首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
Structural and cytochemical aspects of the pistil and detailsof pollination and pollen-pistil interaction were investigatedin the African oil palm (Elaeis guineensis Jacq.), an importantperennial oil crop. The stigma is trilobed, wet and papillate.The branched papillae are confined to a narrow linear zone oneach stigmatic lobe. Each stigmatic lobe harbours a deep stigmaticgroove, which runs adaxially along the surface. The stigmaticgroove is bordered by a well-defined layer of glandular cells,each of which has a pectinaceous cap on the inner tangentialwall. The style is hollow. The canal cells show thickeningson the inner tangential wall. The stigmatic groove and stylarcanal contain an extracellular matrix secreted by the canalcells which is rich in proteins, acidic polysaccharides andpectins. The canal cells at the base of the style are papillateand loosely fill the stylar canal. The stigma becomes receptivewhen the stigmatic lobes separate, and remains so for 24 h.Pollination is mediated by weevils as well as by the wind. Undernatural conditions the pollination efficiency was 100%. Pollinationinduces additional secretion in the stigmatic groove and stylarcanal. During post-pollination secretion, the pectinaceous capsof the cells lining the stigmatic groove are degraded. Pollengrains germinate on the stigmatic papillae and tubes grow onthe surface of the papillae, entering the stigmatic groove andadvancing along it into the stylar canal to eventually gainaccess to the locules. Pollen tubes are seen in the ovules 18–20h after pollination. Copyright 2001 Annals of Botany Company Arecaceae, Elaeis guineensis, African oil palm, pollination, stigmatic grove, stylar canal, Tenera hybrid, weevil  相似文献   

2.
Development and Histochemistry of the Pistil of the Grape, Vitis vinifera   总被引:1,自引:0,他引:1  
The development of the grape pistil is followed for a periodof 9 weeks from flower initiation to anthesis. Three phasesof pericarp differentiation are revealed: ring meristem formation;cell proliferation by anticlinal cell divisions; and a maturationphase characterized by periclinal cell division and differentiation.Both the stigma papillae and the transmitting tissue of thestyle originate by periclinal cell divisions. The receptivestigma is of the wet type and comprises many filamentous papillae,each composed of about 20 cells and covered by a loose cuticle.The stigma exudate shows similar cytochemical properties tothe material in the intercellular spaces of the transmittingtissue and is physically continuous with it. After pollinationand coincident with withering of the stigma, a single layerof stylar cells becomes suberized, forming a protective layerof cicatrix. Vitis vinifera, grape, pistil, development, histochemistry  相似文献   

3.
The anatomy and ultrastructure of stigmas in 37 species of 13genera of Commelinaceae are described. The stigmas are papillate,papillae forming a dense fringe of cells around the mouth ofthe stylar canal in most species. The papillar cell wall iscovered by an unstructured cuticle of variable thickness andis of variable thickness because of small wall ingrowths. Thecuticle and the external surface of the papillar cell wall arevariably disrupted, particularly in the mid and basal regionsof the cell. This was not found in species of the genus Aploleiaor Callisia. The cell cytoplasm possesses all major organellesexcept chloroplasts and each cell is vacuolate. In all species except Aploleia mulitiflora the style comprisesan epidermis, a cortex and a hollow, tripartite canal whichis continuous into the ovary cavity. The three vascular strandsare positioned at the apex of each canal lobe. The canal cellsare elongate and tabular and the wall abutting the canal hasingrowths. The style in Aploleia is solid and the transmittingtissue comprises cells whose walls are electron opaque. Thecytoplasms of both types of cell are similar in content althoughthere is a single, large vacuole in canal cells and many smallvacuoles in transmitting tissue. The morphology, position and histochemistry of stigmatic andstylar exudate was similar in all ‘wet’ stigmas.Most of the exudate originates from the stylar canal althoughsignificant contributions are made by the papillae in stigmasof Coleotrype, Dichorisandra and Thyrsanthemum. There is no apparent relationship between stigma structure andthe presence of self-incompatibility. Stigma papillae, stylar canal, transmitting tissue, Commelinaceae  相似文献   

