首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The axolotl Mauthner (M) cell receives synapses from the vestibular and lateral line nerves on highly branched regions located ventrally and dorsally, respectively, of its lateral dendrite. One of the pair of M-cells was deprived of all ipsilateral vestibular supply and of some lateral line supply by unilateral ablation of the otic vesicle at stage 34, before nerve outgrowth and M-cell differentiation. Histological reconstruction of such deprived M-cells at stages 42 and 45, following M-cell differentiation, revealed that the deprived dendrite was poorly developed, being thinner and much less ramified than in controls. This effect was specific; no changes were consistently observed in the shape or size of the M-cell body, the medial dendrite, or the axon. Electron microscopic examination of deprived M-cells showed that morphologically normal synapses were present on the lateral dendrite; however, synaptic knobs identifiable as being of vestibular origin were absent. We suggest that patterned growth and branching of the M-lateral dendrite during differentiation is regulated through interactions with afferent axons.  相似文献   

2.
SYNOPSIS. In premetamorphic amphibians, the Mauthner cells (M-cells),a single pair of large neurons, are present in the medulla.M-cells differentiate early, are easily recognized morphologically,and in the axolotl embryo, may be approached experimentally:This system is a unique one for the study of neuronal development. The withdrawal of a neuron from the cell division cycle is anearly event in its differentiation. Gastrulae, neurulae andtailbud embryos were each given a single injection of 3H-thymidine.Radioautographs of larvae showed label over M-cell nuclei wheninjections were made before the end of gastrulation, but notwhen injections were made at later stages. Thus, the cells thatgive rise to M-cells cease DNA synthesis during late gastrulation. Unilateral rotations of prospective hindbrain through 180°were performed to see if M-cell axes are specified during neurulation.Rigid axial polarization of the M-cell does not appear to occurin the neurula: The rotated cell regulates and develops normallywith respect to its axes. A major source of input to the M-cell is from the ipsilateralvestibular system. To study the interaction of the M-cell withingrowing axons, unilateral implants of otic vesicles were madeanterior to the otic vesicle in host midtailbud embryos. Preliminarydata suggests a mechanism for the formation of specific neuronalconnections not dependent upon position-time relationships:The ectopic vestibular axons enter the medulla and course caudadto terminate in the region of the ipsilateral M-cell. Whetherthese axons actually form synapses on the M-cell remains tobe established.  相似文献   

3.
Summary Doubts exist as to whether afferent nerve fibers exert a neurotrophic effect on the differentiation of sensory cells in the developing vestibular neuroepithelium. To determine whether innervation of hair cells precedes their differentiation, we have used the L1 adhesion molecule as a marker for axons. The detection of L1 on afferent axons in the otic vesicle of mouse embryos on gestation day 11 shows that nerve fibers penetrate the neuroepithelium before the sensory cells differentiate. L1-immunoreactivity of nerve endings also reveals the considerable fiber ramification on gestation days 14 and 15, i.e., corresponding to the first stages of sensory cell differentiation. The expression of L1 at successive stages of nerve fiber growth in the neuroepithelium, such as fasciculation and ramification, is not consistent with the previous role proposed for L1 as a fascicule-promoting factor and raises the possibility that other mechanisms are involved in L1 mediaded adhesion.  相似文献   

4.
Mauthner cells (M-cells) are large reticulospinal neurons located in the hindbrain of teleost fish. They are key neurons involved in a characteristic behavior known as the C-start or escape response that occurs when the organism perceives a threat. The M-cell has been extensively studied in adult goldfish where it has been shown to receive a wide range of excitatory, inhibitory and neuromodulatory signals1. We have been examining M-cell activity in embryonic zebrafish in order to study aspects of synaptic development in a vertebrate preparation. In the late 1990s Ali and colleagues developed a preparation for patch clamp recording from M-cells in zebrafish embryos, in which the CNS was largely intact2,3,4. The objective at that time was to record synaptic activity from hindbrain neurons, spinal cord neurons and trunk skeletal muscle while maintaining functional synaptic connections within an intact brain-spinal cord preparation. This preparation is still used in our laboratory today. To examine the mechanisms underlying developmental synaptic plasticity, we record excitatory (AMPA and NMDA-mediated)5,6 and inhibitory (GABA and glycine) synaptic currents from developing M-cells. Importantly, this unique preparation allows us to return to the same cell (M-cell) from preparation to preparation to carefully examine synaptic plasticity and neuro-development in an embryonic organism. The benefits provided by this preparation include 1) intact, functional synaptic connections onto the M-cell, 2) relatively inexpensive preparations, 3) a large supply of readily available embryos 4) the ability to return to the same cell type (i.e. M-cell) in every preparation, so that synaptic development at the level of an individual cell can be examined from fish to fish, and 5) imaging of whole preparations due to the transparent nature of the embryos.  相似文献   

