首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Activin-A, a homodimeric protein composed of two inhibin beta A-subunits, was first isolated from gonadal fluids based upon its ability to stimulate FSH secretion and biosynthesis, but was also observed to suppress GH secretion. The present report describes the effects of activin on the biosynthesis of GH and the proliferation of pituitary somatotrophs. In pituitary cells cultured in the presence of 0.7 nM activin for 3 days, GH secretion was decreased by 50% compared to the control value. Inhibition of GH biosynthesis, measured by quantitative immunoprecipitation of [35S]methionine-labeled cells, could be observed after 24 h of activin treatment, and maximal (70%) inhibition of GH biosynthesis was observed after 3 days. Activin inhibited basal as well as GH-releasing factor (GRF)-, glucocorticoid-, and thyroid hormone-stimulated GH biosynthesis. Inhibin, which is known to reverse the effect of activin on FSH secretion, did not reverse the effect of activin on GH biosynthesis. Treatment of somatotrophs with activin for 3 days completely inhibited the growth-promoting effect of GRF on somatotrophs. However, no effect of activin on GRF-stimulated expression of the c-fos protooncogene was observed. These data demonstrate that activin, in addition to its stimulatory effect on FSH secretion, is able to inhibit both expression of GH and growth of somatotropic cells.  相似文献   

2.
J Simard  G Lefèvre  F Labrie 《Peptides》1987,8(2):199-205
We have investigated the effect of prior exposure to somatostatin (SRIF) alone or in combination with growth hormone-releasing factor (GRF) on the subsequent cyclic AMP and GH responses to GRF in rat anterior pituitary cells in primary culture. The maximal 4.5-fold stimulation of GH release induced by a 3-hr incubation with GRF is reduced by 60% following a prior 3-hr exposure to 30 nM GRF. A 3-hr preincubation with GRF in the presence of 30 nM SRIF doubles spontaneous GH release while the maximal amount of GH released during a subsequent 3-hr exposure to GRF is similar to that measured in cells pretreated with control medium, thus completely preventing the loss of GH responsiveness induced by prior exposure to GRF. The prevention by SRIF of the desensitizing action of GRF on GH release is not observed on the cyclic AMP response which remains almost completely inhibited in GRF-pretreated cells. Similar protective effects are obtained when SRIF is incubated with prostaglandin E2 (PGE2), thus completely preventing the desensitizing action of PGE2 on GH release. Prior treatment with pertussis toxin completely prevents the protective action of SRIF on GH responsiveness. Pretreatment with GRF + SRIF increases by 85 and 60% the maximal amount of GH release induced by cholera toxin and 8-bromoadenosine 3',5'-monophosphate, respectively. The post-SRIF rebound effect on GH release occurs mainly during the first 30 min following withdrawal of the tetradecapeptide. The present data demonstrate that simultaneous preincubation with SRIF and GRF prevents the marked inhibition of GH release during subsequent exposure to GRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
G J Law  K P Ray  M Wallis 《FEBS letters》1984,166(1):189-193
A synthetic form of human pancreatic growth hormone releasing factor (GRF-44-NH2) was shown to be a potent stimulator of growth hormone (GH) secretion and cellular cyclic AMP levels in cultured sheep pituitary cells. A small dose-dependent stimulation of prolactin secretion was also observed. Somatostatin (0.5 microM) completely blocked the maximal GRF (1 nM)-stimulated secretion without a significant effect on cyclic AMP levels. Dopamine (0.1 microM) inhibited the GRF-elevated GH secretion by 50% and lowered cyclic AMP levels by 30%. Dopamine (0.1 microM) inhibition of basal prolactin secretion was not affected by GRF (1 nM). The data support the hypothesis that cyclic AMP is involved in the action of GRF but suggest that somatostatin can inhibit GRF-induced secretion of GH independently of cyclic AMP.  相似文献   

