首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Abstract: Voltage-dependent 45Ca2+ uptake into rat whole brain synaptosomes was measured after 3-s KCl-induced depolarization to investigate possible inhibitory effects of calcium antagonists, nitrendipine, nimodipine, and nisoldipine. At a Ca2+ concentration of 1.2 m M , nitrendipine, in concentrations ranging from 0.1 n M to 10 μ M , had no effect on 45Ca2+ uptake. When the Ca2+ concentration was lowered to 0.06 and 0.12 m M , nitrendipine, 10 μ M , inhibited 45Ca2+ uptake in response to 109 m M KCl depolarization. However, in a separate concentration response study, nitrendipine, nimodipine, and nisoldipine, 0.1 n M to 10 μ M , failed to alter the uptake of 45Ca2+ (0.06 m M Ca2+) into 30 m M KCl-depolarized synaptosomes. The high concentrations of these agents required to depress 45Ca2+ uptake indicate that the dihydropyridine calcium antagonists are considerably less potent in brain tissue than in peripheral tissue.  相似文献   

2.
Increase in the extracellular Ca2+ concentration from low (≤ 10−7 M) to normal (10−3 M) caused morphological changes of cultured myocardial cells obtained from fetal mouse heart. The extracellular Na+ and K+ concentrations of the normal medium (10−3 M Ca2+) did not significantly affect the genesis of these morphological changes. Like Ca2+, Ba2+ and Sr2+, but not Mg2+, Co2+ or Ni2+, could induce morphological changes. Increase in the extracellular Ca2+ concentration from 10−8 M to 10−3M also caused excess uptake of 45Ca2+ by cultured myocardial cells. B–16CW 1 cells, which did not show these morphological changes, did not take up excess 45Ca2+ on this treatment. Treatments, such as addition of verapamil or incubation at pH 6.3, which reduced the genesis of morphological changes, reduced the rate of 45Ca2+ uptake by myocardial cells. These facts show that the morphological changes of myocardial cells induced by increasing the extracellular Ca2+ concentration from low to normal are due to excess uptake of Ca2+ by the myocardial cells.
The morphological changes of cultured myocardial cells induced by increasing the extracellular Ca2+ concentration from low to normal were reversed on further incubation of the cells in medium with or without Ca2+.  相似文献   

3.
Abstract— The rate of efflux of 45Ca2+ from slices of rat cerebral cortex was resolved into two exponential curves which were attributed to an extracellular component and an intracellular or bound component. Electrical stimulation increased efflux of 45Ca2+ from the more stable pool and the time course for the redistribution of Na+ and K+ paralleled that for the increased efflux of Ca2+. This effect of stimulationwas dependent on the presence of Na+ in the incubation medium. Lack of Na+ in the medium during loading of the slices with 45Ca2+ increased uptake but on subsequent transfer to a medium containing Na+, electrical pulses failed to increase the rate of efflux of 45Ca2+. In unstimulated slices, the rate of efflux of 45Ca2+ was dependent upon the concentration ratio of Na+ to Ca2+ in the incubation medium. Saxitoxin and tetrodotoxin inhibited the increased efflux of 45Ca2+ that occurred during electrical stimulation but exerted no effect on Ca2+-Ca2+ exchange. Our results suggest that there is a Na+-dependent turnover of Ca2+ in brain slices which may involve changes in affinity at a common binding site. The possible involvement of such a Na+-Ca2+ interaction in the regulation of neurotransmitter function is discussed.  相似文献   

4.
Abstract: Purified chromaffin granules from bovine adrenal medulla bound a small group of medullary cell cytosol proteins at micromolar levels of Ca2+ and physiological levels of K+, Mg2+, and Mg-ATP. The bound proteins had molecular weights of 33,000-37,000 and 70,000-71,000 on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and did not correspond with any previously reported cytosolic components of chromaffin cells. The new proteins were eluted from intact granules or resealed granule membranes at 0.1 μ M Ca2+; binding was half-maximal at 2.6 μ M . Adsorption and elution in this manner resulted in a high degree of purification of the new proteins that were minor components of the original cytosol. Partially purified fractions enriched in the 33,000-37,000 and 70,000-71,000 proteins bound 45Ca2+ at submicromolar levels in the presence of millimolar Mg2+. Calmodulin was also bound by the granule membranes and was present in trace amounts in cytosol eluates from granules, but it did not bind to the new proteins in the presence of calcium ions. The possible significance of the new proteins to calcium-mediated secretion from chromaffin cells is discussed.  相似文献   

