首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of swainsonine, an inhibitor of Golgi alpha-mannosidase II and lysosomal alpha-mannosidase, on the synthesis, processing, and turnover of two glycoproteins, lysosomal beta-galactosidase and lysosomal beta-glucuronidase, has been studied in cultured mouse peritoneal macrophages. No effect of the inhibitor on the relative rates of synthesis of the precursor form of either enzyme was observed. On the other hand, carbohydrate processing of beta-galactosidase and beta-glucuronidase was markedly altered by swainsonine, consistent with a blockage by the inhibitor of the removal of the alpha-1,3- and alpha-1,6-linked mannose residues which occurs in normal processing. In homogenates of both normal and swainsonine-treated cells, the precursor forms of the enzymes were found exclusively in the light membrane fraction on Percoll gradients and the mature forms exclusively in the lysosomal fractions indicating that translocation from Golgi to lysosomes and proteolytic processing in the lysosome were not impaired by the presence of abnormal oligosaccharide side chains. There was no detectable effect of swainsonine during a 4-day chase period on the total cellular turnover of these enzymes which involves two processes, secretion and degradation. In the absence of swainsonine, secretion represented about 40% of the total turnover of beta-galactosidase and about 50% with beta-glucuronidase. The presence of swainsonine increased these proportions to about 60 and 70%, respectively.  相似文献   

2.
Cultured mouse peritoneal macrophages were fractionated by two methods at various times after pulse labeling with [35S]methionine. The lysosomal enzymes beta-glucuronidase and beta-galactosidase were isolated from each fraction by immunoprecipitation and electrophoresis on sodium dodecyl sulfate-acrylamide gels. Two distinct peaks of label were obtained on Percoll density gradients. An early appearing peak of low density, containing the precursor forms of both enzymes, co-sedimented with markers for the endoplasmic reticulum, the Golgi apparatus, and the plasma membrane. With time, immunoprecipitable label cosedimented with the bulk of the lysosomal enzyme activity at high density and corresponded to the mature forms of the lysosomal enzymes. By differential centrifugation, newly synthesized enzymes were found predominantly in small particle fractions, unlike the bulk of the lysosomal enzymic activity which was found in larger particle fractions. With increasing time, newly synthesized enzymes were transferred to assume a distribution similar to that of lysosomal enzymic activity. The results suggest that transport of newly synthesized enzymes to lysosomes and conversion to mature forms are closely linked events. Conversion of lysosomal precursors to mature forms occurs either in a prelysosomal vesicle or shortly after reaching the lysosome. The two enzymes follow similar subcellular pathways at similar rates. Also, the macrophage system appears suitable for direct analysis of newly synthesized lysosomal enzymes during subcellular transport.  相似文献   

3.
Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure of function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5-fold increased concentrations of kidney beta-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney beta-galactosidase and alpha-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysosomal enzyme concentrations.--A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney beta-glucuronidase and beta-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.--These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice.  相似文献   

4.
Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.  相似文献   

5.
During transit through the epididymis, spermatozoa acquire fertilizing the cell surface exhibits an altered glycoprotein pattern. Epididymal cells and their secretions contribute to these sperm-surface changes. To examine this process, epithelial cells from rat caput and cauda epididymidis were cultured and examined for the synthesis, processing and secretion of two glycoprotein-modifying enzymes, beta-galactosidase and beta-glucuronidase. Cells were cultured four days, incubated with D-2-[3H] mannose and L-[35S] methionine, and placed in isotope-free media. Levels of both cellular and secreted beta-galactosidase and beta-glucuronidase were determined by immunoprecipitation of cell homogenates or medium, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scintillation counting of bands. During a 1-h pulse, both caput and cauda cells synthesize two precursor forms of beta-galactosidase (Mr = 84,000 and 87,000), which are processed to the mature (Mr = 63,000) enzyme during a 24-h chase. Caput cells release a high molecular weight (HMW) form (Mr = 90-100,000) and mature beta-galactosidase into the media, but not the Mr = 84-87,000 precursor. On the other hand, cauda cells release mostly mature beta-galactosidase. Ratios of radiolabeled mannose/methionine demonstrate a 7-fold greater mannose content in the cellular precursor of beta-galactosidase than in total protein. Another glycosidase, beta-glucuronidase, is synthesized as a Mr = 78,000-precursor which is processed to the mature Mr = 72,000 form. Medium in which caput and cauda cells were cultured contains both mature enzyme and a Mr = 94,000 form, but no 78,000-precursor form. Ratios of radiolabeled mannose/methionine in the cellular precursor of beta-glucuronidase are 2-fold greater than ratios in the total glycoprotein. Secretion is the major pathway of turnover for several epididymal glycosidases, since more than 50% of the total is secreted/day. These results indicate that cultured epithelial cells from the epididymis synthesize glycosidases and that processing and release differ, depending on the enzyme and the epididymal segment from which the epithelial cells were isolated.  相似文献   

