首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Hd3a and RFT1 are essential for flowering in rice   总被引:4,自引:0,他引:4  
  相似文献   

3.
A late-flowering mutant was isolated from rice T-DNA-tagging lines. T-DNA had been integrated into the K-box region of Oryza sativa MADS50 (OsMADS50), which shares 50.6% amino acid identity with the Arabidopsis MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20). While overexpression of OsMADS50 caused extremely early flowering at the callus stage, OsMADS50 RNAi plants exhibited phenotypes of late flowering and an increase in the number of elongated internodes. This confirmed that the phenotypes observed in the knockout (KO) plants are because of the mutation in OsMADS50. RT-PCR analyses of the OsMADS50 KO and ubiquitin (ubi):OsMADS50 plants showed that OsMADS50 is an upstream regulator of OsMADS1, OsMADS14, OsMADS15, OsMADS18, and Hd (Heading date)3a, but works either parallel with or downstream of Hd1 and O. sativa GIGANTEA (OsGI). These results suggest that OsMADS50 is an important flowering activator that controls various floral regulators in rice.  相似文献   

4.
5.
Flowering in rice is influenced by not only endogenous factors that comprise an autonomous pathway, but also environmental effects, such as photoperiod, water availability, and temperature just before floral initiation. Recent molecular genetics studies have elucidated the functional roles of genes involved in the photoperiod pathway, e.g., photoreceptors, circadian clock components, and short-day (SD) promotion factors. Although these molecular players are well conserved between rice andArabidopsis, their actual genetic functions are distinct. This is exemplified byHd1 (aCO counterpart) and phytochromes, in particular, ricePHYA. Hd1 has a dual role in regulating flowering time and the expression ofHd3a (anFT counterpart) repression under long-day (LD) conditions while promotion under SDs. Models have been proposed to explain these photoperiod-dependent antagonistic activities. Some regulatory factors are present in only one of the model systems, e.g.,FLC inArabidopsis orEhd1 in rice. Furthermore, epistatic relationships vary among such flowering regulators asHd3a (FT), OsMADS50 (SOCT), andOsMADS14 (AP1). Further experiments to probe these differences will be essential to enlarging our understanding of the diversified flowering regulation mechanisms in rice.  相似文献   

6.
7.
8.
9.
10.
11.
FLOWERING LOCUS T (FT), a florigen in Arabidopsis, plays critical roles in floral transition. Among 13 FT-like members in rice, OsFTL2 (Hd3a) and OsFTL3 (RFT1), two rice homologues of FT, have been well characterized to act as florigens to induce flowering under short-day (SD) and long-day (LD) conditions, respectively, but the functions of other rice FT-like members remain largely unclear. Here, we show that OsFTL12 plays an antagonistic function against Hd3a and RFT1 to modulate the heading date and plant architecture in rice. Unlike Hd3a and RFT1, OsFTL12 is not regulated by daylength and highly expressed in both SD and LD conditions, and delays the heading date under either SD or LD conditions. We further demonstrate that OsFTL12 interacts with GF14b and OsFD1, two key components of the florigen activation complex (FAC), to form the florigen repression complex (FRC) by competing with Hd3a for binding GF14b. Notably, OsFTL12-FRC can bind to the promoters of the floral identity genes OsMADS14 and OsMADS15 and suppress their expression. The osmads14 osmads15 double mutants could not develop panicles and showed erect leaves. Taken together, our results reveal that different FT-like members can fine-tune heading date and plant architecture by regulating the balance of FAC and FRC in rice.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
The CO (CONSTANS) gene of Arabidopsis has an important role in the regulation of flowering by photoperiod. CO is part of a gene family with 17 members that are subdivided into three classes, termed Group I to III here. All members of the family have a CCT (CO, CO-like, TOC1) domain near the carboxy terminus. Group I genes, which include CO, have two zinc finger B-boxes near the amino terminus. Group II genes have one B-box, and Group III genes have one B-box and a second diverged zinc finger. Analysis of rice (Oryza sativa) genomic sequence identified 16 genes (OsA-OsP) that were also divided into these three groups, showing that their evolution predates monocot/dicot divergence. Eight Group I genes (HvCO1-HvCO8) were isolated from barley (Hordeum vulgare), of which two (HvCO1 and HvCO2) were highly CO like. HvCO3 and its rice counterpart (OsB) had one B-box that was distantly related to Group II genes and was probably derived by internal deletion of a two B-box Group I gene. Sequence homology and comparative mapping showed that HvCO1 was the counterpart of OsA (Hd1), a major determinant of photoperiod sensitivity in rice. Major genes determining photoperiod response have been mapped in barley and wheat (Triticum aestivum), but none corresponded to CO-like genes. Thus, selection for variation in photoperiod response has affected different genes in rice and temperate cereals. The peptides of HvCO1, HvCO2 (barley), and Hd1 (rice) show significant structural differences from CO, particularly amino acid changes that are predicted to abolish B-box2 function, suggesting an evolutionary trend toward a one-B-box structure in the most CO-like cereal genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号