very small proportion of Fst outlier loci (0.05–0.07%), and remarkably few repeated outliers (1–3). Nevertheless, different loci appear to be involved in the two processes in Hypoplectrus, with only 7% of the most differentiated SNPs and outliers shared between populations and species comparisons. In particular, a tropomyosin (Tpm4) and a previously identified hox (HoxCa) locus emerge as candidate loci (repeated outliers) for local adaptation and speciation, respectively. We conclude that marine populations may be locally adapted notwithstanding shallow levels of genetic divergence, and that from a population genomic perspective, this process does not appear to differ fundamentally from the early stages of speciation.  相似文献   

6.
    
Restriction‐site‐associated DNA tag (RAD‐tag) sequencing has become a popular approach to generate thousands of SNPs used to address diverse questions in population genomics. Comparatively, the suitability of RAD‐tag genotyping to address evolutionary questions across divergent species has been the subject of only a few recent studies. Here, we evaluate the applicability of this approach to conduct genome‐wide scans for polymorphisms across two cetacean species belonging to distinct families: the short‐beaked common dolphin (Delphinus delphis; n = 5 individuals) and the harbour porpoise (Phocoena phocoena; n = 1 individual). Additionally, we explore the effects of varying two parameters in the Stacks analysis pipeline on the number of loci and level of divergence obtained. We observed a 34% drop in the total number of loci that were present in all individuals when analysing individuals from the distinct families compared with analyses restricted to intraspecific comparisons (i.e. within D. delphis). Despite relatively stringent quality filters, 3595 polymorphic loci were retrieved from our interfamilial comparison. Cetaceans have undergone rapid diversification, and the estimated divergence time between the two families is relatively recent (14–19 Ma). Thus, our results showed that, for this level of divergence, a large number of orthologous loci can still be genotyped using this approach, which is on par with two recent in silico studies. Our findings constitute one of the first empirical investigations using RAD‐tag sequencing at this level of divergence and highlights the great potential of this approach in comparative studies and to address evolutionary questions.  相似文献   

7.
    
Microbes can play a prominent role in the evolution of their hosts, facilitating adaptation to various environments and promoting ecological divergence. The Wave and Crab ecotypes of the intertidal snail Littorina saxatilis is an evolutionary model of rapid and repeated adaptation to environmental gradients. While patterns of genomic divergence of the Littorina ecotypes along the shore gradients have been extensively studied, their microbiomes have been so far overlooked. The aim of the present study is to start filling this gap by comparing gut microbiome composition of the Wave and Crab ecotypes using metabarcoding approach. Since Littorina snails are micro-grazers feeding on the intertidal biofilm, we also compare biofilm composition (i.e. typical snail diet) in the crab and wave habitats. In the results, we found that bacterial and eukaryotic biofilm composition varies between the typical habitats of the ecotypes. Further, the snail gut bacteriome was different from outer environments, being dominated by Gammaproteobacteria, Fusobacteria, Bacteroidia and Alphaproteobacteria. There were clear differences in the gut bacterial communities between the Crab and the Wave ecotypes as well as between the Wave ecotype snails from the low and high shores. These differences were both observed in the abundances and in the presence of different bacteria, as well as at different taxonomic level, from bacterial OTU's to families. Altogether, our first insights show that Littorina snails and their associated bacteria are a promising marine system to study co-evolution of the microbes and their hosts, which can help us to predict the future for wild species in the face of rapidly changing marine environments.  相似文献   

8.
上川岛潮间带不同生境底栖软体动物物种多样性初步研究   总被引:2,自引:0,他引:2  
目的:研究上川岛潮间带不同生境底栖软体动物物种多样性。方法:对上川岛潮间带(沙滩、泥沙滩、红树林泥滩、岩石滩) 4种不同生境的7个样方的底栖软体动物进行了生物多样性的初步调查。结果:共鉴定底栖软体动物14科30种,上川岛潮间带底栖软体动物物种丰富度指数为岩石滩(平均为1.784 ) >泥沙滩(平均为1.5 2 1) >红树林泥滩(平均为1.2 35 ) >沙滩(平均为0 .6 92 ) ;多样性指数岩石滩(平均为1.5 5 1) >红树林泥滩(平均为1.30 4 ) >泥沙滩(平均为1.16 2 ) >沙滩(平均为0 .4 0 3)。结论:底栖软体动物的种类及数量分布受底质、浪击等因素的影响。  相似文献   

9.
    
