首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports experiments designed to find the concentrations of internal and external Na and K at which inward and outward furosemide-sensitive (FS) Na and K fluxes are equal, so that there is no net FS movement of Na and K. The red cell cation content was modified by using the ionophore nystatin, varying cell Na (Nai) from 0 to 34 mM (K substitution, high-K cells) and cell K (Ki) from 0 to 30 mM (Na substitution, high-Na cells). All incubation media contained NaCl (Nao = 130 or 120 nM), and KCl (Ko = 0-30 mM). In high-K cells, incubated in the absence of Ko, there was net extrusion of Na through the FS pathway. The net FS Na extrusion increased when Nai was increased. Low concentrations of Ko (0-6 mM) slightly stimulated, whereas higher concentrations of Ko inhibited, FS Na efflux. Increasing Ko stimulated the FS Na influx (K0.5 = 4 mM). Under conditions similar to those that occur in vivo (Nai = 10, Ki = 130, Nao = 130, Ko = 4 mM, Cli/Clo = 0.7), net extrusion of Na occurs through the FS pathway (180-250 mumol/liter cell X h). The concentration of Ko at which the FS Na influx and efflux and the FS K influx and efflux become equal increased when Nai increased in high-K cells and when Ki was increased in high-Na cells. The net FS Na and K fluxes both approached zero at similar internal and external Na and K concentrations. In high-K cells, under conditions when net Na and K fluxes were near zero, the ratio of FS Na to FS K unidirectional flux was found to be 2:3. In high-K cells, the empirical expression (Nai/Nao)2(Ki/Ko)3 remained at constant value (apparent equilibrium constant, Kappeq +/- SEM = 22 +/- 2) for each set of internal and external cation concentrations at which there was no net Na flux. These results indicate that in the physiological region of concentrations of internal and external Na, K, and Cl, the stoichiometry of the FS Na and K fluxes is 2 Na:3 K. In high-Na cells under conditions when net FS Na and K fluxes were near zero, the ratio of FS Na to FS K unidirectional fluxes was 3:2 (1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Resealed human red cell ghosts containing caged ATP (Kaplan et al., 1978) and [3H]ADP were irradiated at 340 nm. The photochemical release of free ATP initiated a rapid transphosphorylation reaction (ATP:ADP exchange), a component of which is inhibited by ouabain. The reaction rate was measured by following the rate of appearance of [3H]ATP. The sodium pump-mediated ATP:ADP exchange reaction showed high-affinity stimulation by Mg ions (less than 10 microM) and was inhibited at higher levels. At optimal [Mg], extracellular Na (Nao) had a biphasic effect. Nao progressively inhibited the reaction rate between 0 and 10 mM and stimulated at higher levels. Intracellular Na (Nai) activated the reaction; the rate was maximal when Nai was 1 mM and remained unaltered up to 115 mM Nai at constant Nao. Extracellular K ions (Ko) inhibited the reaction; at high Nao, half-maximal inhibition was observed with 0.9 mM Ko. Lio inhibited the exchange rate with a lower affinity than Ko; half-maximal inhibition was produced by approximately 50 mM Lio. Intracellular K ions were without dramatic effect on the reaction rate in the concentration range where Ko inhibited completely. The relationship between these observations and previous studies on porous preparations is discussed, as well as the extent to which these observations support the hypothesis that the sodium pump-mediated ATP:ADP exchange reaction accompanies the Na:Na exchange transport mode of the sodium pump.  相似文献   

3.
