首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Summary To develop a strategy for extended primary culture of human hepatocytes, we placed human hepatocytes between two layers of collagen gel, called a “collagen gel sandwich.” Maintenance of hepatocellular functions in this system was compared with that of identical hepatocyte preparations cultured on dry-collagen coated dishes or co-cultured with rat liver epithelial cells. Human hepatocytes in a collagen gel sandwich (five separate cultures) survived for more than 4 wk, with the longest period of culture being 78 d. They maintained polygonal morphology with bile canaliculuslike structures and high levels of albumin secretion throughout the period of culture. In contrast, hepatocytes on dry-collagen became feature-less, and albumin secretion could not be detected after 14 d of culture. This loss of albumin secretion was partially recovered by overlaying one layer of collagen gel. Ethoxyresorufin O-deethylase activity, associated with cytochrome P450 1A2, was detected basally up to 29 d in collagen gel sandwich culture. These activities were induced four- to eightfold after induction with dibenz(a,h)anthracene. Cocultures also maintained basal activity up to 29 d. However, their inducibility was lower than that of hepatocytes in collagen gel sandwich. No ethoxyresorufin O-deethylase activity was detected in hepatocytes cultured on dry-collagen at 7 d. Thus, the collagen gel sandwich system preserves differentiated morphology and functions of human hepatocytes in primary culture for a prolonged period of time. This system is a promising model for studying human hepatocellular function, including protein synthesis and drug metabolism in vitro.  相似文献   

2.
Hepatocyte behavior within three-dimensional porous alginate scaffolds   总被引:14,自引:0,他引:14  
A potential approach to facilitate the performance of implanted hepatocytes is to enable their aggregation and re-expression of their differentiated function prior to implantation. Here we examined the behavior of freshly isolated rat adult hepatocytes seeded within a novel three-dimensional (3-D) scaffold based on alginate. The attractive features of this scaffold include a highly porous structure (sponge-like) with interconnecting pores, and pore sizes with diameters of 100-150 microm. Due to their hydrophilic nature, seeding hepatocytes onto the alginate sponges was efficient. DNA measurements showed that the total cell number within the sponges did not change over 2 weeks, indicating that hepatocytes do not proliferate under these culture conditions. Nearly all seeded cells maintained viability, according to the MTT assay. Within 24 h post-seeding, small clusters of viable cells, were seen scattered within the sponge. More than 90% of the seeded cells participated in the aggregation; the high efficiency is attributed to the non-adherent nature of alginate. The spheroids had smooth boundaries and by day 4 in culture reached an average diameter of 100 microm, which is at the same magnitude of the sponge pore size. The cells appeared to synthesize fibronectin which was deposited on the spheroids. No laminin or collagen type IV were detected in the deposit. The 3-D arrangement of hepatocytes within the alginate sponges promoted their functional expression; within a week the cells secreted the maximal albumin secretion rate of 60 microg albumin/10(6) cells/day. Urea secretion rate did not depend on cell aggregation and was similar to that obtained when hepatocytes were cultured on collagen type I coated dishes (100 microg/10(6) cells/day). Our studies show that alginate sponges can provide a conducive environment to facilitate the performance of cultured hepatocytes by enhancing their aggregation.  相似文献   

3.
Abstract. Extracellular matrices, like collagen layers, play an important role in preventing dedifferentiation of hepatocytes in long-term culture experiments. It has also been shown that polyamines are crucial for cell growth and liver differentiation – regeneration. Primary cultured hepatocytes with their low mitotic activity might be a valuable tool in studying the role of polyamines in differentiation. Here, our goal was to investigate whether an extracellular cell culture matrix can influence intracellular polyamine levels in human hepatocytes during long-term culture. Primary human hepatocytes were isolated from surgical tissue resections and were maintained either in single collagen (SG) or double collagen gel (DG) layer (sandwich) culture systems. Cell viability and function were examined and intracellular polyamine levels were measured using a highly sensitive high performance liquid chromatography (HPLC) method. Hepatocytes showed high viability in both culture systems used, but albumin secretion was diminished in SG cultured hepatocytes after 14 days. In general, total intracellular polyamine levels of hepatocytes decreased markedly in both SG and DG within the first days of culture, but remained constant until day 21 with a SG/DG ratio of about 1.4. Individual polyamines levels were dependent on the culture time and system, where spermine decreased and putrescine increased in both SG and DG over time (day 14), but spermidine increased only in DG. Our results suggest that polyamine levels, in particular putrescine, might be important regulators of hepatocyte specific function in vitro and therefore serve as a marker of differentiation for cultivated human hepatocytes.  相似文献   