F. Bonhomme 《Molecular ecology》2016,25(13):3187-3202
Ecophenotypic differentiation among replicate ecotype pairs within a species complex is often attributed to independent outcomes of parallel divergence driven by adaptation to similar environmental contrasts. However, the extent to which parallel phenotypic and genetic divergence patterns have emerged independently is increasingly questioned by population genomic studies. Here, we document the extent of genetic differentiation within and among two geographic replicates of the coastal and marine ecotypes of the European anchovy (Engraulis encrasicolus) gathered from Atlantic and Mediterranean locations. Using a genome‐wide data set of RAD‐derived SNPs, we show that habitat type (marine vs. coastal) is the most important component of genetic differentiation among populations of anchovy. By analysing the joint allele frequency spectrum of each coastal–marine ecotype pair, we show that genomic divergence patterns between ecotypes can be explained by a postglacial secondary contact following a long period of allopatric isolation (c. 300 kyrs). We found strong support for a model including heterogeneous migration among loci, suggesting that secondary gene flow has eroded past differentiation at different rates across the genome. Markers experiencing reduced introgression exhibited strongly correlated differentiation levels among Atlantic and Mediterranean regions. These results support that partial reproductive isolation and parallel genetic differentiation among replicate pairs of anchovy ecotypes are largely due to a common divergence history prior to secondary contact. They moreover provide comprehensive insights into the origin of a surprisingly strong fine‐scale genetic structuring in a high gene flow marine fish, which should improve stock management and conservation actions.  相似文献   

10.
    
Coho salmon were extirpated in the mid‐20th century from the interior reaches of the Columbia River but were reintroduced with relatively abundant source stocks from the lower Columbia River near the Pacific coast. Reintroduction of Coho salmon to the interior Columbia River (Wenatchee River) using lower river stocks placed selective pressures on the new colonizers due to substantial differences with their original habitat such as migration distance and navigation of six additional hydropower dams. We used restriction site‐associated DNA sequencing (RAD‐seq) to genotype 5,392 SNPs in reintroduced Coho salmon in the Wenatchee River over four generations to test for signals of temporal structure and adaptive variation. Temporal genetic structure among the three broodlines of reintroduced fish was evident among the initial return years (2000, 2001, and 2002) and their descendants, which indicated levels of reproductive isolation among broodlines. Signals of adaptive variation were detected from multiple outlier tests and identified candidate genes for further study. This study illustrated that genetic variation and structure of reintroduced populations are likely to reflect source stocks for multiple generations but may shift over time once established in nature.  相似文献   

11.
    
  相似文献   

12.
13.
    
《Trends in genetics : TIG》2015,31(9):491-499
  相似文献   

14.
    
Effective resource management depends on our ability to partition diversity into biologically meaningful units. Recent evolutionary divergence, however, can often lead to ambiguity in morphological and genetic differentiation, complicating the delineation of valid conservation units. Such is the case with the “coregonine problem,” where recent postglacial radiations of coregonines into lacustrine habitats resulted in the evolution of numerous species flocks, often with ambiguous taxonomy. The application of genomics methods is beginning to shed light on this problem and the evolutionary mechanisms underlying divergence in these ecologically and economically important fishes. Here, we used restriction site‐associated DNA (RAD) sequencing to examine genetic diversity and differentiation among sympatric forms in the Coregonus artedi complex in the Apostle Islands of Lake Superior, the largest lake in the Laurentian Great Lakes. Using 29,068 SNPs, we were able to clearly distinguish among the three most common forms for the first time, as well as identify putative hybrids and potentially misidentified specimens. Population assignment rates for these forms using our RAD data were 93%–100% with the only mis‐assignments arising from putative hybrids, an improvement from 62% to 77% using microsatellites. Estimates of pairwise differentiation (FST: 0.045–0.056) were large given the detection of hybrids, suggesting that reduced fitness of hybrid individuals may be a potential mechanism for the maintenance of differentiation. We also used a newly built C. artedi linkage map to look for islands of genetic divergence among forms and found widespread differentiation across the genome, a pattern indicative of long‐term drift, suggesting that these forms have been reproductively isolated for a substantial amount of time. The results of this study provide valuable information that can be applied to develop well‐informed management strategies and stress the importance of re‐evaluating conservation units with genomic tools to ensure they accurately reflect species diversity.  相似文献   

15.
大亚湾潮间带软体运动的物种多样性初步研究   总被引:6,自引:0,他引:6  
1999年7月在大亚湾潮间带4种不同生境(岩石岸、砾石滩、泥沙滩、沙滩)10个样方采集软体动物38种,隶属于23个科。采用丰富度指数和多样性指数对不同生境软体动物的多样性进行研究。研究结果表明,大亚湾软体动物物种丰富度指数砾石滩、岩石岸(D=4.328~9.378)>泥沙滩(D=4.328~6.493)>沙滩(D=2.886)。多样性指数也显示砾石滩、岩石岸(H′=0.429~0.842)>泥沙滩(H′=0.315~0.450)>沙滩(H′=0.182)。对上述样方聚类结果表明,软体动物种类分布及数量受底质、浪击和污染的影响。  相似文献   

16.
    