We have used dialyzed squid axons to characterize the ouabain- and bumetanide-insensitive Na efflux components and their relation to the operation of the Na/Ca exchange mechanism. In axons dialyzed with solutions containing nearly physiological concentrations of K, Na, and Mg, three components of the Na efflux can be distinguished: Cai-activated, Cao-dependent Na efflux ("reverse" Na/Ca exchange); Cai-activated, Nao-dependent Na efflux; and Cai-independent, ATP-activated, Nao-dependent Na efflux. We have studied the effects of internal alkalinization, Mgi, Cao, and the ATP analogue [gamma-thio]ATP (ATP gamma S) on the different components of the Na efflux. The results show the following: (a) internal alkalinization activates both Cao- and Nao-dependent Na efflux components provided that Cai is present; (b) Mgi inhibits both the Cai-activated, Cao- and Nao-dependent Na efflux components; (c) Cao inhibits the Nao-dependent component by competition for a common site; (d) ATP gamma S activates both Nao- and Cao-dependent Na efflux components only in the presence of Cai; and (e) ATP activates the Nai/Nao and Nai/Cao exchanges, causing a 10-fold increase in the affinity of the reverse Na/Ca exchange toward Cai. In the absence of Cai, ATP stimulates an Nao-dependent Na efflux that is not affected either by internal alkalinization or high Cao. The ATP analogue does not activate the Cai-independent Na/Na exchange system. These experiments demonstrate that the Cai-activated Na/Na exchange is a mode of operation of the Na/Ca exchange mechanism that substantially contributes to Na movement during the activation of the Na/Ca antiporter. The experimental evidence obtained on the Cai-independent Na/Na exchange component shows that this system is not part of the Na/Ca exchange.  相似文献   

4.
Calcium influx in internally dialyzed squid giant axons   总被引:9,自引:4,他引:5       下载免费PDF全文
A method has been developed to measure Ca influx in internally dialyzed squid axons. This was achieved by controlling the dialyzed segment of the axon exposed to the external radioactive medium. The capacity of EGTA to buffer all the Ca entering the fiber was explored by changing the free EGTA at constant [Ca++]i. At a free [EGTA]i greater than 200 microM, the measured resting Ca influx and the expected increment in Ca entry during electrical stimulation were independent of the axoplasmic free [EGTA]. To avoid Ca uptake by the mitochondrial system, cyanide, oligomycin, and FCCP were included in the perfusate. Axons dialyzed with a standard medium containing: [ATP] = 2 mM, [Ca++]i = 0.06 microM, [Ca++]o = 10 mM, [Na+]i = 70 mM, and [Na+]o = 465 mM, gave a mean Ca influx of 0.14 +/- 0.012 pmol.cm-2.s-1 (n = 12. Removal of ATP drops the Ca influx to 0.085 +/- 0.007 pmol.cm-2.s-1 (n = 12). Ca influx increased to 0.35 pmol.cm-2,s-1 when Nao was removed. The increment was completely abolished by removing Nai+ and (or) ATP from the dialysis medium. At nominal zero [Ca++]i, no Nai-dependent Ca influx was observed. In the presence of ATP and Nai [Ca++]i activates the Ca influx along a sigmoid curve without saturation up to 1 microM [Ca++]i. Removal of Nai+ always reduced the Ca influx to a value similar to that observed in the absence of [Ca++]i (0.087 +/- 0.008 pmol.cm-2.s-1; n = 11). Under the above standard conditions, 50-60% of the total Ca influx was found to be insensitive to Nai+, Cai++, and ATP, sensitive to membrane potential, and partially inhibited by external Co++.  相似文献   

5.
We have studied the interaction of physiological ligands other than Nai and Cai with the Ca pump and Na/Ca exchange in internally dialyzed squid axons. The results show the following. (a) Internal Mg2+ is an inhibitor of the Nao-dependent Ca efflux. At physiological Mg2+i (4 mM), the inhibition amounts to approximately 50%. The inhibition is partial and noncompetitive with Cai, and is not affected by Nai or ATP. The ATP-dependent uncoupled efflux is unaffected by Mgi up to 20 mM. Both components of the Ca efflux require Mg2+i for their activation by ATP. (b) At constant membrane potential, Ki is an important cofactor for the uncoupled Ca efflux. (c) Orthophosphate (Pi) activates the Nao-dependent Ca efflux without affecting the uncoupled component. Activation by Pi occurs only in the presence of Mg-ATP or hydrolyzable ATP analogues. Pi under physiological conditions has no effect on the uncoupled component; nevertheless, at alkaline pH, it inhibits the Ca pump, probably by product inhibition. (d) ADP is a potent inhibitor of the uncoupled Ca efflux. The Nao-dependent component is inhibited by ADP only at much higher ADP concentrations. These results indicate that (a) depending on the concentration of Ca2+i, Na+i Mg2+i, and Pi, the Na/Ca carrier can operate under a low- or high-rate regime; (b) the interactions of Mg2+i, Pi, Na+i, and ATP with the carrier are not interdependent; (c) the effect of Pi on the carrier-mediated Ca efflux resembles the stimulation of the Nao-dependent Ca efflux by internal vanadate; (d) the ligand effects on the uncoupled Ca efflux are of the type seen in the Ca pump in red cells and the sarcoplasmic reticulum.  相似文献   

6.