5.
Abstract: Primary cultures of rat cortex, conveniently prepared from newborn animals, were used to study opioid effects on 45Ca2+ uptake and glutamate release. 45Ca2+ uptake, induced by treatment with glutamate or NMDA, was largely blocked by the NMDA antagonist MK-801. K+ depolarization-induced 45Ca2+ uptake was also reduced by MK-801, indicating that the effect was mediated by glutamate release. Direct analysis verified that glutamate, and aspartate, were indeed released. Opioid peptides of the prodynorphin system were also released and these, or other peptides, were functionally active, because naloxone treatment increased glutamate release, as well as the 45Ca2+ uptake induced by depolarization. Opioid agonists, selective for μ-, κ-, and δ-receptors, inhibited the 45Ca2+ uptake induced by K+ depolarization. The combination of low concentrations of MK-801 and opioid agonists resulted in additive inhibition of K+- induced 45Ca2+ uptake. The results indicate that this system may be useful as an in vitro CNS model for studying modulation by opioids of glutamate release and Ca2+ uptake under acute, and perhaps also chronic, opiate treatment.  相似文献   

6.
Abstract: In adrenal chromaffin cells, depolarization-evoked Ca2+ influx and catecholamine release are partially blocked by blockers of L-type voltage-sensitive Ca2+ channels. We have now evaluated the sensitivity of the dihydropyridine-resistant components of Ca2+ influx and catecholamine release to a toxin fraction (FTX) from the funnel-web spider poison, which is known to block P-type channels in mammalian neurons. FTX (1:4,000 dilution, with respect to the original fraction) inhibited K+-depolarization-induced Ca2+ influx by 50%, as monitored with fura-2, whereas nitrendipine (0.1–1 μ M ) and FTX (3:3), a synthetic FTX analogue (1 m M ), blocked the [Ca2+]i transients by 35 and 30%, respectively. When tested together, FTX and nitrendipine reduced the [Ca2+]i transients by 70%. FTX or nitrendipine reduced adrenaline and noradrenaline release by ∼80 and 70%, respectively, but both substances together abolished the K+-evoked catecholamine release, as measured by HPLC. The ω-conotoxin GVIA (0.5 μ M ) was without effect on K+-stimulated 45Ca2+ uptake. Our results indicate that FTX blocks dihydropyridine- and ω-conotoxin-insensitive Ca2+ channels that, together with L-type voltage-sensitive Ca2+ channels, are coupled to catecholamine release.  相似文献   

7.
Abstract: 45Ca2+ uptake measurements were performed on intact and osmotically lysed synaptosomes from rat brain to study the possible influence of prostaglandins (PGs) on Ca2+ movements into and within the nerve endings. The K+-induced 45Ca2+ uptake of intact synaptosomes was not influenced by several inhibitors of PG synthesis. 45Ca2+ uptake in lysed synaptosomal preparations was promoted by ATP and seemed to be largely attributable to mitochondria, as it was inhibited by mitochondrial poisons. This Ca2+ uptake was strongly reduced by PG synthesis inhibitors but also by PG precursor fatty acids. Both PG synthesis inhibitors and precursors, according to their relative efficacy in blocking Ca2+ uptake, were able to induce Ca2+ efflux from preloaded intrasynaptosomal organelles. The PGs E2, F, D2, and thromboxane B2 were without effect on 45Ca2+ uptake in lysed synaptosomal preparations. On the basis of our results it does not seem likely that PGs influence Ca2+ availability by modulating Ca2+ fluxes into or within the nerve endings. The observed inhibitory effects of PG synthesis inhibitors and precursors on the intrasynaptosomal Ca2+ uptake might be due to unspecific impairment of mitochondrial functions.  相似文献   