4.
The present study was designed to determine whether the diminution of growth hormone (GH) secretion that occurs in obese Zucker rats is related to alterations of GH-releasing factor (GRF) or somatostatin (SRIF) pituitary binding sites. Cold saturation studies were performed in pituitary homogenates of 4-month-old lean and obese rats, using [125I-Tyr10]hGRF(1-44)NH2 as radioligand and [127I-Tyr10]hGRF-(1-44)NH2 as competitor, and in pituitary membrane preparations, using [125I-Tyr0, D-Trp8]SRIF14 as radioligand and [127I-Tyr0, D-Trp8]SRIF14 as competitor. In lean rats, analysis of the curves by the Ligand program revealed the presence of two distinct classes of GRF binding sites, the first being of high affinity (0.74 +/- 0.11 nM) and low capacity (118 +/- 31 fmol/mg protein), the second being of lower affinity (880 +/- 240 nM) and higher capacity (140 +/- 35 pmol/mg protein), and of a single class of SRIF binding sites (affinity: 0.40 +/- 0.12 nM; capacity: 24 +/- 6 fmol/mg protein). In obese rats, no difference was observed in GRF binding parameters for both classes of sites, but the concentration of somatostatin binding sites was reduced by 67% when compared to their lean littermates. These findings suggest that the SRIF pituitary receptors are down-regulated in obese Zucker rats and indicate that no alteration of GRF pituitary binding sites contribute to the blunted GH secretion observed in this model of obesity.  相似文献   

5.
The effect of GRF adenylate cyclase activation was studied in normal human, bovine and rat pituitary tissues. Human GRF (hGRF) activates adenylate cyclase in normal human pituitary membrane preparations in a concentration dependent manner (ED5 0 = 10(-11) M). In bovine pituitary cells hGRF stimulates GH secretion into the medium (ED5 0 = 7 X 10(-12) M) and activates adenylate cyclase (ED5 0 = 10(-11) M). In normal rat pituitary cells in monolayer culture, rat GRF (rGRF) stimulates adenylate cyclase (ED5 0 = 3 X 10(-11) M). In normal human pituitary membrane preparations and in normal rat pituitary cells in culture, somatostatin inhibits GRF-stimulated adenylate cyclase in a non-competitive manner, while it does not affect basal (i.e. non-stimulated) adenylate cyclase levels. VIP, a peptide which is structurally homologous to hGRF and rGRF is a weak GRF-agonist and activates adenylate cyclase in human and rat pituitary preparations at concentrations greater than 10 nM.  相似文献   

6.
Somatostatin plays an important role in the regulation of the episodic and ultradian rhythm of growth hormone (GH) secretion. Passive immunization of rats with specific antibodies to the 14 and 28 amino acid sequences caused a significant GH elevation. The fact that somatostatin antiserum was unable to block episodic GH surges indicates that this hormone's release must be regulated by a dual mechanism. Indeed, GH-releasing factor (GRF) seems to be instrumental in the maintenance of pulsatile GH secretion. Moreover, exogenous GRF induced a further GH increase predominantly during the period of active secretion. Neutralization of endogenous somatostatin eliminated this time-dependent effect, indicating that this peptide blocks periodical spontaneous GH release. Food deprivation and changes in glucose homeostasis virtually obliterate the ultradian GH rhythm. In this context, peripheral somatostatin seems to play an important role. Also the central GRF/somatostatin interplay is responsible for a short-loop feedback control on pituitary somatotrops.  相似文献   

7.
Somatostatin inhibition of growth hormone (GH) secretion from adenohypophysis cells in culture was antagonized by the antidiabetic sulfonylurea glipizide (K0.5 = 10 +/- 5 nM). Although all cells that hyperpolarize with somatostatin have ATP-sensitive K+ channels, the antagonistic actions of the hormone and of the antidiabetic drug are due to effects on different types of K+ channels. Diazoxide, an opener of ATP-sensitive K+ channels, abolished the increase of intracellular Ca2+ provoked by growth hormone releasing factor (GRF) and induced inhibition of GRF stimulated GH secretion (K0.5 = 138 microM). This inhibition by diazoxide was largely suppressed by glipizide which blocked the ATP-sensitive K+ channels opened by diazoxide. In summary, hormonal activation of GH secretion is inhibited by openers of ATP-sensitive K+ channels, while hormonal inhibition of GH secretion is suppressed by blockers of ATP-sensitive K+ channels.  相似文献   