In this work we have investigated whether the asymmetrical properties of the Na/Ca exchange process found in intact preparations are intrinsic to the exchange protein(s) or the result of the asymmetric ionic environment normally prevailing in living cells. The activation of the Na/Ca exchanger by Ca2+ ions, monovalent cations, ATP gamma S and the effect of membrane potential on the different operational modes of the exchanger (Nao/Cai, Cao/Nai, Cao/Cai, and Nao/Nai) was studied in voltage-clamped squid giant axons externally perfused and internally dialyzed with symmetrical ionic solutions. Under these conditions: (a) Ca ions activate with higher affinity from the inside (K1/2 = 22 microM) than from the outside (K1/2 = 300 microM); (b) experiments measuring the Cao-dependent Ca efflux in the conditions Lio-Trisi, Lio-Lii, Triso-Trisi, and Triso-Lii, show that the activating monovalent cation site on the exchanger faces the external surface; (c) ATP gamma S activates the Cao-dependent Ca efflux (Cao/Cai exchange) only at nonsaturating [Ca2+]i. Its effect appears to be on the Ca transport site since no alteration in the apparent affinity of the activating monovalent cation site was observed. The above results show that the Na/Ca exchange process is indeed a highly asymmetric transport mechanism. Finally, the voltage dependence of the components of the different exchange modes was measured over the range of +20 to -40 mV. The voltage dependence (approximately 26% change/25 mV) was found to be similar for all modes of operation of the exchanger except Nao/Nai exchange, which was found to be voltage insensitive. The sensitivity of the Cao/Cai exchange to voltage was found to be the same in the presence and in the complete absence of monovalent cations. This finding does not support the proposition that the voltage sensitivity of the Cao/Cao exchange is induced by the binding and transport of an external monovalent cation.  相似文献   

7.
Regulation of cytosolic free Na (Nai) was measured in isolated rabbit gastric glands with the use of a recently developed fluorescent indicator for sodium, SBFI. Intracellular loading of the indicator was achieved by incubation with an acetoxymethyl ester of the dye. Digital imaging of fluorescence was used to monitor Nai in both acid-secreting parietal cells and enzyme-secreting chief cells within intact glands. In situ calibration of Nai with ionophores indicated that SBFI fluorescence (345/385 nm excitation ratio) could resolve 2 mM changes in Nai and was relatively insensitive to changes in K or pH. Measurements on intact glands showed that basal Nai was 8.5 +/- 2.2 mM in parietal cells and 9.2 +/- 3 mM in chief cells. Estimates of Na influx and efflux were made by measuring rates of Nai change after inactivation or reactivation of the Na/K ATPase in a rapid perfusion system. Na/K ATPase inhibition resulting from the removal of extracellular K (Ko) caused Nai to increase at 3.2 +/- 1.5 mM/min and 3.5 +/- 2.7 mM/min in parietal and chief cells, respectively. Na buffering was found to be negligible. Addition of 5 mM Ko and removal of extracellular Na (Nao) caused Nai to decrease rapidly toward 0 mM Na. By subtracting passive Na efflux under these conditions (the rate at which Nai decreased in Na-free solution containing ouabain), an activation curve (dNai/Nai) for the Na/K ATPase was calculated. The pump demonstrated the greatest sensitivity between 5 and 20 mM Nai. At 37 degrees C the pump rate was less than 3 mM/min at 5 mM Nai and 26 mM/min at 25 mM Nai, indicating that the pump has a great ability to respond to changes in Nai in this range. Carbachol, which stimulates secretion from both cell types, was found to stimulate Na influx in both cell types, but did not have detectable effects on Na efflux. dbcAMP+IBMX, potent stimulants of acid secretion, had no effect on Na metabolism.  相似文献   

8.