6.
《The Journal of cell biology》1988,107(6):2097-2107
Lysosomal enzymes are initially synthesized as precursor polypeptides which are proteolytically cleaved to generate mature forms of the enzymatically active protein. The identification of the proteinases involved in this process and their intracellular location will be important initial steps in determining the role of proteolysis in the function and targeting of lysosomal enzymes. Toward this end, axenically growing Dictyostelium discoideum cells were pulse radiolabeled with [35S]methionine and chased in fresh growth medium containing inhibitors of aspartic, metallo, serine, or cysteine proteinases. Cells exposed to the serine/cysteine proteinase inhibitors leupeptin and antipain and the cysteine proteinase inhibitor benzyloxycarbonyl-L-phenylalanyl-L-alanine-diazomethyl ketone (Z-Phe- AlaCHN2) were unable to complete proteolytic processing of the newly synthesized lysosomal enzymes, alpha-mannosidase and beta-glucosidase. Antipain and leupeptin treatment resulted in both a dramatic decrease in the efficiency of proteolytic processing, as well as a sevenfold increase in the secretion of alpha-mannosidase and beta-glucosidase precursors. However, leupeptin and antipain did not stimulate secretion of lysosomally localized mature forms of the enzymes suggesting that these inhibitors prevent the normal sorting of lysosomal enzyme precursors to lysosomes. In contrast to the results observed for cells treated with leupeptin or antipain, Z-Phe-AlaCHN2 did not prevent the cleavage of precursor polypeptides to intermediate forms of the enzymes, but greatly inhibited the production of the mature enzymes. The accumulated intermediate forms of the enzymes, however, were localized to lysosomes. Finally, fractionation of cell extracts on Percoll gradients indicated that the processing of radiolabeled precursor forms of alpha-mannosidase and beta-glucosidase to intermediate products began in cellular compartments intermediate in density between the Golgi complex and mature lysosomes. The generation of the mature forms, in contrast, was completed immediately upon or soon after arrival in lysosomes. Together these results suggest that different proteinases residing in separate intracellular compartments may be involved in generating intermediate and mature forms of lysosomal enzymes in Dictyostelium discoideum, and that the initial cleavage of the precursors may be critical for the proper localization of lysosomal enzymes.  相似文献   