8.
A novel pituitary protein "7B2" was secreted by GH1 cells. The secretion of 7B2 was increased in the presence of human GRF in a dose-responsive manner. In contrast, a somatostatin analog, SMS 201-995, revealed the inhibitory effects on the basal- and GRF-induced secretion of 7B2 at the concentration of 10(-7) M. These findings suggest that 7B2 is a secretory protein of rat GH1 cells under certain conditions.  相似文献   

9.
Expression of the myc and fos genes has been monitored in mouse primary keratinocytes after induction of terminal differentiation by calcium or tetradecanoylphorbol acetate (TPA). myc RNA levels in growing cells are very high and remain elevated even at late times after calcium-induced differentiation. Thus, keratinocytes provide the first example of normal primary cells with persistent c-myc expression irrespective of their proliferative or differentiated state. fos expression is also relatively unaffected by addition of calcium. In contrast to calcium, TPA-induced differentiation is accompanied by dramatic changes in proto-oncogene expression: marked c-fos induction and considerable although transient decrease in c-myc expression. These effects might be important for the keratinocyte response to TPA: TPA treatment of a keratinocyte cell line (RBK) resistant to this substance has no effect on c-myc expression and leads only to minimal c-fos induction. In these cells full fos induction can still be triggered by addition of fresh medium. Thus, the fos gene in normal keratinocytes is inducible through at least two independent mechanisms, only one of which has been lost during derivation of the TPA-resistant cell line.  相似文献   

10.
Insulin-like growth factor-I (IGF-I) attenuates GH gene expression by a receptor-mediated mechanism in pituitary cells. We, therefore, isolated neomycin-resistant stable GC cell transfectants over-expressing human IGF-I receptor cDNA (IGFIR-cDNA) cloned in an Rous sarcoma virus-directed expression vector. A transfection control contained the IGFIR-cDNA cloned in the reverse orientation. Southern analysis confirmed incorporation of human IGFIR-cDNA sequences into rat genomic DNA. Immunoprecipitation of metabolically labeled [35S]methionine stably transfected cells revealed a 200-kDa human IGF-I receptor precursor protein. Growth rate and basal GH secretion were not altered in transfected cells. Although transfected and control cells had a similar Kd for IGF-I binding (0.43 and 0.40 nM, respectively), IGF-I-binding sites were induced 17-fold (384,000 vs. 22,000 sites/cell). Treatment of cells with IGF-I (6.5 nM) maximally attenuated GH secretion by 80% compared to 40% attenuation in control cells (P less than 0.0001). Maximal suppression of GH in transfectants occurred within 15 h of treatment, and GH secretion by control cells was only maximally suppressed after 42 h. The ED50 of IGF-I suppression of GH secretion in transfectants after 15 h was 0.5 nM. These results demonstrate that transfectants overexpressing human IGF-I receptor are hyperresponsive to exogenous IGF-I. These data indicate that IGF-I receptor number plays an important role in mediating the signal transduction of IGF-I to the GH gene.  相似文献   

11.
12.
Zhan CD  Pan JY 《生理学报》2000,52(6):450-454
在原代培养的新生大鼠心肌细胞上,探讨一氧化氮(NO)对血管紧张素Ⅱ(AⅡ)和内皮素-1(ET-1)诱导的心肌细胞肥大和原癌基因c-fos表达的影响。用Bradford法测定心肌细胞总蛋白含量(作为心肌细胞肥大的指标);用基因特异性引物和SuperScript一步法进行逆转录聚合酶链式反应(RT-PCR),检测大鼠心肌细胞原癌基因c-fos的表达(以GAPDH为内标)。结果显示,AⅡ和ET-1分别作  相似文献   