8.
Abstract Cell suspensions of Methanobacterium thermoautotrophicum took up 45Ca2+ in a temperature-dependent, Ca2+-saturable and Co2+-sensitive process. The accumulation of 45Ca2+ was lower in the cells energized by CO2+ H2 than in those under non-energized conditions. The accumulated Ca2+ were, in part, released by the divalent cations ionophore A23187 in the presence of EGTA while the uptake of Ca2+ was accelerated by the addition of A23187 to the medium containing Ca2+. The results indicate the presence of a carrier-mediated Ca2+ uptake in the Methanobacterium thermoautotrophicum membrane which is compensated by an energy-dependent and outward-directed Ca2+ transport.  相似文献   

9.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

10.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

11.
Abstract: In cultured bovine adrenal chromaffin cells, a nonselective protein kinase inhibitor, staurosporine, inhibits secretory function and induces neurite outgrowth. In the present study, effects of other nonselective protein kinase inhibitors (K-252a, H-7, and H-8) and reportedly selective protein kinase inhibitors (KN-62 and chelerythrine chloride) were examined on bovine adrenal chromaffin cell morphology, secretory function, and 45Ca2+ uptake. Treatment of chromaffin cells with 10 µ M K-252a, 50 µ M H-7, or 50 µ M H-8 induced changes in cell morphology within 3 h; these compounds also induced a time-dependent inhibition of stimulated catecholamine release. Chelerythrine chloride, a selective inhibitor of Ca2+/phospholipid-dependent protein kinase, did not induce outgrowth or inhibit secretory function under our treatment conditions. KN-62, a selective inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMK II), significantly inhibited stimulated catecholamine release (IC50 value of 0.32 µ M ), but had no effect on cell morphology. The reduction of secretory function induced by 1 µ M KN-62 was significant within 5 min and rapidly reversible. Unlike H-7, H-8, and staurosporine, KN-62 significantly inhibited stimulated 45Ca2+ uptake. KN-04, a structural analogue of KN-62 that does not inhibit CaMK II, inhibited stimulated 45Ca2+ uptake and catecholamine release like KN-62. These studies indicate that KN-62 inhibits secretory function via the direct blockade of activated Ca2+ influx. The nonselective inhibitors, K-252a, H-7, H-8, and staurosporine, inhibit secretory function by another mechanism, perhaps one involving alterations in the cytoskeleton.  相似文献   

12.
Abstract: The σ ligand 1,3-di- O -tolylguanidine (DTG) increased basal dynamin and decreased depolarization-stimulated phosphorylation of the synaptosomal protein synapsin Ib without having direct effects on protein kinases or protein phosphatases. DTG dose-dependently decreased the basal cytosolic free Ca2+ concentration ([Ca2+]i) and blocked the depolarization-dependent increases in [Ca2+]i. These effects were inhibited by the σ antagonists rimcazole and BMY14802. The nitric oxide donors sodium nitroprusside (SNP) and 8-( p -chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate decreased basal [Ca2+]i and the KCl-evoked rise in [Ca2+]i to an extent similar to DTG. SNP, but not DTG, produced a rise in cyclic GMP levels, suggesting that the effect of DTG on [Ca2+]i was not mediated via downstream regulation of cyclic GMP levels. DTG increased 45Ca2+ uptake and efflux under basal conditions and inhibited the 45Ca2+ uptake induced by depolarization with KCl. The KCl-evoked rise in [Ca2+]i was inhibited by ω-conotoxin (ω-CgTx)-GVIA and -MVIIC but not nifedipine and ω-agatoxin-IVA. The effect of DTG on decreasing the KCl-evoked rise in [Ca2+]i was additive with ω-CgTx-MVIIC but not with ω-CgTx-GVIA. These data suggest that DTG was producing some of its effects on synapsin I and dynamin phosphorylation and intrasynaptosomal Ca2+ levels via inhibition of N-type Ca2+ channels.  相似文献   

