首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To investigate the hydrolysis of alphaS1-, alphaS0-, betaB-, betaA1- and betaA2-caseins by 32 wild lactococci of different randomly amplified polymorphic DNA (RAPD) patterns, isolated from raw ewes' milk cheese, and the production of hydrophilic and hydrophobic peptides from whole casein by those strains. METHODS AND RESULTS: Most strains hydrolysed all caseins, and degraded beta-caseins to a larger extent than alphaS-caseins, when the proteolytic activity of whole cells was determined by capillary electrophoresis. Higher levels of hydrophilic than of hydrophobic peptides were produced from whole casein by all strains, according to reverse-phase high performance liquid chromatography analyses. CONCLUSIONS: Cell envelope proteinases of most lactococci isolated from raw ewes' milk cheese were CEPII, CEPII/III or CEPIII (classification of Exterkate et al. 1993). A negative correlation was found between degraded alphaS- and beta-caseins and a highly positive correlation between hydrophilic and hydrophobic peptides. SIGNIFICANCE AND IMPACT OF THE STUDY: Fast acid-producing lactococci from raw ewes' milk cheese have considerable and diverse caseinolytic activities. Their peptide production patterns do not reveal serious risks of bitter-flavour defect in cheeses if used as components of dairy starters.  相似文献   

2.
AIMS: To biochemically characterize the bacteriocin produced by Lactococcus lactis ssp. lactis M30 and demonstrate its effect on lactic acid bacteria (LAB) during sourdough propagation. METHODS AND RESULTS: A two-peptide bacteriocin produced by L. lactis ssp. lactis M30 was purified by ion exchange, hydrophobic interaction and reversed phase chromatography. Mass spectrometry of the two peptides and sequence analysis of the ltnA2 gene showed that the bacteriocin was almost identical to lacticin 3147. During a 20-day period of sourdough propagation the stability of L. lactis M30 was demonstrated, with concomitant inhibition of the indicator strain Lactobacillus plantarum 20, as well as the non-interference with the growth of the starter strain Lact. sanfranciscensis CB1. CONCLUSIONS: In situ active bacteriocins influence the microbial consortium of sourdough LAB and can "support" the dominance of insensitive strains during sourdough fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The in situ bacteriocinogenic activity of selected lactococci enables the persistence of insensitive Lact. sanfranciscensis strains, useful to confer good characteristics to the dough, at a higher cell concentration with respect to other LAB of the same ecosystem.  相似文献   

3.
AIMS: To determine proteolytic enzyme activities released in Cheddar cheese juice manufactured using lactococcal starter strains of differing autolytic properties. METHODS AND RESULTS: The activities of residual chymosin, cell envelope proteinase and a range of intracellular proteolytic enzymes were determined during the first 70 days of ripening when starter lactococci predominate the microbial flora. In general, in cell free extracts (CFE) of the strains, the majority of proteolytic activities was highest for Lactococcus lactis HP, intermediate for L. lactis AM2 and lowest for L. lactis 303. However, in cheese juice, as ripening progressed, released proteolytic activities were highest for the highly autolytic strain L. lactis AM2, intermediate for L. lactis 303 and lowest for L. lactis HP. CONCLUSIONS: These results indicate that strain related differences in autolysis influence proteolytic enzyme activities released into Cheddar cheese during ripening. No correlation was found between proteolytic potential of the starter strains measured in CFE prior to cheese manufacture and levels of activities released in cheese juice. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings further support the importance of autolysis of lactococcal starters in determining the levels of proteolytic activities present in cheese during initial stages of ripening.  相似文献   

4.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of alpha-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced alpha-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

5.
AIMS: The major cell envelope proteinase (lactocepin; EC 3.4.21.96) produced by Lactococcus lactis cheese starter bacteria is required for starter growth and acid production in milk. The aim of this study was to characterize a lactocepin plasmid from a L. lactis subsp. cremoris cheese starter strain. METHODS AND RESULTS: A restriction map of the lactocepin plasmid pHP003 from strain HP was constructed, fragments were cloned in Escherichia coli vectors, and the complete DNA sequence (13,433 bp) was determined. Among 120 industrial L. lactis starter strains screened, five contained the same specificity-type lactocepin as pHP003. The lactocepin gene in these strains was invariably linked with a partially-deleted abiB gene. CONCLUSION: The lactocepin specificity type of strain HP, conferred by a known configuration of key residues, is relatively uncommon. The gene is invariably linked with a partially deleted abiB gene on each lactocepin plasmid. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first complete sequence reported for a lactocepin plasmid, and provides the basis for better understanding, or manipulation, of lactocepin production.  相似文献   