7.
The post-translational processing of beta-glucuronidase in BW5147 mouse lymphoma cells is slow relative to other newly synthesized lysosomal enzymes. To characterize this slow maturation the acid hydrolase was immunoprecipitated from cells pulse-labeled with [2-3H]mannose. Radiolabeled beta-glucuronidase migrated as the precursor form of the enzyme for up to 4 h of chase, whereas another acid hydrolase, beta-galactosidase, was processed completely to its mature form within this same time period. Both beta-glucuronidase and beta-galactosidase obtained high levels of mannose 6-phosphate (Man 6-P) within 60 min of their biosynthesis. The Man 6-P content of beta-galactosidase declined rapidly during a subsequent chase while that of beta-glucuronidase remained high during the first 4 h of chase and then slowly declined. 3H-Labeled phosphorylated high mannose-type oligosaccharides isolated from beta-glucuronidase after 1 h of chase were composed primarily of species with one or two phosphodiester groups, but oligosaccharides with one and two phosphomonoesters became the predominant phosphorylated species with longer chase times. The phosphorylated oligosaccharides attached to other newly synthesized acid hydrolases, on the other hand, contained primarily phosphodiester species at all chase times. When BW5147 cells were pulsed with [3H]mannose and chased in the presence of monensin to disrupt transport, the number of phosphorylated oligosaccharides recovered from beta-glucuronidase was comparable to the quantity recovered from the enzyme produced by non-drug-treated cells. The number of phosphorylated units recovered from all other newly synthesized acid hydrolases, however, was greater in the presence of the ionophore than in its absence. Nondenaturing gel electrophoresis studies indicated that beta-glucuronidase existed in two forms at steady state within BW5147 cells and, as such, was similar to liver beta-glucuronidase in which a large percentage of the enzyme was present as a complex bound to egasyn. These data suggest that newly synthesized beta-glucuronidase produced by BW5147 cells complexes with an egasyn-like protein within the endoplasmic reticulum. This interaction retards the enzyme's migration through the secretory apparatus but does not prevent its access to Golgi-associated processing enzymes.  相似文献   

8.
Radiolabel pulse-chase and subcellular fractionation procedures were used to analyze the transport, proteolytic processing, and sorting of two lysosomal enzymes in Dictyostelium discoideum cells treated with the weak bases ammonium chloride and chloroquine. Dictyostelium lacks detectable cation-independent mannose-6-phosphate receptors and represents an excellent system to investigate alternative mechanisms for lysosomal enzyme targeting. Exposure of growing cells to ammonium chloride, which increased the pH in intracellular vacuoles from 5.4 to 5.8-6.1, slowed but did not prevent the proteolytic processing and correct localization of pulse-radiolabeled precursors to the lysosomal enzymes alpha-mannosidase and beta-glucosidase. Additionally, ammonium chloride did not affect transport of the enzymes to the Golgi complex, as they acquired resistance to the enzyme endoglycosidase H at the same rate as in control cells. When the pH of lysosomal and endosomal organelles was raised to 6.4 with higher concentrations of ammonium chloride, the percentage of secreted (apparently mis-sorted) precursor polypeptides increased slightly, but proteolytic processing of intermediate forms of lysosomal enzymes to mature forms was greatly reduced. The intermediate and mature forms of alpha-mannosidase and beta-glucosidase did, however, accumulate intracellularly in vesicles similar in density to lysosomes. In contrast, in cells exposed to low concentrations of chloroquine the intravacuolar pH increased only slightly (to 5.7); however, enzymes were inefficiently processed and, instead, rapidly secreted as precursor molecules. Experiments involving the addition of chloroquine at various times during the chase of pulse-radiolabeled cells demonstrated that this weak base acted on a distal Golgi or prelysosomal compartment to prevent the normal sorting of lysosomal enzymes. These results suggest that although acidic endosomal/lysosomal compartments may be important for the complete proteolytic processing of lysosomal enzymes in Dictyostelium, low pH is not essential for the proper targeting of precursor polypeptides. Furthermore, certain amines may induce mis-sorting of these enzymes by pH-independent mechanisms.  相似文献   

9.
The endoplasmic reticulum-localized enzyme alpha-glucosidase II is responsible for removing the two alpha-1,3-linked glucose residues from N-linked oligosaccharides of glycoproteins. This activity is missing in the modA mutant strain, M31, of Dictyostelium discoideum. Results from both radiolabeled pulse-chase and subcellular fractionation experiments indicate that this deficiency did not prevent intracellular transport and proteolytic processing of the lysosomal enzymes, alpha-mannosidase and beta-glucosidase. However, the rate at which the glucosylated precursors left the rough endoplasmic reticulum was several-fold slower than the rate at which the wild-type precursors left this compartment. Retention of glucose residues did not disrupt the binding of the precursor forms of the enzymes with intracellular membranes, indicating that the delay in movement of proteins from the ER did not result from lack of association with membranes. However, the mutant alpha-mannosidase precursor contained more trypsin-sensitive sites than did the wild-type precursor, suggesting that improper folding of precursor molecules might account for the slow rate of transport to the Golgi complex. Percoll density gradient fractionation of extracts prepared from M31 cells indicated that the proteolytically processed mature forms of alpha-mannosidase and beta-glucosidase were localized to lysosomes. Finally, the mutation in M31 may have other, more dramatic, effects on the lysosomal system since two enzymes, N-acetylglucosaminidase and acid phosphatase, were secreted much less efficiently from lysosomal compartments by the mutant strain.  相似文献   