4.
Studies were carried out on structural and cytochemical aspectsof the stigma and style ofVitis vinifera . The stigma is ofthe wet papillate type with a continuous cuticle and pellicle.During the development of the papillae, the cell walls increasein thickness and produce a secretion product constituted oflipids that pass through the wall forming the exudate. The styleis solid with a central core of transmitting tissue which hasconspicuous intercellular spaces that increase remarkably fromthe periphery to the centre where the cuticle is present. Theintercellular spaces, where the pollen tubes grow, contain amatrix that includes polysaccharides, pectic substances andscattered areas of lipidic nature. Cytochemistry; stigma; style; ultrastructure; Vitis vinifera  相似文献   

5.
The development and cytochemical features of the stigma andstyle have been investigated in Sugar apple, Annona squamosaL., using light and electron microscopy. The pistil is a syncarpwith an open stylar canal. Papillae of epidermal origin lineboth the surface of the stigma and the inner face of the stylarcanal. The papillae contain organelles characteristic of secretorycells with a highly thickened cellulosic wall. The wall is multi-layered,the zones differing in their microfibrillar stacking and orientation.The stigma is of the ‘wet’ type and the surfaceexudate is heterogeneous in microscopic appearance and reactscytochemically for proteins, carbohydrates and lipids. The surfacecuticle undergoes dissolution prior to anthesis. A secretionalso appears in the thickened middle lamella of the sub-epidermalcell layer which reacts cytochemically for pectinaceous acidicpolysaccharides. Esterase activity of papillae is indicative of the receptiveareas, and it is also related to the onset of receptivity. Acidphosphatase activity is intense in the sub-epidermal cell layerswhich probably reflects their secretory activity. Pollinationtriggers a copious flow of secretion onto the stigma surfacewhich engulfs the pollen grains. It appears that most of theacidic polysaccharides of this secretion come from the middlelamella of the sub-epidermal cell layer. Compatible pollen tubes have no apparent barriers to overcomeon their route to the embryo sac and the inherent protogynousdichogamy seems to control the acceptance or rejection of compatiblepollen. Annona squamosa L., sugar apple, stigma, style, secretions  相似文献   

6.
The pistil of Hypericum calycinum has a pentacarpellary, syncarpousovary with five slender styles, each terminating in a smallstigma. The stigma is dry and papillate with a thin lining ofpellicle. The cuticle is thin and continuous around the papillae.A large vacuole filled with tannins occupies the major partof the papillae and the cytoplasm forms a thin lining aroundthe vacuole. The cell wall of the mature papillae show two distinctlayers - an outer layer of loosely woven fibrils and an innerdenser layer with compact fibrils. A large number of small lipoidalbodies accumulate just below the cuticle. The papillae havefewer organelles than those typical of glandular cells. Dictyosomesobserved occasionally are without associated vesicles. The cytoplasmis rich in ribosomes. The basal portions of the papillae mergeinto the transmitting tissue made up of loosely arranged cells.The intercellular matrix of the transmitting tissue is richin lipids. Pollen grains are deposited between the papillae.Upon pollen germination, pollen tubes enter the stigma throughthe interstices between the papillae Hypericum calycinum, cytochemistry, pistil, pollen-pistil interaction, stigma, ultrastructure  相似文献   

7.
The capitate stigma of Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Leonard is an intensely folded bilobed structure. The epidermal layer of the stigma consists of non-papillate cells. Before anthesis the epidermis is covered with a cuticle and thin proteinaceous layer. Elongated subepidermal cells constitute the secretory zone. Cell disintegration in the central region of each stigma lobe leads to cavities that become connected to the central cavity in the style. During early anthesis it appears as if the receptive surface of the stigma is confined to the depressions of the stigma surface and to the cleft between the two stigma lobes as the secretory product and pollen grains are mainly confined to these areas. The secretory products of the stigma and style are released during five different stages from prior to anthesis to late anthesis. The stigmatic exudate appears complex and consists of carbohydrates, proteins and lipids. The style has a hollow, lysigenous, fluid-filled canal that is not lined with an epidermal layer or cuticle. The stylar canal is continuous with the opening between the two stigma lobes and provides an open route for the passage of exudate. The stylar exudate is PAS-positive. The dorsal and ventral bundles that supply the style branch in such a way as to almost form a cylinder around the central transmitting tissue and stylar canal. New sieve elements proliferate before anthesis.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 295–304.  相似文献   