5.
The ultrastructure of the Mauthner cells (M-cells) of goldfish fries was investigated under four different functional states: a) intact (native fishes), b) fatigue (intact fishes subjected to a prolonged vestibular stimulation), c) adapted (intact fishes after a prolonged training session of the daily short vestibular stimuli), d) excited (adapted fishes subjected to a prolonged vestibular stimulation). It has been first found that the fatigue of the M-cells may result in destructive changes of their cytoskeleton. Besides, in the afferent synapses of both adapted and excited M-cells numerous dense-cored vesicles were revealed near the active zones. The data show the neuronal cytoskeleton to be the central target susceptible to damage upon stimulation. The training leads presumably to stabilization of the cytoskeleton ultrastructure. The dense-cored vesicles were suggested to play an active role in the process.  相似文献   

6.
This study examined the morphological development of the otolith vestibular receptors in quail. Here, we describe epithelial growth, hair cell density, stereocilia polarization, and afferent nerve innervation during development. The otolith maculae epithelial areas increased exponentially throughout embryonic development reaching asymptotic values near posthatch day P7. Increases in hair cell density were dependent upon macular location; striolar hair cells developed first followed by hair cells in extrastriola regions. Stereocilia polarization was initiated early, with defining reversal zones forming at E8. Less than half of all immature hair cells observed had nonpolarized internal kinocilia with the remaining exhibiting planar polarity. Immunohistochemistry and neural tracing techniques were employed to examine the shape and location of the striolar regions. Initial innervation of the maculae was by small fibers with terminal growth cones at E6, followed by collateral branches with apparent bouton terminals at E8. Calyceal terminal formation began at E10; however, no mature calyces were observed until E12, when all fibers appeared to be dimorphs. Calyx afferents innervating only Type I hair cells did not develop until E14. Finally, the topographic organization of afferent macular innervation in the adult quail utricle was quantified. Calyx and dimorph afferents were primarily confined to the striolar regions, while bouton fibers were located in the extrastriola and Type II band. Calyx fibers were the least complex, followed by dimorph units. Bouton fibers had large innervation fields, with arborous branches and many terminal boutons. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 436–455, 2010  相似文献   

7.
The highly complex geometry of dendritic trees is crucial for neural signal integration and the proper wiring of neuronal circuits. The morphogenesis of dendritic trees is regulated by innate genetic factors, neuronal activity, and external molecular cues. How each of these factors contributes to dendritic maturation has been addressed in studies of the developing nervous systems of animals ranging from insects to mammals. This article reviews our current knowledge and understanding of the role of afferent input in the establishment of the architecture of mature dendritic trees, using insect neurons as models. With these model systems and using quantitative morphometry, it is possible to define the contributions of intrinsic and extrinsic factors in dendritic morphogenesis of identified neurons and to evaluate the impact of dendritic maturation on the integration of identified neurons into functional circuits subserving identified behaviors. The commonly held view of dendritic morphogenesis is that general structural features result from genetic instructions, whereas fine connectivity details rely mostly on substrate interactions and functional activity. During early dendritic maturation, dendritic growth cone formation produces new branches at all dendritic roots. The second phase is growth cone independent and afferent input dependent, during which branching is limited to high order distal dendrites. During the third phase, activity-dependent synaptic maturation occurs with limited or subtle remodeling of branching.  相似文献   

8.
The effect of human and rabbit neutrophilic defensins NP-1 and amonoglycoside antibiotic gentamicin on the synaptic transmission in the afferent synapse of isolated vestibular apparatus of the frog has been comparatively studied. Both defensins proved active in the concentration range of 0.0001 to 1 nM and efficiently decreased the impulse frequency in the afferent nerve fibers in a concentration-dependent manner. No significant differences in the efficiency of rabbit and human defensin NP-1 have been revealed in these experiments. Gentamicin also had an inhibitory effect on the afferent discharge in the concentration range of 10–500 μM (0.5–25 mg/kg). The inhibitory effect of gentamicin on the impulse activity of the vestibular nerve was observed at therapeutic doses. The excitatory effect of the putative neurotransmitter L-glutamate was considerably inhibited by defensin NP-1. These findings suggest that the mechanism of defensin action involves a modification of the synaptic transmission in the hair cell receptor and modulation of the effect of L-glutamate.  相似文献   