The intravesicular ionized Na concentration (Nai) was measured using the fluorescent Na indicator, SBFI, in microsacs, a cell-free brain vesicle preparation. SBFI fluorescence was monitored by a dual excitation-wavelength method at the same wavelengths commonly employed for Fura-2 determination of intracellular ionized calcium concentrations (Cai). Calibration of SBFI fluorescence was reliably performed in brain microsacs in situ. Resting Nai was dependent on the extravesicular Na concentration (Nao) and was about 36 mM in the presence of 120 mM extracellular Nao. In the presence of ouabain, an inhibitor of the plasma membrane Na/K-ATPase, Nai increased by 27 mM over 60 s. Nai was also increased by resuspension of microsacs in buffers of low free Ca concentrations (0 to 0.8 mM), indicating that the extravesicular Ca concentration (Cao) is an important regulator of Nai. Alkaloids active at voltage-sensitive Na channels, veratridine and aconitine, also increased Nai. These results demonstrate the presence of homeostatic mechanisms for neuronal Nai regulation and show that Nai can be measured in a cell-free brain vesicle preparation using SBFI.  相似文献   

9.
We report in this paper different modes of Na and K transport in human red cells, which can be inhibited by furosemide in the presence of ouabain. Experimental evidence is provided for inward and outward coupled transport of Na and K, Ki/Ko and Nai/Nao exchange, and uncoupled Na or K efflux. The outward cotransport of Na and K was defined as the furosemide-sensitive (FS) component of Na and K effluxes into choline medium and as the Cl-dependent or cis-stimulated component of the ouabain-resistant (OR) Na and K effluxes. Inward cotransport of Na and K was defined by the stimulation by external Na (Nao) of the K influx and the stimulation by external K (Ko) of the Na influx in the presence of ouabain. Both effects were FS and Cl dependent. Experimental evidence for an FS Ki/Ko exchange pathway of the Na/K cotransport was provided by (a) the stimulation by external K of FS K influx and efflux, and (b) the stimulation by internal Na or K of FS K influx in the absence of external Na. Evidence for an FS Nai/Nao exchange pathway was provided by the stimulation of FS Na influx by internal Na from a K-free medium (130 mM NaCl). This pathway was four to six times smaller than the Ki/Ko exchange. In cells containing only Na or K, incubated in media containing only Na or K, respectively, there was FS efflux of the cation without simultaneous inward transport (FS uncoupled Na and K efflux). The stoichiometric ratio of FS outward cotransport of Na and K into choline medium varied with the ratio of Nai-to-Ki concentrations, and when Nai/Ki was close to 1, the ratio of FS outward Na to K flux was also 1. In choline media, FS Na efflux was inhibited by external K (noncompetitively), whereas FS k efflux was stimulated. The stimulation of FS K efflux was due to the stimulation by Ko of the Ki/Ko exchange pathway. Thus, the stoichiometry of FS Na and K effluxes also varied in the presence of external K. A minimal model for a reaction scheme of FS Na and K transport accounts for cis stimulation, trans inhibition, and trans stimulation, and for variable stoichiometry of the FS cation fluxes.  相似文献   

10.