4.
In vitro drug testing requires long‐term maintenance of hepatocyte liver specific functions. Hepatocytes cultured at a higher seeding density in a sandwich configuration exhibit an increased level of liver specific functions when compared to low density cultures due to the better cell to cell contacts that promote long term maintenance of polarity and liver specific functions. However, culturing hepatocytes at high seeding densities in a standard 24‐well plate poses problems in terms of the mass transport of nutrients and oxygen to the cells. In view of this drawback, we have developed a polydimethylsiloxane (PDMS) bioreactor that was able to maintain the long‐term liver specific functions of a hepatocyte sandwich culture at a high seeding density. The bioreactor was fabricated with PDMS, an oxygen permeable material, which allowed direct oxygenation and perfusion to take place simultaneously. The mass transport of oxygen and the level of shear stress acting on the cells were analyzed by computational fluid dynamics (CFD). The combination of both direct oxygenation and perfusion has a synergistic effect on the liver specific function of a high density hepatocyte sandwich culture over a period of 9 days. Biotechnol. Bioeng. 2013; 110: 1663–1673. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Dedifferentiation of primary hepatocytes in vitro makes their application in long‐term studies difficult. Embedding hepatocytes in a sandwich of extracellular matrix is reported to delay the dedifferentiation process to some extent. In this study, we compared the intracellular proteome of primary mouse hepatocytes (PMH) in conventional monolayer cultures (ML) to collagen sandwich culture (SW) after 1 day and 5 days of cultivation. Quantitative proteome analysis of PMH showed no differences between collagen SW and ML cultures after 1 day. Glycolysis and gluconeogenesis were strongly affected by long‐term cultivation in both ML and SW cultures. Interestingly, culture conditions had no effect on cellular lipid metabolism. After 5 days, PMH in collagen SW and ML cultures exhibit characteristic indications of oxidative stress. However, in the SW culture the defense system against oxidative stress is significantly up‐regulated to deal with this, whereas in the ML culture a down‐regulation of these important enzymes takes place. Regarding the multiple effects of ROS and oxidative stress in cells, we conclude that the down‐regulation of these enzymes seem to play a role in the loss of hepatic function observed in the ML cultivation. In addition, enzymes of the urea cycle were clearly down‐regulated in ML culture. Proteomics confirms lack in oxidative stress defense mechanisms as the major characteristic of hepatocytes in monolayer cultures compared to sandwich cultures. J. Cell. Biochem. 119: 447–454, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
Several bioartificial liver devices have been developed as temporary therapy for patients suffering from fulminant hepatic failure. Some of these devices contain porcine hepatocytes entrapped in collagen matrices. In order to improve the function of these BAL devices, there exists a need to optimize metabolic function of cultured hepatocytes. The goal of these investigations was to evaluate the effect of altering culture conditions on rifampin-mediated induction of CYP3A isoforms in cultured porcine hepatocytes. Midazolam metabolism was compared in porcine hepatocytes cultured in a monolayer configuration on collagen gels, in a sandwich configuration between collagen gels and a Matrigel overlay, and in spheroidal cultures. The effect of culture conditions was evaluated, by measuring CYP3A-mediated metabolism of midazolam and by immunoblotting to detect CYP3A proteins, in control cultures and in rifampin-treated cultures. Results obtained by normalizing the metabolism rate data to cell numbers (based on DNA content) present at the end of the culture experiment, showed that there was no difference between the different culture conditions tested. Our results suggest that culturing porcine hepatocytes as spheroids or in a sandwich configuration between collagen and Matrigel, offers no advantage in terms of CYP3A-mediated metabolic function on a per cell basis compared to culturing on collagen gels.  相似文献   