6.
AIMS: A live Lactococcus lactis culture, producing the two-component broad spectrum bacteriocin lacticin 3147, was assessed for ability to inhibit the food pathogen Listeria monocytogenes on the surface of smear-ripened cheese. METHODS AND RESULTS: In initial experiments, the addition of Listeria to a lacticin 3147-containing fermentate produced with L. lactis DPC4275 (a transconjugant strain derived from L. lactis DPC3147) resulted in at least a 4 log reduction of the pathogen in 30 min. Two separate trials were performed in order to assess the most suitable method for application of the potential protective culture to smear-ripened cheese. In the initial trial, the L. lactis was sprayed onto the surface of the cheese either before or after Listeria was deliberately applied. Application of the culture following Listeria challenge, yielded up to a 1000-fold reduction of the pathogen in contrast to the pretreatment where Listeria numbers were unaffected. In a further trial, three applications of the live lacticin 3147-producing culture was used on a cheese surface containing Listeria. Listeria numbers were found to be up to 100-fold lower than in the cheese treated with L. lactis DPC4268 (control). CONCLUSION: While application of the live lacticin 3147 producer did not give complete elimination of the pathogen the results nonetheless demonstrate the potential of the bioprotectant for improving the safety of smear-ripened cheeses and particularly those that contain low level contamination with Listeria. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of lacticin 3147 as a live-culture can serve as a bioprotectant for the control of L. monocytogenes on the surface of smear-ripened cheese.  相似文献   

7.
AIMS: The aim of this study was to modulate the lactococcal proteolytic system for enhancement of the cheese ripening process. METHODS AND RESULTS: The genes encoding PepN, PepC, PepX and PepI peptidases of a highly proteolytic Lactobacillus helveticus strain were transferred into Lactococcus lactis in a food-grade cloning system. A comparison of the relative peptidase activities from the transformants with those from the untransformed host, determined in the conditions of maturing cheese, showed that an increase in peptidase activity could be achieved by introducing a selected peptidase gene from Lact. helveticus into L. lactis. CONCLUSIONS: Recombinant L. lactis starter strains, carrying a peptidase gene from Lact. helveticus, may have an important contribution to the proteolysis of maturing cheese by producing an additional peptidolytic enzyme activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The results will be of importance in shortening the ripening period and production of special cheeses (e.g. reduced-fat cheeses) with improved characteristics.  相似文献   

8.
AIMS: The use of randomly amplified polymorphic DNA (RAPD)-PCR fingerprinting and plasmid profiles to determine at the strain level, the similarity of Lactococcus lactis isolates obtained during sampling of traditional cheeses and to verify its correspondence to the selected phenotypic characteristics. METHODS AND RESULTS: A total of 45 L. lactis isolates were genotypically analysed by RAPD-PCR fingerprinting and plasmid patterns. Phenotypic traits used to compare strains were proteolytic, acidifying, aminotransferase (aromatic and branched chain aminotransferase) and alpha-ketoisovalerate decarboxylase (Kivd) activities. The results show that 23 isolates could be grouped in clusters that exhibited 100% identity in both their RAPD and plasmid patterns, indicating the probable isolation of dominant strains during the cheese sampling process. However, there were phenotypic differences between isolates within the same cluster that included the loss of relevant technological properties such as proteinase activity and acidifying capacity or high variation in their amino acid converting enzyme activities. Likewise, the analysis of a specific attribute, Kivd activity, indicated that 7 of 15 isolates showed no detectable activity despite the presence of the encoding (kivd) gene. CONCLUSION: Phenotypic differences found between genotypically similar strains of L. lactis strains could be linked to differences in enzymatic expression. SIGNIFICANCE AND IMPACT OF THE STUDY: Phenotypic analysis of L. lactis isolates should be considered when selecting strains with new cheese flavour forming capabilities.  相似文献   

9.
AIMS: This work was carried out to study the acid production by Lactococcus lactis subsp. lactis strains isolated from goat's milk and goat cheese (Valdeteja variety) in order to select a suitable starter culture for industrial goat cheese manufacturing. METHODS AND RESULTS: The titrable acidity of 45 Lactococcus lactis subsp. lactis strains isolated from a home-made batch of Valdeteja cheese with excellent sensory characteristics was measured over a period of 18 h. The strains were divided into two groups depending on the acid production rate: 20 fast acid producer (F) strains and 25 slow acid producer (S) strains. The kinetic parameters (lag phase, maximum acid production rate and value of upper asymptote curve) of the acid production curves for F and S strains were significantly (P < 0.001) different. CONCLUSIONS: Significant (P < 0.001) differences between titrable acidity of F and S strains were observed after the second hour of incubation. SIGNIFICANCE AND IMPACT OF THE STUDY: An F strain acetoin producer (Lactococcus lactis subsp. lactis 470Ch2) was selected as autochthonous starter culture for industrial Valdeteja goat cheese manufacturing.  相似文献   