The Na/K pump in human red blood cells that normally exchanges 3 Nai for 2 Ko is known to continue to transport Na in a ouabain-sensitive and ATP-dependent manner when the medium is made free of both Nao and Ko. Although this Na efflux is called "uncoupled" because of removal of ions to exchange with, the efflux has been shown to be comprised of a coefflux with cellular anions. The work described in this paper presents a new mode of operation of uncoupled Na efflux. This new mode not only depends upon the combined presence of ADP and intracellular orthophosphate (P(i))i but the Na efflux that is stimulated to occur is coeffluxed with (P(i))i. These studies were carried out with DIDS- treated resealed red cell ghosts, suspended in buffered (NMG)2SO4, that were made to contain, in addition to other constituents, varying concentrations of ADP and P(i) together with Na2 SO4, MgSO4 and hexokinase. While neither ADP nor P(i) was effective alone, ouabain- sensitive uncoupled Na efflux, (measured with 22Na) could be activated by [ADP+P(i)] where the K0.5 for ADP in the presence of 10 mmol (P(i))i/liter ghosts was 100-200 mumol/liter ghosts and the K0.5 for (P(i))i, in the presence of 500 mumol ADP/liter ghosts was 3-4 mmol/liter ghosts. [ADP+P(i)] activation of this Na efflux could be inhibited by as little as 2 mumol ATP/liter ghosts but the inhibition could be relieved by the addition of 50 mM glucose, given entrapped hexokinase. While ouabain-sensitive Na efflux was found to be coeffluxed with P(i) (measured with entrapped [32P]H3PO4), this was not so for SO4 (measured with 35SO4). The stoichiometry of Na to P(i) efflux was found to be approximately 2 to 1. Na efflux as well as (P(i))i efflux were both inhibited by 10 mM Nao (K0.5 approximately equal to 4 mM). But, whereas 20 mM Ko (K0.5 approximately equal to 6 mM) inhibited the efflux of (P(i))i, as would be expected from previous work, Na efflux was actually increased. When Ko influx was measured in this situation there was a 1 for 1 exchange of Nai for Ko, that is, of course, downhill with respect to the gradient of each ion. Surprisingly AsO4 was unable to replace P(i) for activation of Na efflux but Na efflux could be inhibited by vanadate and oligomycin. In terms of mechanism, it is likely that ADP acts to promote the formation of the phosphoenzyme (EP) by (P(i))i that would otherwise be inhibited by Nai.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Magnesium efflux in dialyzed squid axons   总被引:4,自引:2,他引:2       下载免费PDF全文
The efflux of Mg++ from squid axons subject to internal solute control by dialysis is a function of ionized [Mg], [Na], [ATP], and [Na]o. The efflux of Mg++ from an axon with physiological concentrations of ATP, Na, and Mg inside into seawater is of the order of 2-4 pmol/cm2s but this efflux is strongly inhibited by increases in [Na]i, by decreases in [ATP]i, or by decreases in [Na]o. The efflux of Mg++ is largely independent of [Mg]i when ATP is at physiological levels, but in the absence of ATP reaches half the value of Mg efflux in be presence of ATP when [Mg]i is about 4 mM and [Na] 40 mM. Half-maximum responses to ATP occur at about 350 micronM ATP into seawater with Na either present or absent. The Mg efflux mechanism has many similarities to the Ca efflux system in squid axons especially with respect to the effects of ATP, Nao, and Na on the flux. The concentrations of free Mg and Ca in axoplasm differ, however, by a factor of 10(5) while the observed fluxes differ by a factor of 10(2).  相似文献   

12.
The effect of external and internal K+ on Na+o-dependent Ca2+ efflux was studied in dialyzed squid axons under constant membrane potential. With axons clamped at their resting potentials, external K+ (up to 70 mM) has no effect on Na+-Ca2+ exchange. Removal of Ki+ causes a marked inhibition in the Na+o-dependent Ca2+ efflux component. Internal K+ activates the Na+-Ca2+ exchange with low affinity (K 1/2 = 90 mM). Activation by Ki+ is similar in the presence or in the absence of Na+i, thus ruling out a displacement of Na+i from its inhibitory site. Axons dialyzed with ATP also show a dependency of Ca2+ efflux on Ki+. The present results demonstrate that Ki+ is an important cofactor (partially required) for the proper functioning of the forward Na+-Ca2+ exchange.  相似文献   

13.