10.
The synthesis and secretion of beta-hexosaminidase was studied in wild type and secretion-deficient Tetrahymena thermophila cells by metabolic labelling and immunoprecipitation. beta-Hexosaminidase is synthesized as a Mr 79,000 polypeptide which is within 10 min converted into a Mr 59,000 form. The Mr 59,000 polypeptide is further processed (within 20 min) into at least three major mature forms of Mr 58,000-54,000, which are almost quantitatively secreted into the culture medium within 1-2 h after their synthesis. Both precursor and mature forms contain asparagine-linked oligosaccharide chains which are cleavable by endoglucosaminidase F, but not by endoglucosaminidase H. Neither [32P]orthophosphate nor [35S]sulphate are incorporated into immunoprecipitable precursor and mature beta-hexosaminidases, suggesting the absence of a phosphorylated recognition marker. Biosynthesis and processing of beta-hexosaminidase is apparently unaltered in the secretory mutant MS-1; however the processed polypeptides remain cellular bound in the mutant, indicating that the mutation affects a late event in the secretion pathway of lysosomal enzymes.  相似文献   

11.
[3H]Fucose, intravenously injected into androgen-treated mice, was incorporated at high rates into the immunopurified kidney lysosomal enzymes beta-glucuronidase and beta-galactosidase. Initially, label was incorporated into high molecular weight proenzyme forms. Processing of fucose-labeled proenzyme forms to lower molecular weight mature forms was very rapid, being detectable at 30 min, and complete by 90 min, compared with the several hours required for processing of lysosomal enzymes labeled with amino acids. This result is consistent with addition of fucose residues within the Golgi apparatus just before transfer of lysosomal proenzyme forms to the lysosome where maturation is thought to occur. The combination of the high rates of incorporation of [3H]fucose and the known metabolic stability of this precursor sugar suggests that the mouse kidney system is advantageous for studies of the synthesis, processing, and degradation of fucose-containing complex oligosaccharides of lysosomal enzymes and, by extension, of other kidney glycoproteins.  相似文献   

12.
The clathrin heavy chain is a major component of clathrin-coated vesicles that function in selective membrane traffic in eukaryotic cells. We disrupted the clathrin heavy chain gene (chcA) in Dictyostelium discoideum to generate a stable clathrin heavy chain- deficient cell line. Measurement of pinocytosis in the clathrin-minus mutant revealed a four-to five-fold deficiency in the internalization of fluid-phase markers. Once internalized, these markers recycled to the cell surface of mutant cells at wild-type rates. We also explored the involvement of clathrin heavy chain in the trafficking of lysosomal enzymes. Pulse chase analysis revealed that clathrin-minus cells processed most alpha-mannosidase to mature forms, however, approximately 20-25% of the precursor molecules remained uncleaved, were missorted, and were rapidly secreted by the constitutive secretory pathway. The remaining intracellular alpha-mannosidase was successfully targeted to mature lysosomes. Standard secretion assays showed that the rate of secretion of alpha-mannosidase was significantly less in clathrin-minus cells compared to control cells in growth medium. Interestingly, the secretion rates of another lysosomal enzyme, acid phosphatase, were similar in clathrin-minus and wild-type cells. Like wild-type cells, clathrin-minus mutants responded to starvation conditions with increased lysosomal enzyme secretion. Our study of the mutant cells provide in vivo evidence for roles for the clathrin heavy chain in (a) the internalization of fluid from the plasma membrane; (b) sorting of hydrolase precursors from the constitutive secretory pathway to the lysosomal pathway; and (c) secretion of mature hydrolases from lysosomes to the extracellular space.  相似文献   