8.
9.
山茱萸花柱和柱头的发育解剖学及组织化学   总被引:3,自引:0,他引:3  
山茱萸成熟雌蕊的柱头为干型,具表皮起源的单细胞乳突。在开花后授粉前乳突细胞的顶部发生凹陷,授粉后乳突细胞迅速萎缩。花柱在发育初期为开放型,发育后期花柱道消失,成为一种具特殊结构的闭合型。成熟花柱由表皮、皮层和特殊的引导组织等部分构成,在皮层中贯穿有3条维管束,引导组织的中央则有二列类似腺质的内表皮细胞,该细胞富含蛋白质、核酸和多糖类物质。  相似文献   

10.
The histological and histochemical changes during the developmentof the stigma and style of Madhuca indica of the family Sapotaceaehave been investigated. The stigma is of the wet type and thestyle is open. The stigma secretion, present from stage I onwardsis lipophilic. But the protein, polysaccharides and variousenzymes are secreted only by the third, receptive stage. Thestigma has a stellate cavity opening into the stylar canals.The exudate along with various constituents is present up tostage VI of flower maturity. The pollen—pistil interactionstudies show a strong self-incompatibility response. The pollentubes show coiling and clubbing in the stigmatic cavity andstylar canals, even in the case of compatible cross pollination.Various methods are successfully employed to overcome self-incompatibility. Madhuca indica, Mahuda, development, histochemistry, pollen—pistil interaction, self-incompatibility, style and stigma  相似文献   

11.
Exudate production in the pistil of Lilium longiflorum was studiedin relation to pollen tube growth, using scanning electron microscopy(SEM), transmission electron microscopy and light microscopy.In contrast with conventional fixation for SEM, during whichthe exudate of L. longiflorum largely washes away, the exudateremains present through freezing in case of cryo-SEM. Usingthe latter method we observed that exudate production on thestigma and in the style started before anthesis. Just underneaththe stigma the exudate was first accumulated at the top of eachsecretory cell, followed by a merging of those accumulationsas exudate production proceeded. Exudate is also produced bythe placenta. It was however not possible to determine whetherany of this fluid originated from the micropyle. Apart fromthe cell shape and the cuticle present in between the secretorycells, the ultrastructure of the secretory cells covering theplacenta was comparable to those of the stylar canal. The transferwall of the secretory cells of the placenta originated fromfusing Golgi vesicles but the endoplasmic reticulum seemed tohave an important role as well. After pollination the pollen tubes grew across the stigma andentered the style through one of the slits in the three stigmalobes. The pollen tubes grew straight downward through the styleand were covered by exudate. As the pollen tubes approachedthe ovary their growth was restricted to the areas with secretorycells. In the cavity the pollen tubes formed a bundle and theybent from this bundle in between the ovules towards the micropylarside. There they bent again to stay close to the secretory cells.After bud pollination the pollen tube growth was retarded. Laterarriving pollen tubes had a tendency to grow close to the secretorycells of the style, which resulted in a growth between thesecells and preceding pollen tubes. If there was still a littleexudate produced, it resulted in a lifting up of the pollentubes, out of the exudate. The relationship between exudateproduction and pollen tube growth is discussed. Both the speedand the guidance of the pollen tube seemed determined by theproperties of the exudate.Copyright 1994, 1999 Academic Press Cryo-scanning electron microscopy, exudate, Lilium longiflorum, lily, ovary, pollination, pollen tube growth, secretory cell, stigma, style  相似文献   

12.
Gladiolus has a dry type of stigma. Compatible pollen grainsalight and germinate on the receptive surface of the papillae,penetrate the cuticle and grow towards the style through a sub-cuticularpollen-tube guide of mucilage. This is secreted from epidermalcells of the stylodium and style canal. The cuticle, which coversthe pollen tube guide mucilage, is continuous through the stylecanal to the ovary. The wet stigma of Lilium also has cuticulartissue running through the style canal, covering the mucilage.  相似文献   