13.
在原代培养的新生大鼠心肌细胞上, 探讨一氧化氮 (NO)对血管紧张素Ⅱ (AⅡ)和内皮素-1 (ET-1)诱导的心肌细胞肥大和原癌基因c-fos表达的影响.用Bradford 法测定心肌细胞总蛋白含量 (作为心肌细胞肥大的指标); 用基因特异性引物和 SuperScript一步法进行逆转录聚合酶链式反应 (RT-PCR), 检测大鼠心肌细胞原癌基因c-fos的表达 (以GAPDH为内标).结果显示, AⅡ和ET-1分别作用5 d和3 d后, 心肌细胞总蛋白含量显著增加; 硝普钠 (NO供体)可抑制AⅡ或ET-1诱导的心肌细胞总蛋白增加.AⅡ,ET-1和PMA (蛋白激酶C激动剂)均可诱导心肌细胞原癌基因c-fos的表达; L-精氨酸可抑制AⅡ,ET-1和PMA诱导心肌细胞原癌基因c-fos的表达, L-NAME (NOS抑制剂)可抑制L-精氨酸的这一作用; 硝普钠对可抑制AⅡ,ET-1和PMA诱导心肌细胞原癌基因c-fos的表达.结果表明, NO可抑制AⅡ或ET-1诱导的心肌细胞肥大和原癌基因c-fos表达, 其作用机制可能与蛋白激酶C这一环节有关.  相似文献   

14.
The brain peptide human growth hormone releasing factor (1-40) (GRF), which stimulates adenylate cyclase activity in the anterior pituitary, is the predominant hormone signal for pituitary growth hormone (GH) release. Activators of protein kinase C such as teleocidin and 4 beta-phorbol 12-myristate 13-acetate (PMA) double the cyclic AMP accumulation induced by GRF, with no apparent effect on GRF potency; an inactive 4-alpha-PMA has no such action in cultured anterior pituitary cells. This PMA potentiation can be measured as early as 60 s, is maximal by 15 min, and wanes such that by 3-4 h there is no such amplifying effect of PMA. PMA, phorbol 12,13-dibutyrate, and teleocidin ED50 values for potentiating GRF activity are similar to those obtained for direct protein kinase C activation. The major inhibitory peptide somatostatin reduced both GRF- and GRF + PMA-stimulated cyclic AMP accumulation. Pertussis toxin totally blocked this somatostatin action without affecting the degree of maximal GRF potentiation achieved with PMA. Thus, the pertussis toxin target(s) are required for somatostatin inhibition of the cyclic AMP generating system, but may not be involved in the PMA potentiation of GRF-stimulated cyclic AMP accumulation.  相似文献   

15.
The activity of the growth hormone secretagog, L-163,255, on growth hormone (GH), growth hormone-releasing factor (GRF), and somatostatin (SRIF) levels was evaluated in a porcine model of hypophyseal portal blood (HPB) collection. Young, castrated pigs had HPB and jugular blood collected for approximately 300 min. The blood collection was divided into discrete periods: baseline (BL) approximately 180 min; GH response period (RSP) approximately 90 min; and positive control period following a GRF bolus, 30 min. RSP was divided into a dominant response period (DOM) and a tail (TL). The spontaneous relationship between HPB GRF and SRIF and peripheral GH during BL has been reported (Proc Soc Exp Biol Med 217:188-196, 1998). The apex of the GH pulse resulting from L-163,255 administration was nonrandomly associated (P < 0.05) with descending periods of SRIF troughs. Frequency and amplitude of GRF and SRIF pulses, and frequency and depth of SRIF troughs were not different between BL and the beginning of DOM (the 20-30 min of GH increase). GH AUC was significantly greater (P < 0.05) for DOM compared to BL and TL, and for TL compared to BL. GRF AUC tended to be greater (P < 0.1) for RSP compared to BL, but the majority of the increase was in the TL period. There were no significant differences in the SRIF AUCs between the sampling periods. Furthermore, in a separate experiment, fos activity (a marker of neuronal activation) in the hypothalamus of pigs was examined after either L-163,255 (1x or 4x), isotonic saline (control), or hypertonic saline (positive control) administration. There were no differences in fos activity in the GRF, SRIF, or CRH immunopositive neurons between L-163,255 treatment and control. The pituitaries of the L-163,255-treated pigs showed marked fos activation compared to the controls. In conclusion, L-163,255 in pigs has its primary effect at the level of the anterior pituitary.  相似文献   