7.
Exploring the cell biology of hepatocytes in vitro could be a powerful strategy to dissect the molecular mechanisms underlying the structure and function of the liver in vivo. However, this approach relies on appropriate in vitro cell culture systems that can recapitulate the cell biological and metabolic features of the hepatocytes in the liver whilst being accessible to experimental manipulations. Here, we adapted protocols for high-resolution fluorescence microscopy and quantitative image analysis to compare two primary hepatocyte culture systems, monolayer and collagen sandwich, with respect to the distribution of two distinct populations of early endosomes (APPL1 and EEA1-positive), endocytic capacity, metabolic and signaling activities. In addition to the re-acquisition of hepatocellular polarity, primary hepatocytes grown in collagen sandwich but not in monolayer culture recapitulated the apico-basal distribution of EEA1 endosomes observed in liver tissue. We found that such distribution correlated with the organization of the actin cytoskeleton in vitro and, surprisingly, was dependent on the nutritional state in vivo. Hepatocytes in collagen sandwich also exhibited faster kinetics of low-density lipoprotein (LDL) and epidermal growth factor (EGF) internalization, showed improved insulin sensitivity and preserved their ability for glucose production, compared to hepatocytes in monolayer cultures. Although no in vitro culture system can reproduce the exquisite structural features of liver tissue, our data nevertheless highlight the ability of the collagen sandwich system to recapitulate key structural and functional properties of the hepatocytes in the liver and, therefore, support the usage of this system to study aspects of hepatocellular biology in vitro.  相似文献   

8.
Cultures of primary hepatocytes from various species, including human, are used in several applications during pre-clinical drug development. Their use is however limited by cell survival and conservation of liver-specific functions in vitro. The differentiation status of hepatocytes in culture strongly depends on medium formulation and the extracellular matrix environment. We incubated primary rat hepatocytes for 10 days on collagen monolayer and in collagen sandwich cultures with or without serum. Restoration of polygonal cell shape and formation of functional bile canaliculi-like structures was stable only in serum-free sandwich cultures. Variations in general cell viability, as judged by the cellular ATP content, LDH release or apoptosis, were less pronounced between alternative cultures. The intracellular glutathione content was preserved close to in vivo levels especially in serum-free sandwich cultures. Basal activities of cytochrome P450 enzymes (P450) varied strongly between cultures. There was a minor effect on CYP1A but CYP2B activity was only detectable in the serum-free sandwich culture after 3 days and beyond. CYP2C activity was slightly elevated in both sandwich cultures, whereas CYP3A showed increased levels in both serum-free cultures. Inducibility of these P450s was fully maintained over time in serum-free collagen sandwich only. Gene expression was largely constant over time in serum-free sandwich cultures that was closest to liver. This liver-like property was supported by protein profiling results. Taken together, the serum-free collagen sandwich culture of primary rat hepatocytes maintained liver-like features over 10 days and is therefore a suitable model for long-term toxicity and drug-drug interaction studies.  相似文献   

9.
Current methods of cryopreservation of hepatocytes in single cell suspensions result in low overall yields of hepatocytes, demonstrating long-term preservation of hepatocellular functions. A novel culture method has recently been developed to culture liver cells in a sandwich configuration of collagen layers in order to stabilize the phenotypic expression of these cells in vitro (J. C. Y. Dunn, M. L. Yarmush, H. G. Koebe, and R. G. Tompkins, FASEB J. 3, 174, 1989). Using this culture system, rat hepatocytes were frozen with 15% (v/v) Me2SO to -70 degrees C, and stored at approximately -100 degrees C. Following rapid thawing, long-term function was assessed by measuring albumin secretion in culture for 7-14 days postfreezing. Comparison was made with cryopreservation of liver cells in single cell suspensions. Cryopreservation of liver cells in suspension resulted in only a 2% yield of cells which could be successfully cultured; albumin secretion rates in these cultured cells over 48 hr were 26-30% of secretion rates for nonfrozen hepatocytes. Freezing cultured liver cells in the sandwich configuration after 3, 7, and 11 days in culture maintained 0, 26, and 19% of the secretion rates of nonfrozen hepatocytes, respectively. Morphology of the cryopreserved cells appeared grossly similar to cells without freezing; however, this morphological result was patchy and represented approximately 30% of the cells in culture. These results represent the first demonstration of any quantitative long-term preservation of hepatocellular function by cryopreservation, suggesting that cultured hepatocytes can survive freezing and maintain function.  相似文献   