13.
Transmitting tissue in Ornithogalum is divided into three regions corresponding to classical divisions of the gynoecium: stigma, style, and ovary. The stigma differentiates from epidermal cells of the stylar apex. These cells form the stigmal papillae and have dense cytoplasm with abundant ER and lipid bodies. Papillae have walls with small transfer-ingrowths. At floral receptivity, papillae secrete a small amount of surface exudate. Epidermal cells of the style contain numerous spherosomes and have thin filaments of cytoplasm traversing the central vacuole. The stylar cortex is composed of 3-6 layers of parenchyma cells which contain numerous spherosomes and often have secondary vacuoles. Vascular tissue in the style consists of one collateral bundle in each lobe. Cells of the epidermal layer lining the stylar canal are secretory. They are initially vacuolate but fill progressively with dense cytoplasm as their secretory activity increases. Secretory activity occurs in three phases, each characterized by a particular organelle population and secretory product. At anthesis, the canal is filled with an exudate consisting of carbohydrate, protein, and lipid. In the ovary, the obturator differentiates from cells at the base of the funiculus and the tip of the carpel margins. It forms a pad of tissue which covers most of the former placenta. The obturator is secretory and produces a surface exudate. We believe our observations on Ornithogalum support the hypothesis that all transmitting tissue is of the same morphological origin and that it provides nutritive and chemotropic factors for pollen tube growth.  相似文献   

14.
The Pollen Tube Pathway in the Pistil of Lycopersicon peruvianum   总被引:1,自引:0,他引:1  
The pollen tube pathway has been studied in unpollinated andpollinated pistils of Lycopersicon peruvianum using histochemicalstains for detection of proteins, lipids and arabinogalactansby bright-field microscopy, and decolourized aniline blue fordetection of pollen tubes by epifluoresence microscopy. Thepollen tube pathway is a continuous tract of mucilage from thestigma surface to the ovule micropyles, and is associated witha continuous tract of specialized, protein-rich transmittingcells comprising the stigmatic papillae, vertical files of stylartransmitting cells and the placental epithelium within the ovary.The superficial exudate of the stigma is hydrophobic and richin lipids. The mucilage of the style and ovary is hydrophilicand rich in arabinogalactans but low in proteins. Pollen tubesgrow between cells through the mucilage of the stigma and stylartransmitting tract, and across the surface of the placenta inthe ovarian mucilage. The structure of the junction of the stylartransmitting tract with the top of the ovary placenta assistseffective distribution of pollen tubes within the ovary. Lycopersicon, solanaceae, fertilization, pistil, pollen tube, pollination  相似文献   

15.
The structure of the gynoecium and pollen tube pathway in unpollinated and pollinated carpels of Asclepias exaltata L. has been characterized. Pollen tubes penetrate a dry-type stigma, grow intercellularly in a core of solid tissue in the upper style, and subsequently traverse a hollow stylar canal to the ovary where they grow across the placental epithelium to the ovule micropyles. The fine structural characteristics of transmitting cells of the solid style, stylar canal, and placental epithelium indicate a secretory function. Extracellular secretions staining positively for proteins, insoluble carbohydrates, and arabinogalactans/arabinogalactan proteins are present in the solid style, hollow stylar canal, ovary, and micropyle. Micropylar exudate is present subtending the extended cuticle of the embryo sac adjacent to the filiform apparatus of the synergids, providing ultrastructural evidence for a secretion arising from the angiosperm embryo sac.  相似文献   

16.
Citrus limon has a wet stigma which can be divided in two zones: a glandular superficial one formed by papillae, and a non-glandular one formed by parenchymatic cells. The stigmatic exudate is produced by the papillae after the latter have reached their ultimate size. The papillae of the mature pistil are of varying size and composition. Both the unicellular and multicellular ones are present. The cells at the base of the papillae are rich in cytoplasm, whereas the tip cells are vacuolated. Histochemical analysis has shown that the exudate of Citrus is composed of lipids, polysaccharides, and proteins. Our results indicate that the lipidic component is produced and secreted first, followed by production and secretion of the polysaccharidic component. The lipidic component of the exudate is produced in the basal papillae cells and accumulates as droplets in dilated parts of the smooth endoplasmic reticulum (SER). Subsequently the lipid droplets are transported to the plasma membrane, and transferred by the latter into the cell walls. Then the exudate component is accumulated in the intercellular spaces and in the middle lamellar regions of the walls. Subsequently, the polysaccharidic component of the exudate is produced and secreted by the tip cells of the papillae.Abbreviations RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