10.
This study investigated both the activity of nisin Z, either encapsulated in liposomes or produced in situ by a mixed starter, against Listeria innocua, Lactococcus spp., and Lactobacillus casei subsp. casei and the distribution of nisin Z in a Cheddar cheese matrix. Nisin Z molecules were visualized using gold-labeled anti-nisin Z monoclonal antibodies and transmission electron microscopy (immune-TEM). Experimental Cheddar cheeses were made using a nisinogenic mixed starter culture, containing Lactococcus lactis subsp. lactis biovar diacetylactis UL 719 as the nisin producer and two nisin-tolerant lactococcal strains and L. casei subsp. casei as secondary flora, and ripened at 7 degrees C for 6 months. In some trials, L. innocua was added to cheese milk at 10(5) to 10(6) CFU/ml. In 6-month-old cheeses, 90% of the initial activity of encapsulated nisin (280 +/- 14 IU/g) was recovered, in contrast to only 12% for initial nisin activity produced in situ by the nisinogenic starter (300 +/- 15 IU/g). During ripening, immune-TEM observations showed that encapsulated nisin was located mainly at the fat/casein interface and/or embedded in whey pockets while nisin produced by biovar diacetylactis UL 719 was uniformly distributed in the fresh cheese matrix but concentrated in the fat area as the cheeses aged. Cell membrane in lactococci appeared to be the main nisin target, while in L. casei subsp. casei and L. innocua, nisin was more commonly observed in the cytoplasm. Cell wall disruption and digestion and lysis vesicle formation were common observations among strains exposed to nisin. Immune-TEM observations suggest several modes of action for nisin Z, which may be genus and/or species specific and may include intracellular target-specific activity. It was concluded that nisin-containing liposomes can provide a powerful tool to improve nisin stability and availability in the cheese matrix.  相似文献   

11.
AIM: To study the effect of casein-derived peptides, accumulated during growth of Lactococcus lactis in milk, on its oligopeptide transport (Opp) function. METHODS AND RESULTS: This effect was estimated by analysing the ability of casein-derived peptides to compete for the transport of a reporter peptide by whole L. lactis cells. The transport of the reported peptide was monitored by determining the intracellular concentrations of the corresponding amino acids by means of reverse-phase high-performance liquid chromatography (HPLC). Uptake of the reporter peptide was competitively inhibited by casein-derived peptides. The competition was only because of charged casein-derived peptides, including anionic peptides. The design of specific pure peptides made it possible to evidence for a positive (or negative) influence exerted by the positively (or negatively) charged side chain of the N-terminal amino acid on the competition. CONCLUSIONS: Charged casein-derived peptides impaired the oligopeptide transport function of L. lactis. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate an inhibition of Opp when too many peptides are produced by the proteinase. Peptide transport by Opp therefore represents a bottleneck for increasing the growth rate of L. lactis in milk.  相似文献   

12.
Lactate dehydrogenase (ldh) gene sequences, levels of 16S rRNA group-specific probe binding, and phenotypic characteristics were compared for 45 environmental isolates and four commercial starter strains of Lactococcus lactis to identify evolutionary groups best suited to cheddar cheese manufacture, ldh sequences from the environmental isolates showed high similarity to those from two groups of L. lactis used for industrial fermentations, L. lactis subsp. cremoris and subsp. lactis. Within each phylogenetically defined subspecies, ldh sequence similarities were greater than 99.1%. Strains with phenotypic traits formerly diagnostic for both subspecies were found in each ldh similarity group, but only strains belonging to L. lactis subsp. cremoris by both the newer, genetic and the older, superseded phenotypic criteria were judged potentially suitable for the commercial production of cheddar cheese. Identical evolutionary relationships were inferred from ldh sequences and from binding of subspecies-specific, 16S rRNA-directed oligonucleotide probes. However, groups defined according to these chromosomal traits bore no relationship to patterns of arginine deamination, carbon substrate utilization, or bacteriophage sensitivity, which may be encoded by cryptic genes or sexually transmissible genetic elements. Fourteen new L. lactis subsp. cremoris isolates were identified as suitable candidates for cheddar cheese manufacture, and 10 of these were completely resistant to three different batteries of commercial bacteriophages known to reduce starter activity.  相似文献   