13.
The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 m m for 125I-transferrin and 1.0 m m for catecholamine, and the intracellular concentrations were 0.1 μ m and 1 μ m , respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 n m , and peaked at 1 μ m when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.  相似文献   

14.
Abstract: GM1 in the nuclear membrane, previously shown to be up-regulated during neurite outgrowth, has been found to influence nuclear Ca2+ flux during differentiation of Neuro-2a cells. Nuclei were isolated from cultured Neuro-2a cells before and after neuraminidase-induced neuritogenesis and incubated with 45Ca2+ for varying periods to determine uptake/efflux of Ca2+. At 5, 10, and 15 min 45Ca2+ levels in nuclei from differentiated cells were significantly lower than those in nuclei from untreated cells. The same result was obtained when the GM1 level was elevated artificially by preincubation of the nuclei in 10 µ M GM1. In experiments designed to measure efflux specifically, isolated nuclei preincubated in GM1 released 45Ca2+ more rapidly than untreated nuclei. We conclude that one role of GM1 in the nuclear membrane is to alter Ca2+ regulatory mechanisms in the nucleus following onset of neuronal process outgrowth.  相似文献   

15.
Vitamin D3 at low concentration (10−9 M) inhibited the growth of Phaseolus vulgaris L. (cv. Contrancha) roots in vitro as measured by elongation (14 h) and [3H]-leucine incorporation into protein (2 h), and increased their labelling with 45Ca2+ (2 h). Cycloheximide and puromycin (50 u.M) blocked vitamin D3 stimulation of root 45Ca2+ labelling, indicating that it is mediated by de novo protein synthesis. The calcium ionophore X-537A (10−5JW) induced similar changes both in root elongation and 45Ca2+ uptake (14 h). This may indicate that the inhibitory effects of the sterol on root growth are mediated by changes in Ca2+ fluxes. However, this interpretation should be further strengthened by additional studies as the ionophore may have acted on root growth, affecting physiological processes other than Ca2+ transport.  相似文献   

16.
Abstract: The effect of melatonin on [3H]glutamate uptake and release in the golden hamster retina was studied. In retinas excised in the middle of the dark phase, i.e., at 2400 h, melatonin (0.1 and 10 n M ) significantly increased [3H]glutamate uptake, and this effect persisted in a Ca2+-free medium. On the other hand, melatonin significantly increased [3H]glutamate release in retinas excised at 2400 h, but this effect was Ca2+ sensitive. Melatonin significantly increased 45Ca2+ uptake by a crude synaptosomal fraction from retinas of hamsters killed at 2400 h. In retinas excised at 1200 h, melatonin had no effect on [3H]glutamate uptake, [3H]glutamate release, or 45Ca2+ uptake at any concentration tested. Cyclic GMP analogues, i.e., 8-bromoguanosine 3',5'-cyclic monophosphate and 2'- O -dibutyrylguanosine 3',5'-cyclic monophosphate, significantly increased [3H]glutamate uptake, [3H]glutamate release, and 45Ca2+ uptake by tissue removed at 1200 and 2400 h, suggesting that the effects of melatonin could correlate with a previously described effect of melatonin on cyclic GMP levels in the golden hamster retina. Taking into account the key role of glutamate in visual mechanisms, the results suggest the participation of melatonin in retinal physiology.  相似文献   

17.
Abstract— Calcium is transported at a fast rate of 410 mm/day in cat sciatic nerve on injection of 45Ca2+ into the L7 dorsal root ganglia. Nerve segments corresponding to the crest and the plateau regions of transported activity were analyzed by column chromatography on Sephadex G-100 and Biogel A 5m columns and the fast transported 45Ca2+ found to be bound to a protein of 15,000 dalton. Using [3H]leucine as a precursor, a labeled calcium binding protein (CaBP) was found located at the same position in elution volumes from the columns as was the protein-bound 45Ca2 +. The level of [3H]-labeled CaBP in the crest and plateau regions were compared using column chromatography and polyacrylamide gel electrophoresis techniques and approx 3×4 times more [3H]-labeled activity was found in the crest as compared to the plateau. These findings indicate that Ca2+ is fast transported in association with the CaBP. The relation of CaBP to the transport filament model of axoplasmic transport and its possible role in nerve are discussed.  相似文献   