Increasing free intracellular Ca (Cai) from less than 0.1 microM to 10 microM by means of A23187 activated Ca-stimulated K transport and inhibited the Na-K pump in resealed human red cell ghosts. These ghosts contained 2 mM ATP, which was maintained by a regenerating system, and arsenazo III to measure Cai. Ca-stimulated K transport was activated 50% at 2-3 microM free Cai and the Na-K pump was inhibited 50% by 5-10 microM free Cai. Free Cai from 1 to 8 microM stimulated K efflux before it inhibited the Na-K pump, dissociating the effect of Ca on the two systems. 3 microM trifluoperazine inhibited Ca-stimulated K efflux and 0.5 mM quinidine reduced Na-K pumping by 50%. In other studies, incubating fresh intact cells in solutions containing Ca and 0.5 microM A23187 caused the cells to lose K heterogeneously. Under the same conditions, increasing A23187 to 10 microM initiated a homogeneous loss of K. In ATP-deficient ghosts containing Cai equilibrated with A23187, K transport was activated at the same free Cai as in the ghosts containing 2 mM ATP. Neither Cao nor the presence of an inward Ca gradient altered the effect of free Cai on the permeability to K. In these ghosts, transmembrane interactions of Na and K influenced the rate of Ca-stimulated K efflux independent of Na- and K-induced changes in free Cai or sensitivity to Cai. At constant free Cai, increasing Ko from 0.1 to 3 mM stimulated K efflux, whereas further increasing Ko inhibited it. Increasing Nai at constant Ki and free Cai markedly decreased the rate of efflux at 2 mM Ko, but had no effect when Ko was greater than or equal to 20 mM. These transmembrane interactions indicate that the mechanism underlying Ca-stimulated K transport is mediated. Since these interactions from either side of the membrane are independent of free Cai, activation of the transport mechanism by Cai must be at a site that is independent of those responsible for the interaction of Na and K. In the presence of A23187, this activating site is half-maximally stimulated by approximately 2 microM free Ca and is not influenced by the concentration of ATP. The partial inhibition of Ca-stimulated K efflux by trifluoperazine in ghosts containing ATP suggests that calmodulin could be involved in the activation of K transport by Cai.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
This study is concerned with Na/K pump-mediated phosphate efflux that occurs during uncoupled Na efflux in human red blood cells. Uncoupled Na efflux is known to be a ouabain-sensitive mode of the Na/K pump that occurs in the absence of external Nao and Ko. Because this efflux (measured with 22Na) is also inhibited by 5 mM Nao, the efflux can be separated into a Nao-sensitive and a Nao-insensitive component. Previous work established that the Nao-sensitive efflux is actually comprised of an electroneutral coefflux of Na with cellular anions, such as SO4 (as 35SO4). The present work focuses on the Nao-insensitive component in which the principal finding is that orthophosphate (P(i)) is coeffluxed with Na in a ouabain-sensitive manner. This P(i) efflux can be seen to occur, in the absence of Ko, in both DIDS-treated intact cells and resealed red cell ghosts. This efflux of P(i) was shown to be derived directly from the pump's substrate, ATP, by the use of resealed ghosts made to contain both ATP and P(i) in which either the ATP or the P(i) were labeled with, respectively, [gamma-32P]ATP or [32P]H3PO4. (These resealed ghosts also contained Na, Mg, P(i), SO4, Ap5A, as well as an arginine kinase/creatine kinase nucleotide regenerating system for the control of ATP and ADP concentrations, and were suspended usually in (NMG)2SO4 at pH 7.4.) It was found that 32P was only coeffluxed with Na when the 32P was contained in [gamma-32P]ATP and not in [32P]H3PO4. This result implies that the 32P that is released comes from ATP via the pump's phosphointermediate (EP) without commingling with the cellular pool of P(i). Ko (as K2SO4) inhibits this 32P efflux as well as the Nao-sensitive 35SO4 efflux, with a K0.5 of 0.3-0.4 mM. The K0.5 for inhibition of P(i) efflux by Ko is not influenced by Nao, nor can Nao act as a congenor for Ko in any of the flux reactions involving Ko. The stoichiometry of Na to SO4 and Na to P(i) efflux is approximately 2:1 under circumstances where the stoichiometry of Na effluxed to ATP utilized is 3:1. From these and other results reported, it is suggested that there are two types of uncoupled Na efflux that differ from each other on the basis of their sensitivity to Nao, the source (cellular vs substrate) and kind of anion (SO4 vs P(i)) transported.