10.
Primary cultured rat hepatocytes in a membrane-supported collagen sandwich maintained their normal cell morphology and high level of albumin secretion for over 56 days. It was found that the existence of an upper layer of collagen gel is crucial for long-term culture and that the transference of cellular nutrients between the culture media and hepatocytes from both the upper and the lower sides of gel layers promotes albumin secretion. These facts suggest that the membrane-supported collagen sandwich mimics well thein vivo environment of hepatocytes. This method has great potential for the long-term culture of primary cells.  相似文献   

11.

Background  

Isolated hepatocytes removed from their microenvironment soon lose their hepatospecific functions when cultured. Normally hepatocytes are commonly maintained under limited culture medium supply as well as scaffold thickness. Thus, the cells are forced into metabolic stress that degenerate liver specific functions. This study aims to improve hepatospecific activity by creating a platform based on classical collagen sandwich cultures.  相似文献   

12.
13.
In order to examine their potential for use in a bioartificial liver, hepatocytes maintained in a collagen sandwich configuration were cultured for 9 days in heparinized rat plasma. The cells exhibited a progressive accumulation of cytoplasmic lipid droplets which proved to be mainly triglyceride (TG). The rate of TG accumulation correlated with the free fatty acid (FFA) content of the plasma. Removal of FFA and TG from plasma by ether extraction significantly reduced the rate and extent of TG accumulation. A smaller reduction in the rate and extent of TG accumulation was observed when cells were maintained in an oxygen enriched environment. The lipid accumulation suppressed urea synthesis, but clearance of the drug diazepam, although constitutively depressed in plasma, appeared unaffected by the accumulation. The functional and morphological effects of plasma exposure could be fully reversed after at least 6 days of plasma exposure by returning the cells to culture medium.The results indicate that elevated FFA in plasma induces lipid accumulation, which inhibits urea synthesis in cultured hepatocytes. This suggests that estimates of the cell number needed for effective liver support should not be based upon function measurements conducted in culture media. Furthermore, optimization of bioartificial liver support device use may have to be governed by the need to limit the plasma exposure of cultured hepatocytes. However, the highly responsive nature of these cultures and the reversibility of the plasma effects suggest that the collagen sandwich culture system is a promising foundation for the development of an effective bioartificial liver support system. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
In an effort to reconstruct the cellular polarity normally found in the liver, adult rat hepatocytes were sandwiched between two layers of hydrated rat tail tendon collagen matrix. Functionally, sandwiched hepatocytes maintained the secretion of albumin, transferrin, fibrinogen, bile acids, and urea for at least 6 weeks, whereas cells cultured on a single layer of collagen gel ceased such secretion in 1-2 weeks. After 1 week of culture on a single layer of collagen gel, hepatocytes could still recover these lost functions when a second layer of collagen gel was applied. The exact nature of the substrate for constructing the sandwich system appeared to be unimportant as long as it allowed cellular attachment. Hepatocytes cultured in the sandwich system appeared to maintain a distribution of actin filaments similar to the in vivo state, whereas cells cultured on a single layer of collagen gel showed abnormal formation of stress fibers. These studies suggest that simple manipulations of the configuration of extracellular elements can dramatically alter the behavior of cultured hepatocytes.  相似文献   