13.
ABSTRACT. The proteolytic processing and secretion of a lysosomal enzyme, acid α-glucosidase, was studied by pulse-chase labeling with [35S]methionine in Tetrahymena thermophila CU-399 cells treated with ammonium chloride. This cell secreted a large amount of acid α-glucosidase into the cultured medium during starvation. the secretion was found to be repressed by addition of ammonium chloride (NH4Cl). Acid α-glucosidase was produced as a precursor form (108 kDa) and then processed to a mature polypeptide (105 kDa) within 60 min. This mature enzyme was secreted into the media within 2-3 h after chase, whereas the precursor form was not secreted by either control cells or NH4Cl-treated cells. NH4Cl did not affect the processing of the precursor acid α-glucosidase. Processing profile of this enzyme was apparently indistinguishable from that of the mutant MS-1 defective in lysosomal enzyme secretion. Furthermore, the purified extracellular (CU-399) and intracellular (MS-1) acid a-glucosidases were the same in molecular mass (105 kDa) and enzymatic properties. They contained no mannose 6-phosphate residues in N-linked oligosaccharides. These results suggested that unlike mammalian cells, Tetrahymena acid α-glucosidase may be transferred to lysosomes by a mannose 6-phosphate receptor-independent mechanism, and also that low pH was not essential for the proteolytic processing of precursor polypeptide.  相似文献   

14.
Mouse peritoneal macrophages that had been treated with a monovalent carboxylic ionophore, monensin, selectively secreted lysosomal and nonlysosomal granular enzymes into the medium. When macrophages were incubated with 1 to 10 microM monensin, the release of beta-glucuronidase, beta-hexosaminidase and beta-galactosidase was stimulated time and does dependently. Neither the beta-glucosidase nor acid phosphatase, enzymes bound to the lysosomal membranes, however, were released by monensin. Neutral alpha-glucosidase, shown recently to be localized in nonlysosomal granules of macrophages (15), was released by monensin at concentrations lower than those required for lysosomal enzyme release. Increased release of lysosomal enzymes also took place in a manner similar to that seen with monensin-treated macrophages after treatment of macrophages with weak bases, chloroquine and ammonium chloride. Neutral alpha-glucosidase, however, was not released when chloroquine was present in concentrations that stimulated the release of lysosomal enzymes. The UDP-galactosyltransferase activity of the Golgi apparatus in the macrophages markedly decreased after treatment with low concentration of monensin.  相似文献   

15.
In cultured human fibroblasts we observed that monensin, a Na+/H+-exchanging ionophore, (i) inhibits mannose 6-phosphate-sensitive endocytosis of a lysosomal enzyme, (ii) enhances secretion of the precursor of cathepsin D, while inhibiting secretion of the precursors of beta-hexosaminidase, (iii) induces secretion of mature beta-hexosaminidase and mature cathepsin D, and (iv) inhibits carbohydrate processing in and proteolytic maturation of the precursors remaining within the cells; this last effect appears to be secondary to an inhibition of the transport of the precursors. If the treated cells are transferred to a monensin-free medium, about half of the accumulated precursors are secreted, and the intracellular enzyme is converted into the mature form. Monensin blocks formation of complex oligosaccharides in lysosomal enzymes. In the presence of monensin, total phosphorylation of glycoproteins is partially inhibited, whereas the secreted glycoproteins are enriched in the phosphorylated species. The suggested inhibition by monensin of the transport within the Golgi apparatus [Tartakoff (1980) Int. Rev. Exp. Pathol. 22, 227-250] may be the cause of some of the effects observed in the present study (iv). Other effects (i, ii) are rather explained by interference by monensin with the acidification in the lysosomal and prelysosomal compartments, which appears to be necessary for the transport of endocytosed and of newly synthesized lysosomal enzymes.  相似文献   