9.
The ultrastructure of the Mauthner cells (M-cells) and the behaviour of Xenopus laevis tadpoles, reared from eggs under increased gravity (2.9 g) which changes the activity of an afferent vestibular input, were investigated. Besides, a study was made of tadpoles after the hindbrain ablation at earlier embryonal stages which significantly altered the microenvironment of M-cells. It is shown that experimental treatments enhance the proliferation of endoplasmic reticulum and its derivatives, so called subsurface cisterns, in the subsynaptic areas. Some structural changes of the synaptic active zones and the cytoskeleton of M-cells were also noticed. It is assumed that the development of the endoplasmic reticulum promotes an intense removal of calcium ions from subsynaptic areas. The plasticity of the endoplasmic reticulum together with other ultrastructural changes apparently stipulate the adaptation of neurons to changed conditions of functioning.  相似文献   

10.
To investigate the role of brain-derived neurotrophic factor (BDNF) in differentiation of cranial sensory neurons in vivo, we analyzed development of nodose (NG), petrosal (PG), and vestibular (VG) ganglion cells in genetically engineered mice carrying null mutations in the genes encoding BDNF and the proapoptotic Bcl-2 homolog Bax. In bax(-/-) mutants, ganglion cell numbers were increased significantly compared to wild-type animals, indicating that naturally occurring cell death in these ganglia is regulated by Bax signaling. Analysis of bdnf(-/-)bax(-/-) mutants revealed that, although the Bax null mutation completely rescued cell loss in the absence of BDNF, it did not rescue the lethality of the BDNF null phenotype. Moreover, despite rescue of BDNF-dependent neurons by the bax null mutation, sensory target innervation was abnormal in double null mutants. Vagal sensory innervation to baroreceptor regions of the cardiac outflow tract was completely absent, and the density of vestibular sensory innervation to the cristae organs was markedly decreased, compared to wild-type controls. Moreover, vestibular afferents failed to selectively innervate their hair cell targets within the cristae organs in the double mutants. These innervation failures occurred despite successful navigation of sensory fibers to the peripheral field, demonstrating that BDNF is required locally for afferent ingrowth into target tissues. In addition, the bax null mutation failed to rescue expression of the dopaminergic phenotype in a subset of NG and PG neurons. These data demonstrate that BDNF signaling is required not only to support survival of cranial sensory neurons, but also to regulate local growth of afferent fibers into target tissues and, in some cells, transmitter phenotypic expression is required.  相似文献   

11.
Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking produces decreased motoneuron number, size, and dendritic length in the rostral portion of the adult SNB as well as deficits in adult male copulatory behavior. Previous research suggests that decreases in perineal tactile stimulation may be responsible for these effects. To determine whether the regional effects of maternal licking on SNB morphology are driven by sensory afferent innervation of the lumbosacral spinal cord, we used WGA‐HRP to reconstruct the location of sensory afferent fibers from the perineal skin. We found that these fibers are caudally concentrated relative to the area of the SNB dendritic field, with the rostral dendritic arbor receiving little perineal afferent innervation. We also assessed Fos expression following perineal tactile stimulation to determine whether it increased local spinal cord activity in the SNB dendritic field. Sixty seconds of licking‐like perineal stimulation produced a transient 115% increase in Fos expression in the area of the SNB dendritic field. This effect was driven by a significant increase in Fos in the caudal portion of the SNB dendritic field, matching the pattern of perineal afferent fiber labeling. Perineal tactile stimulation also produced significantly greater Fos expression in male pups than in female pups. Together, these results suggest that perineal sensory afferent activity mediates the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

12.
M-cell surface glycoconjugate expression was investigated by applying a panel of lectins to whole fixed mouse Peyer's and caecal patches. While the majority of lectins failed to identify mouse M-cells, the lectinEuonymus europaeus differentially stained the surface of M-cells in both mouse Peyer's and caecal patches, and the lectinsUlex europaeus II andBandeiraea simplicifolia I isolectin B4 identified M-cells in the Peyer's and caecal patch follicle associated epithelium, respectively. These three mouse M-cell markers failed to identify rat and rabbit Peyer's patch M-cells, although bothEuonymus europaeus andUlex europaeus II differentially stained M-cells in the periphery of rabbit caecal patch domes. These site and species related variations in M-cell surface glycoconjugate expression may reflect the local microorganism populations and will have important implications if orally delivered vaccines and drugs are to be targeted to M-cells via their surface glycoconjugates.  相似文献   