15.
The cytoskeleton is important in the maintenance of cellular morphology and differentiated function in a number of cell types, including hepatocytes. In this study, adult rat hepatocytes sandwiched between two layers of collagen gel were compared to cells cultured on a single collagen gel for differences in the organization and expression of the cytoskeletal proteins actin and tubulin. Hepatocytes cultured between two layers of hydrated rat tail tendon collagen (sandwich gel) morphologically resembled cells in intact liver for several weeks. Actin filaments (F-actin) in these hepatocytes were concentrated under the plasma membrane in regions of cell-cell contact. In contrast, hepatocytes cultured on a single collagen gel were flattened and motile and had F-actin containing stress fibers. This was accompanied by a severalfold increase in actin mRNA. Microtubules formed an interwoven network in hepatocytes cultured in a sandwich gel, but in single gel cultures they formed long parallel arrays extending out to the cell periphery. Tubulin mRNA was severalfold greater in hepatocytes cultured on a single gel. Fibronectin and laminin staining were greater in single gel cultures, and these proteins were concentrated in fibrils radiating from the cell periphery. Overlaying a second collagen gel onto hepatocytes that had been cultured on a single gel (double gel rescue) reversed cell spreading and reduced stress fibers. Double gel rescue also resulted in a decrease in actin and tubulin mRNA to levels present in sandwich gel cultures and freshly isolated hepatocytes. These results show that the configuration of the external matrix has a dynamic effect on cytoskeletal proteins in cultured rat hepatocytes.  相似文献   

16.
For long-term maintenance of functional hepatocytes in primary culture, a new culture system with chemically modified type-I collagen gel was developed. Isolated hepatocytes spread as flat cells and rapidly lost their viability and functions when cultured on native collagen gel. In contrast, they survived for several weeks when cultured on collagen gels that had been modified by treatment with sodium-borohydride (NaBH4) or by digestion with pepsin, which resulted in destruction of crosslinking of collagen fibers and marked decrease in meachanical strength of the gels. These long-lived cells were round and aggregated and maintained high levels of various differentiated liver functions including albumin secretion and activities of tyrosine aminotransferase and P450. Moreover on collagen gels modified by treatment with NaBH4 or pepsin, the cell showed less DNA synthesis in response to mitogenic stimulation than cells cultures on gel containing native collagen. Interestingly, crosslinking of these chemically modified gels with D-ribose resulted in changes in various phenotypes of hepatocytes cultures on them including shape, longevity, and functions expressed when the cells were cultured on native collagen gel, suggesting that the effect of modification of the collagen gel is reversible. Thus the structure of collagen gels, probably due to the degree of crosslinking, seems to affect the morphology, maintenance of differentiated functions, and growth of primary cultured hepatocytes.  相似文献   

17.
L-Proline supplementation of the medium for collagen gel cultures of hepatocytes has been shown to improve albumin secretion. A study was made as to whether L-proline is also essential for the maintenance of xenobiotic biotransformation capacities in collagen gel sandwich and immobilisation cultures of rat and human hepatocytes. Key phase I (cytochrome P450-dependent monooxygenase [CYP)] and microsomal epoxide hydrase [mEH]) and phase II (glutathione S-transferase [GST]) biotransformation enzyme activities and the secretion of albumin in the culture medium were assessed in the absence and presence of L-proline. CYP and mEH activities were not affected by the addition of L-proline, whereas phase II alpha-Class GST activity of rat hepatocytes in collagen cultures was decreased. Species differences were demonstrated, as human hepatocytes showed a better maintenance of GST activities than their rat counterparts in the presence of L-proline. Albumin secretion, often considered to be a marker for differentiated cell function, does not parallel the biotransformation capacities of the hepatocytes in culture. Additional results demonstrated an L-proline-mediated enhancement of the proliferation rate of contaminating stellate cells in conventional monolayer culture. Transdifferentiation of stellate cells to proliferating myofibroblasts, along with an increased albumin secretion and collagen synthesis, are characteristic of fibrotic liver. Since the last two phenomena have been observed in L-proline-supplemented collagen gel cultures, it can be concluded that when stable collagen gel cultures of rat hepatocytes are needed for long-term pharmacotoxicological studies, it is preferable to use an L-proline-free culture medium. Further studies on medium optimisation are required for hepatocytes from species other than rat.  相似文献   