17.
Structural and cytochemical aspects of the stigma-style complexofCorylus avellanawere studied. In cross section the stigmaticstyle consists of papillae, one or two layers of sub-epidermalcells and a central transmitting tissue. The papillae coverthe style for about 80% of its length, are unicellular and arecoated with a cuticle-pellicle. During development, the cellwalls of the papillae increase in thickness and between them,below the cuticle, lipid bodies are observed. The sub-epidermalcells are similar in cell content to the papillae. The centraltransmitting tissue consists of highly vacuolated cells andthe intercellular spaces are filled with a proteic and polysaccharidicsubstance. Both the transverse and longitudinal walls containplasmodesmata.Copyright 1998 Annals of Botany Company cytochemistry, stigma and style, ultrastructure,Corylus avellana  相似文献   

18.
Low seed ovule ratios have been observed in natural populations of Polygala vayredae Costa, a narrowly endemic species from the oriental pre-Pyrenees. To evaluate physical and nutritional constraints and pollen tube attrition in this endemic species, stigma and style anatomy, as well as pollen tube development along the pistil were investigated using light and fluorescence microscopy. The structural morphology of the stigmatic region was also examined with scanning electron microscopy. Pollen grains that reached the stigmatic papillae came into contact with a lipid-rich exudate and germinated easily. Although a large number of pollen grains reach the stigmatic papillae, few pollen tubes were able to grow into the style towards the ovary. The style was hollow, with the stylar channel beginning a few cells below the stigmatic papillae. Initially, the stylar channel area was small compared to other levels of the style, and was surrounded by lipid-rich, highly metabolic active cells. Furthermore, lipid-rich mucilage was detected inside the stylar channel. At subsequent style levels towards the ovary, no major reserves were detected histochemically. The reduced intercellular spaces below the stigmatic papillae and the reduced area of the stylar channel at its commencement are suggested to physically constrain the number of pollen tubes that can develop. In subsequent levels of the style, the stylar channel could physically support a larger number of pollen tubes, but the lack of nutritional reserves cannot be disregarded as a cause of pollen tube attrition. Finally, the number of pollen tubes entering the ovary was greater than the number of ovules, suggesting that interactions occurring at this level play a major role in the final reproductive outcome in this species.  相似文献   

19.
The structure and histochemistry of the solid style of Nicotiana sylvestris Speg. and Comes have been studied by light and electron microscopy. The transmitting tissue develops large intercellular spaces filled with secretions rich in proteins and carbohydrates during maturation. The cells possess large nuclei, numerous plastids with starch grains, mitochondria, ribosomes and well developed endoplasmic reticulum and golgi apparatus. The plastids in the stylar region immediately below the stigma produce electron-dense osmiophilic substances which are probably transferred into the cytoplasm by a process resembling budding-off of vesicles. The Golgi apparatus may use the starch grains as a source of sugars for the synthesis and secretion of extracellular polysaccharides. The structural and cytochemical differences between the glandular cells of the stigma and the stylar transmitting tissue are discussed.  相似文献   

20.
An ultrastructural investigation of the entire transmitting tract in Trimezia fosteriana (Iridaceae) was undertaken. The transmitting tissue is secretory but transfer cells do not occur at any level. With exception for the stigma papillae, the cells are covered with large amounts of secretory products. The papillae have a thick and ridged cuticle. The cuticle in the rest of the transmitting tract is thin and detached from the cell wall by the secretory products. It is more or less ruptured in the secretory parts of the stigma and ovary. In the stylar canal the major part of the cuticle is continuous and covers the secretory products. The occurence of a large amount of vesicles in the stigma transmitting tissue cells is interpreted as a result of high dictyosome activity. An electron opaque material is produced in the dictyosomes and appears in vesicles and vacuoles but also between the plasma membrane and the cell walls in the stigma. A small amount of such material is present in the cell walls. Corresponding material is also present in the style and the ovary but declines basipetally. Plastids with strongly electron opaque plastoglobules are present at all levels in the transmitting tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号