16.
The kidney and urine glycosphingolipids of five pigmentation mutants which are known to have altered secretion of kidney lysosomal enzymes were examined. Among 34 pigmentation mutants which have been studied (Novak, E. K., Wieland, F., Jahreis, G. P., and Swank, R. T. (1980) Biochem. Genet. 18, 549-561) eight are known to have a 1.5- to 2.5-fold increase in kidney beta-glucuronidase in testosterone-treated females. These mutants appear to have defects in lysosomal processing, and because the mutations are at separate loci, each mutant probably affects different steps in assembly and/or exocytosis of lysosomes and related subcellular organelles. To test whether the neutral glycosphingolipids, galabiglycosylceramides, and globotriglycosylceramides thought to be associated with kidney lysosomes (McCluer, R. H., Williams, M. A., Gross, S. K., and Meisler, M. H. (1981) J. Biol. Chem. 256, 13112-13120) also exhibit abnormal secretion in the mutants with lysosomal enzyme abnormalities, the mutants beige-J, pale ear, light ear, pallid, and ruby eye-2-J were studied. The kidney and urine neutral glycosphingolipids from males of each mutant and C57BL/6J control mice were analyzed by high performance liquid chromatography. Beige-J, light ear, and pale ear showed marked increases in total kidney glycolipids; globotriglycosylceramides accounted for the bulk of the increase. Ruby eye-2-J showed less marked but significantly increased quantities of one galabiglycosylceramide and the globotriglycosylceramides in kidney. Pallid showed no significant increase in total kidney glycolipids but the globotriglycosylceramides appeared slightly elevated. In terms of the decrease in total urinary glycosphingolipids, the mutants fell into 2 categories. Beige-J, light ear, and pale ear were severely affected, whereas ruby eye-2-J and pallid were affected to a much lesser extent. Within the most severely affected group the excretion of the globotriglycosylceramides was more severely affected than that of the galabiglycosylceramides. The galabiglycosylceramides and globotriglycosylceramides appear to be specific markers of lysosomal membranes, but the independent behavior of these two classes of lipids during testosterone induction in normal mice and the differential effects on their secretion by different mutants indicate that they do not always exist in a characteristic ratio in a single type of subcellular organelle. All of the mutants accumulate organelles in their kidney proximal tubules which have distinct morphological characteristics as seen by electron microscopy.  相似文献   

17.
We proposed that Dictyostelium discoideum contains two linked pools of mature alpha-mannosidase (Wood, L., R. N. Pannell, and A. Kaplan, 1983, J. Biol. Chem., 258:9426-9430). To obtain physical evidence for these pools, cells were pulse-labeled with [35S]methionine, homogenized, and subjected to Percoll gradient centrifugation. After immune precipitation of alpha-mannosidase, its polypeptides were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and detected by fluorography. After a 30-min pulse with [35S]methionine, the precursor and small amounts of cleaved enzyme were detected in a low density fraction (1.04 g/ml). Subsequently, cleaved enzyme was transferred to higher density fractions (1.05 and 1.07 g/ml) that were enriched in lysosomal enzymes. The half time for formation of the 1.07 g/ml pool was approximately 45 min, whereas formation of the 1.05 g/ml pool was not detected until 1.5 h after the pulse. The transfer of mature forms out of the 1.04 g/ml pool was inhibited by monensin (3.5 microM). Thus, alpha-mannosidase precursor appears to be cleaved in a prelysosomal organelle. The data also indicate that starving cells secrete precursor directly from this organelle to the extracellular space, whereas cleaved forms are first transferred into lysosomes before they are secreted. Furthermore, 2 h after starvation, the secretion of mature forms ceases even though both transit of mature forms between the two pools and secretion of precursor continues. From this we inferred that the cessation of secretion of mature forms is due to a halt in fusion of lysosomes with the plasma membrane and that precursor follows a different route to the plasma membrane.  相似文献   