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The sarcoplasmic reticulum (SR) of cardiac myocytes loses Ca during rest. In the present study, we estimated the rest-dependent unidirectional Ca efflux from the SR in intact rabbit and rat ventricular myocytes. We determined the time course of depletion of the SR Ca content (assessed as the amount of Ca released by caffeine) after inhibition of the SR Ca-ATPase by thapsigargin. Before rest intervals in Na-containing, Ca-free solution, a 3-min preperfusion with 0Na,0Ca solution was performed to deplete Nai but keep the SR Ca content constant. The decrease in Nai should stimulate Ca efflux via Na/Ca exchange when Nao is reintroduced. Thapsigargin treatment was limited to the last 2 min of preperfusion with 0Na,0Ca solution to minimize SR Ca loss before addition of Na, while attaining complete block of the SR Ca pump. Total SR Ca content was estimated from the [Ca]i transient evoked by caffeine, taking into account passive cellular Ca buffering. The time constants for SR Ca loss after thapsigargin were 385 and 355 s, whereas the pre-rest SR Ca content was estimated to be 106 and 114 microM (mumol/l nonmitochondrial cell volume) in rabbit and rat myocytes, respectively. The unidirectional Ca efflux from the SR was similar in the two cell types (rabbit: 0.27 microM s-1; rat: 0.32 microM s-1). These values are also comparable with that estimated from elementary Ca release events ("Ca sparks," 0.2-0.8 microM s-1). Thus, resting leak of Ca from SR may be primarily via occasional openings of SR Ca release channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Ca influx has been studied in squid axons under internal dialysis control. In axons dialyzed with "normal" physiological conditions (Nai = 40-50 mM, Cai2+ = 0.06-0.1 microM, ATP = 2 mM, Ki = 310 mM), 70% of the resting Ca influx is sensitive to external TTX (K0.5 congruent to 5 nM), 20% of it can be accounted by the reversal of the Na-Ca exchange, and the remaining fraction (10%) is insensitive to TTX, D-600, and Nai. The Ca antagonic drug D-600 (50-100 microM) has an inhibitory effect on the resting Ca influx. This compound was found to affect both the TTX sensitive and the Nai-dependent Ca influx components. In the presence of Nai and ATP, Cai2+ activates the carrier mediated Ca entry (Nai-dependent Ca influx). Most of the activation occurs in the submicromolar range of Cai2+ concentrations (K0.5 congruent to 0.6 microM). In the absence of Nai and/or ATP, no activation of Ca influx by Cai2+ was found up to about 5 microM Cai2+. Prolonged depolarization with high Ko causes an increase in Ca influx sustained for long time (minutes). Depolarizing the axons by removing Ki causes the same effect. This depolarization-induced Ca entry was only observed in axons containing Nai. In the absence of Nai, Ca influx decreases with increasing Ko. The activation of the carrier mediated Ca entry (electrogenic Na/Ca exchange) by membrane depolarization was found to be markedly dependent on the magnitude of Ca2+ i. Increasing the magnitude of Ca2+ i from 0.1 to 0.6 microM causes a ten fold increase in the extra Ca influx induced by a K-depolarization.  相似文献   

17.
The effect on Na+ efflux of removal of intracellular Mg2+ was studied in squid giant axons dialyzed without internal Ca2+. In the absence of Mg2i+, ATP was unable to stimulate any efflux of Na+ above the baseline of about 1 pmol . cm-2 . s-1. This behavior was observed in otherwise normal axons and in axons poisoned with 50 microM strophanthidin in the sea water. Reinstatement of 4 mM MgCl2 in excess to ATP in the dialysis solution brought about the usual response of Na+ efflux to ATP, external K+ and strophanthidin. The present experiments show that, regardless of the mechanism for the ATP-dependent Na+ efflux in strophanthidin-poisoned axons, this type of flux shares with the active Na+ extrusion the need for the simultaneous presence of intracellular ATP and Mg2+.  相似文献   

18.