18.
《Autophagy》2013,9(12):2154-2155
Freshly isolated, depolarized rat hepatocytes can repolarize into bile canalicular networks when plated in collagen sandwich cultures. We studied the events underlying this repolarization process, focusing on how hepatocytes restore ATP synthesis and resupply biosynthetic precursors after the stress of being isolated from liver. We found that soon after being plated in collagen sandwich cultures, hepatocytes converted their mitochondria into highly fused networks. This occurred through a combination of upregulation of mitochondrial fusion proteins and downregulation of a mitochondrial fission protein. Mitochondria also became more active for oxidative phosphorylation, leading to overall increased ATP levels within cells. We further observed that autophagy was upregulated in the repolarizing hepatocytes. Boosted autophagy levels likely served to recycle cellular precursors, supplying building blocks for repolarization. Repolarizing hepatocytes also extensively degraded lipid droplets, whose fatty acids provide precursors for β-oxidation to fuel oxidative phosphorylation in mitochondria. Thus, through coordination of mitochondrial fusion, autophagy, and lipid droplet consumption, depolarized hepatocytes are able to boost ATP synthesis and biosynthetic precursors to efficiently repolarize in collagen sandwich cultures.  相似文献   

19.

Background

In farm animals, there is no suitable cell line available to understand liver-specific functions. This has limited our understanding of liver function and metabolism in farm animals. Culturing and maintenance of functionally active hepatocytes is difficult, since they survive no more than few days. Establishing primary culture of hepatocytes can help in studying cellular metabolism, drug toxicity, hepatocyte specific gene function and regulation. Here we provide a simple in vitro method for isolation and short-term culture of functionally active buffalo hepatocytes.

Results

Buffalo hepatocytes were isolated from caudate lobes by using manual enzymatic perfusion and mechanical disruption of liver tissue. Hepatocyte yield was (5.3±0.66)×107 cells per gram of liver tissue with a viability of 82.3±3.5%. Freshly isolated hepatocytes were spherical with well contrasted border. After 24 hours of seeding onto fibroblast feeder layer and different extracellular matrices like dry collagen, matrigel and sandwich collagen coated plates, hepatocytes formed confluent monolayer with frequent clusters. Cultured hepatocytes exhibited typical cuboidal and polygonal shape with restored cellular polarity. Cells expressed hepatocyte-specific marker genes or proteins like albumin, hepatocyte nuclear factor 4α, glucose-6-phosphatase, tyrosine aminotransferase, cytochromes, cytokeratin and α1-antitrypsin. Hepatocytes could be immunostained with anti-cytokeratins, anti-albumin and anti α1-antitrypsin antibodies. Abundant lipid droplets were detected in the cytosol of hepatocytes using oil red stain. In vitro cultured hepatocytes could be grown for five days and maintained for up to nine days on buffalo skin fibroblast feeder layer. Cultured hepatocytes were viable for functional studies.

Conclusion

We developed a convenient and cost effective technique for hepatocytes isolation for short-term culture that exhibited morphological and functional characteristics of active hepatocytes for studying gene expression, regulation, hepatic genomics and proteomics in farm animals.  相似文献   

20.
Most prior studies have characterized hepatocyte proliferative responses in culture systems that do not express a stable differentiated phenotype. We investigated the DNA synthetic response of long-term stable hepatocyte cultures to growth factor stimulation as well as conditioning with nonparenchymal cells (NPCs). Primary rat hepatocytes were cultured on a single layer of collagen (h/C) or Matrigel (h/M), or in a collagen sandwich (C/h/C) or collagen-Matrigel sandwich (M/h/C). Hepatocytes were cultured for 7 days to allow phenotypic stabilization before growth factor addition, except for h/C cultures, which are unstable, where growth factors were added 1 day after seeding. Culture medium was supplemented with a mixture of hepatocyte, epidermal, and vascular endothelial growth factors and interleukin-6, either directly or after conditioning with NPCs for 24 h. Growth factors alone induced hepatocyte DNA synthesis, as measured via [3H]thymidine uptake, in the h/C, C/h/C, and M/h/C configurations. h/M exhibited very low levels of DNA synthesis. In the C/h/C and M/h/C configurations, the greatest stimulation was obtained using NPC-conditioned growth factors. This response was sustained for several days and without decreasing albumin or urea synthesis. These results suggest that hepatocyte mitogens and NPC-derived factors can stimulate DNA synthesis in stable and differentiated hepatocyte cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号