13.
Plasmids containing wild-type and hybrid proteinase genes were constructed from DNA fragments of the prtP genes of Lactococcus lactis strains Wg2 and SK11. These plasmids were introduced into the plasmid-free strain L. lactis MG1363. The serine proteinases produced by these L. lactis strains were isolated, and their cleavage specificity and rate towards alpha s1- and beta-casein was investigated. The catalytic properties of both the SK11 and Wg2 proteinases, which differ in 44 out of 1902 amino acid residues, could be changed dramatically by the reciprocal exchange of specific fragments between the two enzymes. As a result, various L. lactis strains were constructed having new proteolytic properties that differ from those of the parental strains. Furthermore, two segments in the proteinase could be identified that contribute significantly to the cleavage specificity towards casein; within these two segments, several amino acid residues were identified that are important for substrate cleavage rate and specificity. The results also indicate that the lactococcal proteinase has an additional domain involved in substrate binding compared with the related subtilisins. This suggests that the 200 kd L. lactis proteinase may be the representative of a new subclass of subtilisin-like enzymes.  相似文献   

14.
AIMS: The aim of the present work was to evaluate the enzymatic potential manifested by aminopeptidase activity of different thermophilic Lactobacillus biotypes and to measure the influence of cell growth phase on enzyme expression. METHODS AND RESULTS: The activities were evaluated by the hydrolysis of beta-naphthylamide substrates for both whole and mechanically disrupted cells of L. helveticus, L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis strains, collected from both the exponential and the stationary growth phase. In general, activities were higher for cells in the exponential rather than in the stationary phase and the disrupted cells showed higher activities than the whole cells. The highest activity expressed by all strains corresponded to X-prolyl-dipeptidyl aminopeptidase while a moderate activity was observed towards Arg-betaNa, Lys-betaNa and Leu-betaNa. The lowest activity was observed for Pro-betaNa. CONCLUSIONS: It may be inferred that the cell structure and the cell physiology are crucial to define the level of efficiency of expression for aminopeptidase activity. The two species may be characterized by a different enzymatic system that hydrolyses N-terminal leucine. SIGNIFICANCE AND IMPACT OF THE STUDY: The differences of peptidase activities in L. helveticus and L. delbrueckii species acquires an importance to comprehend their role in the biochemical events occurring in cheese ripening.  相似文献   

15.
AIMS: To analyse the phenotype of a relA acid-resistant mutant of Lactococcus lactis ssp. cremoris MG1363, and to compare the glyceraldehyde-3-phosphate dehydrogenase regulation in both strains. METHODS AND RESULTS: Lactococcus lactis ssp. cremoris MG1363 and the relA mutant affected in the (p)ppGpp synthetase were grown in a series of batch-mode fermentation at different pH-regulated conditions with glucose as carbon substrate. All the determinants of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regulation were quantified. In L. lactis MG1363, the GAPDH was strongly inhibited in vitro by decreased pH values, but this inhibition was totally compensated in vivo by the lower NADH/NAD+ ratio and more efficiently by the important increase in the intracellular amount of GAPDH. In contrast to the wild type, GAPDH activity of the relA strain was not increased when grown at low pH but the level of GAPDH remained constitutively high. However, pH homeostasis was not improved in the relA mutant and it grew slower and exhibited a lower glycolytic flux than the wild-type strain at low pH. CONCLUSIONS: Despite a better resistance to acid stress, the increased survival in L. lactis relA mutant at low pH was not related with an improved pH homeostasis but was associated with a diminished capacity to maintain a high flux through glycolysis. SIGNIFICANCE AND IMPACT OF THE STUDY: The phenotype of a strong acid-resistant L. lactis strain was established in acid conditions and some key metabolic parameters compared with the wild type. This analysis led to the conclusion that growth and survival seem to be antinomic parameters, since improving one of them leads to a decrease in the other one.  相似文献   