The effect of intracellular (i) and extracellular (o) Na+ on pre-steady-state transient current associated with Na+/Na+ exchange by the Na+/K+ pump was investigated in the vegetal pole of Xenopus oocytes. Current records in response to 40-ms voltage pulses from -180 to +100 mV in the absence of external Na+ were subtracted from current records obtained under Na+/Na+ exchange conditions. Na+-sensitive transient current and dihydroouabain-sensitive current were equivalent. The quantity of charge moved (Q) and the relaxation rate coefficient (ktot) of the slow component of the Nao+-sensitive transient current were measured for steps to various voltages (V). The data were analyzed using a four-state kinetic model describing the Na+ binding, occlusion, conformational change, and release steps of the transport cycle. The apparent valence of the Q vs. V relationship was near 1.0 for all experimental conditions. When extracellular Na+ was halved, the midpoint voltage of the charge distribution (Vq) shifted -25.3+/-0.4 mV, which can be accounted for by the presence of an extracellular ion-well having a dielectric distance delta=0.69+/-0.01. The effect of changes of Nai+ on Nao+-sensitive transient current was investigated. The midpoint voltage (Vq) of the charge distribution curve was not affected over the Nao+ concentration range 3.13-50 mM. As Nai+ was decreased, the amount of charge measured and its relaxation rate coefficient decreased with an apparent Km of 3.2+/-0.2 mM. The effects of lowering Nai+ on pre-steady-state transient current can be accounted for by decreasing the charge available to participate in the fast extracellular Na+ release steps, by a slowly equilibrating (phosphorylation/occlusion) step intervening between intracellular Na+ binding and extracellular Na+ release.  相似文献   

19.
The relative magnitudes and functional significance of Ca extrusion by Na-Ca exchange and by an Nao-independent mechanism were investigated in monolayer cultures of chick embryo ventricular cells. Abrupt exposure of cells in 0-Nao, nominally 0-Cao solution to 20 mM caffeine produced a large contracture (3.94 +/- 0.90 micron of cell shortening) that relaxed with a t1/2 of 8.60 +/- 1.22 s. An abrupt exposure to caffeine plus 140 mM Na resulted in a contracture that was smaller in amplitude (1.53 +/- 0.50 micron) and relaxed much more rapidly (t1/2 = 0.77 +/- 0.09 s). An abrupt exposure to caffeine in 0-Nao solutions produced an increase in 45Ca efflux that persisted for 20 s, and a net loss of Ca content, determined by atomic absorption spectroscopy (AAS), of approximately 4 nmol/mg protein, within 35 s. A comparable net loss of Ca was demonstrated in the presence of 100 microM [Ca]o. The abrupt exposure of cultured cells to 0 Nao in 1.8 mM Ca produced a Ca uptake, estimated with 45Ca, of 3.2 nmol/mg protein X 15 s, but produced no increase in cell Ca content (AAS). In cells in which a 30% increase in Nai was produced by 5 min exposure to 10(-6) M ouabain, the abrupt exposure to 0 Nao produced a Ca uptake of 6 nmol/mg protein X 15 s and an increase in Ca content (AAS) of 4 nmol/mg protein. We conclude that there is an Nao-independent mechanism for Ca extrusion in these cells, presumably a Ca-ATPase Ca pump, with a limited Ca transport capacity of no more than 2 nmol/mg protein X 15 s. This is five times smaller than the demonstrated maximum capacity of the Na-Ca exchanger in these cells. The relaxation of twitch tension in these cells seems to be dependent primarily on sarcoplasmic reticulum uptake of Ca, with a secondary role provided by the Na-Ca exchanger. The Ca pump appears to contribute little to beat-to-beat relaxation.  相似文献   

20.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号