13.
Lømo  Terje 《Brain Cell Biology》2003,32(5-8):835-848
This review focuses on mechanisms that determine the position, number, size, and distribution of neuromuscular junctions (NMJs) on skeletal muscle fibers. Most of the data reviewed derive from studies of ectopic NMJ formation on soleus (SOL) muscle fibers in adult rats, which recapitulates essential aspects of NMJ formation in normal development. Transplanted axons induce acetylcholine receptor (AChR) aggregates, which are multiple and irregularly distributed initially but subsequently undergo massive reorganization such that one or a few winners survive and reach a certain size while the rest are eliminated (the losers). Results obtained by blocking nerve activity early and stimulating the SOL electrically show that evoked muscle impulse activity is responsible for the growth of winners to a given size and the creation of refractory zones, about 0.75 long, on each side of the winners, in which the elimination of losers occurs. Consequently, when two or more aggregates or NMJs survive on one fiber, they are, on average, at least 1.5 mm apart. Locally applied neural agrin induces comparable aggregation of AChRs and other postsynaptic proteins on denervated SOL fibers and such aggregates undergo similar activity-dependent selection for survival or elimination in refractory zones. In a dose-dependent way, neural agrin alone also induces expression of ε-AChR subunits and stabilizes AChRs to a half-life of 10 days, as found at normal NMJs. It is argued that signs of prepatterning of innervation sites by intrinsic muscle mechanisms may refer to epiphenomena that play no important role in NMJ formation. The conclusion is that neural agrin initiates and then maintains NMJs where motor axons happen to contact receptive muscle fibers and that evoked muscle impulse activity then ensures that the NMJs reach their appropriate size, efficiency and spatial distribution along each fiber.  相似文献   

14.
The Mauthner (M-) cells, a bilateral pair of medullary neurons in fish, initiate the characteristic “C-start” predatory escape response of teleosts. Similar movements have been described during hatching, social interactions, and feeding. M-cell firing, however, has not been correlated directly with these other behaviors. The objective of this study was to determine whether the M-cell, in addition to escape, plays a role in feeding.
  1. Goldfish were chronically implanted with electrodes positioned near the axon cap of one of the two M-cells. Subsequently, M-cell activity was monitored for up to 8 days while fish were surface feeding on live crickets.
  2. The M-cell fires and the fish performs a C-shaped flexion in association with the terminal phase of prey capture. Thus, the M-cell is active in the context of at least two behaviors, predator escape and prey capture, and may be considered a part of behaviorally shared neural circuitry.
  3. For the goldfish, Mauthner-initiated flexions during feeding rapidly remove the prey from the water's surface and minimizes the fish's own susceptibility to surface predation. Other species may possess a diverse repertoire of Mauthner-mediated feeding behaviors that depend on their adaptive specializations for predation. Moreover, group competition between predators and their prey may have facilitated a “neural arms race” for M-cell morphology and physiology.
  相似文献   

15.
The peripheral fibers that extend from auditory neurons to hair cells are sensitive to damage, and replacement of the fibers and their afferent synapse with hair cells would be of therapeutic interest. Here, we show that RGMa, a repulsive guidance molecule previously shown to play a role in the development of the chick visual system, is expressed in the developing, newborn, and mature mouse inner ear. The effect of RGMa on synaptogenesis between afferent neurons and hair cells, from which afferent connections had been removed, was assessed. Contact of neural processes with hair cells and elaboration of postsynaptic densities at sites of the ribbon synapse were increased by treatment with a blocking antibody to RGMa, and pruning of auditory fibers to achieve the mature branching pattern of afferent neurons was accelerated. Inhibition by RGMa could thus explain why auditory neurons have a low capacity to regenerate peripheral processes: postnatal spiral ganglion neurons retain the capacity to send out processes that respond to signals for synapse formation, but expression of RGMa postnatally appears to be detrimental to regeneration of afferent hair cell innervation and antagonizes synaptogenesis. Increased synaptogenesis after inhibition of RGMa suggests that manipulation of guidance or inhibitory factors may provide a route to increase formation of new synapses at deafferented hair cells. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 457–466, 2014  相似文献   