18.
Immunoelectron microscopy was performed to study the biosynthesis of lysosomal beta-galactosidase (beta-gal) in normal and mutant human fibroblasts. Using polyclonal and monoclonal antibodies we show in normal cells precursor forms of beta-gal in the rough endoplasmic reticulum (RER) and in the Golgi apparatus throughout the stack of cisternae. In the lysosomes virtually all beta-gal exists as a high molecular weight multimer of mature enzyme. In the autosomal recessive disease GM1-gangliosidosis caused by a beta-gal deficiency and in galactosialidosis, associated with a combined deficiency of lysosomal neuraminidase and beta-gal, precursor forms of the latter enzyme are found in RER, Golgi and some labeling is present at the cell surface. The lysosomes remain unlabeled, indicative for the absence of enzyme molecules in this organelle. In galactosialidosis fibroblasts also no mature beta-gal is found in the lysosomes but in these cells the presence of the monomeric form can be increased by leupeptin (inhibition of proteolysis) whereas addition of a partly purified 32 kDa "protective protein" results in the restoration of high molecular weight beta-gal multimers in the lysosomes.  相似文献   

19.
To explain the different secretion kinetics of lysosomal enzymes in Dictyostelium discoideum, previous investigators have hypothesized the existence of a heterogeneous population of lysosomes containing either the enzyme acid phosphatase or other hydrolase enzymes. This proposal predicts that at least two targeting mechanisms exist for lysosomal enzymes in this organism. To begin to investigate this possibility, the transport, processing, and targeting of acid phosphatase was studied by using a combination of radiolabel pulse-chase procedures, subcellular fractionations, and indirect immunofluorescence microscopy. Acid phosphatase was initially synthesized in axenically growing cells as a 56-kDa precursor polypeptide that was proteolytically processed after 20 min to a 55-kDa mature protein. This enzyme was rapidly transported from the endoplasmic reticulum to Golgi complex (halftime of 3 min) as measured by the acquisition of resistance to the enzyme endoglycosidase H. Furthermore, Percoll gradient fractionations indicated that radiolabeled forms of acid phosphatase reached dense lysosomal vesicles at about the same time as final processing was occurring. Proper sorting of acid phosphatase in D. discoideum apparently was not critically dependent on low intravacuolar pH since the addition of ammonium chloride did not stimulate the missorting and secretion of acid phosphatase. These results are very similar to previous observations concerning other Dictyostelium lysosomal enzymes. Consistent with the existence of a heterogeneus population of lysosomes, the percentage of radiolabeled acid phosphatase secreted 4 h into a chase period was 15-fold lower as compared with another lysosomal enzyme, beta-glucosidase. However, acid phosphatase, alpha-mannosidase, and beta-glucosidase were all predominantly colocalized as determined by indirect immunofluorescence, which for the first time demonstrates the homogeneous nature of the lysosomal system in D. discoideum. Taken together these results suggest that the processing and transport of acid phosphatase may be similar in nature to the glycosidases. However, the different kinetics of secretion of acid phosphatase versus the colocalized glycosidase enzymes suggests that an undefined mechanism operates to distinguish these classes of enzymes at a step after localization to lysosomes but prior to secretion.  相似文献   

20.
The accumulation of the relatively large amounts of beta-glucuronidase in microsomal fractions of normal mice depends on formation of complexes with the protein egasyn. Unexpectedly, it was found that the egasyn gene also affects the processing of beta-glucuronidase, which is segregated to lysosomes. In egasyn-positive mice lysosomal beta-glucuronidase from liver has a mean pI of 5.9 with a minor proportion at pI 5.4, whereas in egasyn-negative mice the proportion of the two lysosomal forms is reversed. Combined experiments measuring susceptibility to neuraminidase and to endoglycosidase H and specific binding to Ricinus communis lectin-agarose columns showed that the alterations in isoelectric point were associated with a decrease in complex oligosaccharides of lysosomal beta-glucuronidase in egasyn-positive mice. Since this alteration occurs not only in a congenic strain carrying the Eg0 gene but also in several other inbred strains that are homozygous for this gene, it is considered to be a genuine effect of the Eg gene rather than other genes that might regulate oligosaccharide processing. Also, the alteration is likely to be a result of direct physical interaction of the egasyn protein and lysosomal beta-glucuronidase, since a second lysosomal enzyme, beta-galactosidase, which does not form complexes with egasyn, is unaffected. The results suggest a model in which egasyn not only causes accumulation of beta-glucuronidase in the microsomal compartment but also acts upon the precursor to lysosomal beta-glucuronidase to alter its interaction with trans-Golgi-apparatus processing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号