16.
The manner of release of growth hormone-releasing factor (GRF) from the rat hypothalamus was studied in a perifusion system using a highly sensitive radioimmunoassay for rat GRF. The recovery of GRF in this system was 50-60%. The release of GRF from the rat hypothalamic blocks was almost stable for 20-240 min after the start of the perifusion and was stimulated by depolarization induced by high K+ concentration. The release of GRF was inhibited by somatostatin at concentrations of 10(-11) to 10(-8) M with maximum inhibition to 52.5% of the basal release at a concentration of 10(-9) M. These results suggest that this system is useful in studying the regulatory mechanism of GRF release and that, in addition to its action on the pituitary, somatostatin appears to act at the level of the hypothalamus in inhibiting GRF release in the regulation of GH secretion.  相似文献   

17.
The effects of GRF-induced desensitization of somatotropes on GH gene expression were investigated on pituitary cells derived from male rats. Pretreatment of monodispersed cells for 18 hr with GRF abolished both the acute release of GH and the stimulation of GH gene expression in response to a subsequent 4 hr challenge with GRF. Concomitant preincubation with GRF and SS resulted in restoration of the ability of GRF to stimulate release of GH but not to augment GH gene expression. These results demonstrate that desensitization by GRF affects both the release of GH and GH gene expression, whereas the resensitizing effects of SS appear to be directed exclusively at the release mechanism.  相似文献   

18.
M Sato  J Takahara  M Niimi  R Tagawa  S Irino 《Life sciences》1991,48(17):1639-1644
The present study was undertaken to investigate the direct actions of rat galanin (R-GAL) on growth hormone (GH) release from the rat anterior pituitary in vitro. R-GAL modestly but significantly stimulated GH release without an increase in intra- and extracellular cyclic AMP levels in monolayer cultures of rat anterior pituitary cells. This stimulatory effect of R-GAL was dose-dependent but not additive with that of GH-releasing factor (GRF). R-GAL-stimulated GH release was less sensitive to the inhibitory effect of somatostatin than was GRF-stimulated GH release. In perfusions of rat anterior pituitary fragments, R-GAL induced a gradual and sustained increase of GH release. Incremental GH release derived in part from preformed stored GH. These data confirm that R-GAL acts at the pituitary level to stimulate GH release by a mechanism distinct from that of GRF.  相似文献   

19.
Eight patients with active acromegaly due to GH-producing pituitary adenoma were studied. GH secretory dynamics in vitro was evaluated by adding GRF, CRF, or a somatostatin analog, SMS 201-995 to the perifusate of dispersed cells from tumors. A comparison was made between the data obtained in preoperative tests for GH secretion and those obtained in experiments in vitro. Before operation, the GRF test (100 micrograms, iv) resulted in no GH response in three of six patients examined. The CRF test (100 micrograms, iv) resulted in a paradoxical GH increase in two of the same six patients. In vitro studies performed on adenoma cells revealed that exposure to GRF (100 ng/ml) elicited an increase in GH in seven of eight patients examined. Exposure to CRF (100 ng/ml) caused an enhanced GH secretion in four of the same eight patients. There were cases in which GH response to these hypothalamic hormones was observed in vitro but not in vivo, whereas there was only one case in which CRF caused an increase in GH in vivo but not in vitro. Thus, GH secretory dynamics was not always the same in vivo and in vitro. The discrepancy could be ascribed to the different secretory status of hypothalamic hormone (e.g., GRF or somatostatin) in vivo in each acromegalic patient.  相似文献   

20.
Effects of growth hormone (GH) excess on immunoreactive hypothalamic GH-releasing factor (GRF) and somatostatin (SRIF) were studied in rats. Hypothalamic GRF content significantly reduced after 7-day daily treatment with 160 micrograms of rat GH or after inoculation of GH-secreting rat pituitary tumors, MtT-F4 for 9 or 13 days and GH3 for 3 months. Basal and 59 mM K+-evoked release of GRF from incubated hypothalami diminished, more than the content, by 43-51% in MtT-F4 tumor- or by 67-83% in GH3 tumor-bearing rats. In contrast, there was a small but significant increase in content or release of SRIF in rats harboring the GH3 or MtT-F4 tumor, respectively. These results indicate the existence of a negative feedback loop via hypothalamic GRF as well as SRIF in control of GH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号