16.
During development, afferent fibers may stimulate development of postsynaptic target neurons. By surgically ablating an otic vesicle in zebrafish embryos 30 hr after fertilization we deprived the developing Mauthner (M) neuron of vestibular axonal input to its lateral dendrite. After 8 days, 14 M cells were examined by light microscopy, and in each case the size and branching of the lateral dendrite was reduced. No consistent changes were observed in shape and size of other regions of the deprived cells or in the contralateral control cells. Synapses onto five of these pairs of cells were examined by electron microscopy. Except for missing vestibular terminals on the deprived dendrites, the synaptic input to the dendrites and to other regions of the M cell was normal in distribution and pattern. These data suggest that growth-promoting or trophic effects of vestibular axons upon the M cell are localized to its lateral dendrite.  相似文献   

17.
The arrival of sensory fibers in developing mouse skin has been demonstrated to coincide precisely with the initiation of nerve growth factor (NGF) synthesis in the skin (Davies et al., 1987). This temporal correlation suggested that the arrival of sensory fibers might initiate NGF synthesis in their target tissues. Here we have eliminated the sensory and motor neurons projecting to the chick leg by the removal of the neural primordia in 3-day-old embryos. The levels of mRNA NGF of intact and denervated leg skin were identical, indicating that the developmental regulation of NGF synthesis in the skin of chick embryos is independent of its innervation.  相似文献   

18.
The localization of Ca2+ in control and adapted goldfish fry Mauthner cells (M-cells) revealed by sedimentation with potassium pyroantimonate technique was investigated. It has been shown the following. 1. In the control M-cells electron dense precipitates are present in the extracellular space, commonly within the active zone clefts of chemical synapses, throughout the whole apposition of the mixed synapses and in the synaptoplasm of both type afferent boutons. No precipitates were seen in the cytoplasm of M-cells. 2. After long term natural (vestibular) stimulation (LTNS), resulting in a strong functional suppression of M-cells, precipitates disappeared entirely from active zones but remained numerous in the cytoplasm of M-cells. The distribution of precipitates within the cytoplasm was non-uniform, the highest density was observed on the surfaces of intracellular organelles and elements of the cytoskeleton. 3. In fatigued M-cells after LTNS and after a subsequent one day rest the distribution of precipitates was less intensive, while in the whole it resembled that of fatigued M-cells. 4. In adapted M-cells the distribution of precipitates was similar to that observed in control. M-cells after LTNS, but the amount and size of the precipitated grains were noticeably increased. 5. The most numerous precipitates were seen in adapted M-cells after LTNS. They were localized throughout the postsynaptic cytoplasm and in a lesser order in the presynaptic cytoplasm. 6. After one day rehabilitation the intensitivity of cytochemical reaction of Ca2+ ion precipitation restored to the initial stage characteristic of adapted M-cells before LTVS. The results obtained suggest that the total concentration of Ca2+ ions in adapted M-cells and the dynamics of their exchanges between cytosole and intracellular depots, such as the smooth endoplasmic reticulum, may increase to keep a normal or even increased functional activity of M-cells, both before and after the LTNS.  相似文献   

19.
Two neurotrophins and their two receptors appear to regulate the survival of vestibular and cochlear neurons in the developing ear. Mice lacking either brain derived neurotrophic factor (BDNF) or its associated receptor, Trk B, show a severe reduction in the number of vestibular neurons and a loss of all innervation to the semicircular canals. Mice lacking NT-3 or its receptor, Trk C, show a severe reduction of spiral neurons in the basal turn of the cochlea. Mice lacking both BDNF and NT-3 or Trk B and Trk C, reportedly lose all innervation to the inner ear. These two neurotrophins and their associated receptors are necessary for the normal afferent innervation of the inner ear.  相似文献   

20.
Afferent innervation patterns in the vestibular periphery are complex, and vestibular afferents show a large variation in their regularity of firing. Calyx fibers terminate on type I vestibular hair cells and have firing characteristics distinct from the bouton fibers that innervate type II hair cells. Whole-cell patch clamp was used to investigate ionic currents that could influence firing patterns in calyx terminals. Underlying K(Ca) conductances have been described in vestibular ganglion cells, but their presence in afferent terminals has not been investigated previously. Apamin, a selective blocker of SK-type calcium-activated K(+) channels, was tested on calyx afferent terminals isolated from gerbil semicircular canals during postnatal days 1-50. Lowering extracellular calcium or application of apamin (20-500?nM) reduced slowly activating outward currents in voltage clamp. Apamin also reduced the action potential afterhyperpolarization (AHP) in whole-cell current clamp, but only after the first two postnatal weeks. K(+) channel expression increased during the first postnatal month, and SK channels were found to contribute to the AHP, which may in turn influence discharge regularity in calyx vestibular afferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号