18.
Abstract: We studied effects of Ca2+ in the incubation medium on [3H]dopamine ([3H]DA) uptake by rat striatal synaptosomes. Both the duration of the preincubation period with Ca2+ (0–30 min) and Ca2+ concentration (0–10 m M ) in Krebs-Ringer medium affected [3H]DA uptake by the synaptosomes. The increase was maximal at a concentration of 1 m M Ca2+ after a 10-min preincubation (2.4 times larger than the uptake measured without preincubation), which reflected an increase in V max of the [3H]DA uptake process. On the other hand, [3H]DA uptake decreased rapidly after addition of ionomycin in the presence of 1 m M Ca2+. The Ca2+-dependent enhancement of the uptake was still maintained after washing synaptosomes with Ca2+-free medium following preincubation with 1 m M Ca2+. Protein kinase C inhibitors did not affect apparently Ca2+-dependent enhancement of the uptake, whereas 1-[ N,O -bis(1,5-isoquinolinesulfonyl)- N -methyl- l -tyrosyl]-4-phenylpiperazine (KN-62; a Ca2+/calmodulin-dependent kinase II inhibitor) and wortmannin (a myosin light chain kinase inhibitor) significantly reduced it. Inhibitory effects of KN-62 and wortmannin appeared to be additive. N -(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7; a calmodulin antagonist) also remarkably inhibited the enhancement. These results suggest that Ca2+-dependent enhancement of [3H]DA uptake is mediated by activation of calmodulin-dependent protein kinases.  相似文献   

19.
Plasma membrane vesicles (ca 40% inside-out, after one freeze-thaw cycle) were extracted and purified from the shoots of oat ( Avena sativa L. ) and chickweed ( Stellaria media L.) using the two-phase aqueous polymer technique. In the presence of ATP or GTP, a rapid uptake of 45Ca2+ occurred (0.77 and 0.62 nmol Ca2+ mg-1 protein, for ATP and GTP, respectively, in oat, and 0.53 and 0.51 nmol Ca2+ mg-1 protein, for ATP and GTP, respectively, in chickweed). Nucleotide-dependent Ca2+-transport was sensitive to 1 μ M Erythrosin B (with ATP. inhibited by 52% in oat and in chickweed by 72%; with GTP, inhibition was similar in both species at ca 67%); ATP-dependent uptake was greater in oat than in chickweed, but not stimulated by calmodulin. Addition of the calcium ionophore A-23187 resulted in the release of label from the vesicles (41% and 63% release with ATP, and 24% and 52% release with GTP, in oat and chickweed, respectively). The results obtained suggest that Ca2+-transport is independent of the proton pump. In oat, kinetic data indicate a discontinuity in the absorption isotherm at 10 μ M free calcium.  相似文献   

20.
The Quantity of Calcium that Appears to Induce Neuronal Death   总被引:9,自引:5,他引:4  
Abstract: Excessive entry of Ca2+ through the NMDA receptor is thought to be the major cause of glutamate toxicity in brain neurons. However, actual quantitation of the calcium overload has not been achieved. Here we show that the absolute amount of 45Ca2+ taken up via the NMDA receptor correlates quantitatively with the amount of acute cell death in cultured cerebellar granule cells of the rat. Analysis of 9-and 16-day cultures reveals that the NMDA-induced Ca2+ uptake is about the same at these ages, whereas the Ca-dependent lethal process is more developed in the older neurons. The calculated lethal concentration of 45Ca taken up exceeds by ∼10,000 times the maximal concentration of [Ca2+], that can be measured by fluorescence imaging. It is suggested that the Ca2+ taken up induces the lethal process in a subcellular structure in which it has been segregated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号