The Devils Hole pupfish (Cyprinodon diabolis; DHP) is an icon of conservation biology. Isolated in a 50 m2 pool (Devils Hole), DHP is one of the rarest vertebrate species known and an evolutionary anomaly, having survived in complete isolation for thousands of years. However, recent findings suggest DHP might be younger than commonly thought, potentially introduced to Devils Hole by humans in the past thousand years. As a result, the significance of DHP from an evolutionary and conservation perspective has been questioned. Here we present a high‐resolution genomic analysis of DHP and two closely related species, with the goal of thoroughly examining the temporal divergence of DHP. To this end, we inferred the evolutionary history of DHP from multiple random genomic subsets and evaluated four historical scenarios using the multispecies coalescent. Our results provide substantial information regarding the evolutionary history of DHP. Genomic patterns of secondary contact present strong evidence that DHP were isolated in Devils Hole prior to 20–10 ka and the model best supported by geological history and known mutation rates predicts DHP diverged around 60 ka, approximately the same time Devils Hole opened to the surface. We make the novel prediction that DHP colonized and have survived in Devils Hole since the cavern opened, and the two events (colonization and collapse of the cavern's roof) were caused by a common geologic event. Our results emphasize the power of evolutionary theory as a predictive framework and reaffirm DHP as an important evolutionary novelty, worthy of continued conservation and exploration.  相似文献   

17.
<正>2013年,《生物多样性》的工作主要围绕如何突出特色、提高文章质量、更好地服务读者而开展。报道内容的特点首先,更多论文带有有价值的附录材料。2013年共发表论文90篇776页,其中有39篇文章共带有173页附录,不仅增加了文章的信息量,还提高了数据的复用性。其次,出版了1个微生物多样性专辑(13篇文章)和2个海洋生物多样性专栏(9篇文章)。出版热点领域的专辑/专栏已成为《生物多样性》近年来报道内容的一  相似文献   

18.
The spatial patterns of sea anemones (genus: Anthopleura) were analyzed off the rocky intertidal of California. A. elegantissima partitions space in a regular or even pattern and interferes with conspecifics. Its associate A. xanthogrammica shows no signs of interference with conspecifics or congenerics and displays a clumped spatial distribution.  相似文献   

19.
    
Regions of the genome displaying elevated differentiation (genomic islands of divergence) are thought to play an important role in local adaptation, especially in populations experiencing high gene flow. However, the characteristics of these islands as well as the functional significance of genes located within them remain largely unknown. Here, we used data from thousands of SNPs aligned to a linkage map to investigate genomic islands of divergence in three ecotypes of sockeye salmon (Oncorhynchus nerka) from a single drainage in southwestern Alaska. We found ten islands displaying high differentiation among ecotypes. Conversely, neutral structure observed throughout the rest of the genome was low and not partitioned by ecotype. One island on linkage group So13 was particularly large and contained six SNPs with FST > 0.14 (average FST of neutral SNPs = 0.01). Functional annotation revealed that the peak of this island contained a nonsynonymous mutation in a gene involved in growth in other species (TULP4). The islands that we discovered were relatively small (80–402 Kb), loci found in islands did not show reduced levels of diversity, and loci in islands displayed slightly elevated linkage disequilibrium. These attributes suggest that the islands discovered here were likely generated by divergence hitchhiking; however, we cannot rule out the possibility that other mechanisms may have produced them. Our results suggest that islands of divergence serve an important role in local adaptation with gene flow and represent a significant advance towards understanding the genetic basis of ecotypic differentiation.  相似文献   

20.
    
Populations of widespread species often differ in phenotypic traits, although rarely in such a dramatic fashion as revealed by research on turtle‐headed seasnakes (Emydocephalus annulatus). These snakes are highly philopatric, with mark–recapture studies showing that the interchange of individuals rarely occurs even between two adjacent bays (separated by < 1.2 km) in Noumea, New Caledonia. Data on > 500 field‐captured snakes from these two bays reveal significant differences between these two locations in snake morphology (mean body length, relative tail length, head shape), colour, ecology (body condition, growth rate, incidence of algal fouling), behaviour (antipredator tactics), and locomotor performance. For some traits, the disparity was very marked (e.g. mean swimming speeds differed by > 30%). The causal bases for these phenotypic divergences may involve founder effects, local adaptation, and phenotypic plasticity. The spatial divergence in phenotypic traits offers a cautionary tale both for researchers (sampling of only a few populations may fail to provide a valid overview of the morphology, performance, and behaviour of a species) and managers (loss of local populations may eliminate distinctive genetic variation). © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号