16.
Bitterness is a flavor defect in Cheddar cheese that limits consumer acceptance, and specificity of the Lactococcus lactis extracellular proteinase (lactocepin) is widely believed to be a key factor in the development of bitter cheese. To better define the contribution of this enzyme to bitterness, we investigated peptide accumulation and bitterness in 50% reduced-fat Cheddar cheese manufactured with single isogenic strains of Lactococcus lactis as the only starter. Four isogens were developed for the study; one was lactocepin negative, and the others produced a lactocepin with group a, e, or h specificity. Analysis of cheese aqueous extracts by reversed-phase high-pressure liquid chromatography confirmed that accumulation of alpha(S1)-casein (f 1-23)-derived peptides f 1-9, f 1-13, f 1-16, and f 1-17 in cheese was directly influenced by lactocepin specificity. Trained sensory panelists demonstrated that Cheddar cheese made with isogenic starters that produced group a, e, or h lactocepin was significantly more bitter than cheese made with a proteinase-negative isogen and that propensity for bitterness was highest in cells that produced group h lactocepin. These results confirm the role of starter proteinase in bitterness and suggest that the propensity of some industrial strains for production of the bitter flavor defect in cheese could be altered by proteinase gene exchange or gene replacement.  相似文献   

17.
AIMS: To characterize a group of closely related Lactococcus lactis subsp. lactis casein starter strains used commercially, which differ in their sensitivity to bacteriophages isolated from the same industrial environment. METHODS AND RESULTS: Nine strains of L. lactis, six of which had been used as starter cultures for lactic casein manufacture, were shown to be closely related by pulsed-field gel electrophoresis and total DNA profiles. Nineteen phages which propagated on one or more of these starter strains were isolated from industrial casein whey samples. The phages were all small isometric-headed and could be divided into five groups on the basis of host range on the nine strains. Most of the phages did not give a PCR product with primers designed to detect the two most common lactococcal small isometric phage species (936 and P335). The hosts could be divided into six groups depending on their phage sensitivity. Plasmids encoding genes for the cell envelope associated PI-type proteinase, lactose metabolism and specificity subunits of a type I restriction/modification system were identified. CONCLUSIONS: This work demonstrates how isolates of the same starter strain may come to be regarded as separate cultures because of their different origins, and how these closely related strains may differ in some of their industrially relevant characteristics. SIGNIFICANCE AND IMPACT OF THE STUDY: This situation may be very common among lactococci used as dairy starter cultures, and implies that the dairy industry worldwide depends on a small number of different strains.  相似文献   

18.
AIMS: Five species of the Gram-positive bacterial genus Lactococcus (Lactococcus lactis, L. garvieae, L. plantarum, L. piscium and L. raffinolactis) are currently recognized. The aim of this work was to develop a simple approach for the identification of these species, as well as to differentiate the industrially important dairy subspecies L. lactis subsp. lactis and L. lactis subsp. cremoris. METHODS AND RESULTS: Methods were devised based on specific polymerase chain reaction (PCR) amplifications that exploit differences in the sequences of the 16S ribosomal RNA genes of each species, followed by restriction enzyme cleavage of the PCR products. The techniques developed were used to characterize industrial cheese starter strains of L. lactis and the results were compared with biochemical phenotype and DNA sequence data. CONCLUSIONS: The PCR primers designed can be used simultaneously, providing a simple scheme for screening unknown isolates. Strains of L. lactis show heterogeneity in the 16S ribosomal RNA gene sequence. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides an integrated set of methods for differentiation and identification of lactococcal species associated with agricultural, veterinary, medical and processed food industries.  相似文献   

19.
AIMS: To determine the influence of cheese cooking temperature on autolysis and permeabilization of two lactococcal starter strains in broth and in Cheddar cheese juice during ripening. METHODS AND RESULTS: Flow cytometry (FCM) was used to identify and enumerate intact and permeabilized cells in broth and in Cheddar cheese juice. Levels of intracellular enzyme activities were quantified concurrently. Permeabilized cell numbers increased for both strains in broth following a temperature shift from 32 to 38 degrees C and was accompanied by an increase in the level of accessible intracellular enzyme activities. The relative proportions of intact and permeabilized cell populations, as detected by FCM in cheese juice, changed during 42-day ripening. Permeabilized cell populations increased during ripening for both strains; however, an increase in accessible intracellular enzyme activity was observed only for the highly autolytic strain Lactococcus lactis AM2. CONCLUSIONS: Differences in the autolytic and permeabilization response induced by cooking temperature in two lactococcal strains affects intracellular enzyme accessibility in Cheddar cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the importance of the autolytic and permeabilization properties of lactic acid bacteria starter strains and their impact on cheese ripening.  相似文献   

20.
Aims:  We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture.
Methods and Results:  In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l -arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate.
Conclusions:  Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described.
Significance and Impact of the Study:  The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号