首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 753 毫秒
1.
Picea sitchensis (Bong.) Carr. seedlings were exposed to SO2, NO2 and SO2+ NO2 during dormancy in controlled environments, and were taken to night temperatures of 4, 0, −5, −10 and −15 °C in a freezer. Conditions in the freezer were carefully monitored during the low–temperature treatments. In two experiments, different photoenvironments and temperature regimes were imposed prior to the cold treatments, and different effects were observed. In the first, only limited frost hardiness was achieved and night temperatures of −15 °C were lethal. Temperatures of −5 and − 10 °C led to poor survival of lateral buds, particularly in plants exposed to 45 ppb SO2. The poor bud break in plants exposed to SO2 and to − 5 °C resulted in a loss of the effectiveness of this temperature as a chill requirement. Pressure-volume analysis showed that the shoots of plants exposed to NO2 had greater elasticity (lower elastic moduli, e), so that loss of turgor occurred at lower relative water contents. In contrast, a hardening period (2 weeks in night/day temperatures of 3/10 °C and 8 h days at 50 μmol m−2 s−1 PAR) gave decreased elasticity and lower solute potentials of spruce shoots. In the second experiment, exposure to 30 ppb SO2 and SO2+ NO2 led to slight, but consistent, increases in frost injury to the needles of plants frozen to − 5 and − 10 °C. The results suggest that the main interaction of low temperatures and winter pollutants may be on bud survival rather than on needle damage, but that effects are subtle, only occurring with certain combinations of pollutant dose and cold treatment.  相似文献   

2.
Carob seedlings ( Ceratonia siliqua L. cv. Mulata), fed with nitrate or ammonium, were grown in growth chambers containing two levels of CO2 (360 or 800 μl l−1), three root temperatures (15, 20 or 25°C), and the same shoot temperature (20/24°C, night/day temperature). The response of the plants to CO2 enrichment was affected by environmental factors such as the type of inorganic nitrogen in the medium and root temperature. Increasing root temperature enhanced photosynthesis rate more in the presence of nitrate than in the presence of ammonium. Differences in photosynthetic products were also observed between nitrate- and ammonium-fed carob seedlings. Nitrate-grown plants showed an enhanced content of sucrose, while ammonium led to enhanced storage of starch. Increase in root temperature caused an increase in dry mass of the plants of similar proportions in both nitrogen sources. The enhancement of the rates of photosynthesis by CO2 enrichment was proportionally much larger than the resulting increases in dry mass production when nitrate was the nitrogen source. Ammonium was the preferred nitrogen source for carob at both ambient and high CO2 concentrations. The level of photosynthesis of a plant is limited not only by atmospheric CO2 concentration but also by the nutritional and environmental conditions of the root.  相似文献   

3.
We investigated the thermal acclimation of photosynthesis and respiration in black spruce seedlings [ Picea mariana (Mill.) B.S.P.] grown at 22/14 °C [low temperature (LT)] or 30/22 °C [high temperature (HT)] day/night temperatures. Net CO2 assimilation rates ( A net) were greater in LT than in HT seedlings below 30 °C, but were greater in HT seedlings above 30 °C. Dark and day respiration rates were similar between treatments at the respective growth temperatures. When respiration was factored out of the photosynthesis response to temperature, the resulting gross CO2 assimilation rates ( A gross) was lower in HT than in LT seedlings below 30 °C, but was similar above 30 °C. The reduced A gross of HT seedlings was associated with lower needle nitrogen content, lower ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) maximum carboxylation rates ( V cmax) and lower maximum electron transport rates ( J max). Growth treatment did not affect V cmax :  J max. Modelling of the CO2 response of photosynthesis indicated that LT seedlings at 40 °C might have been limited by heat lability of Rubisco activase, but that in HT seedlings, Rubisco capacity was limiting. In sum, thermal acclimation of A net was largely caused by reduced respiration and lower nitrogen investments in needles from HT seedlings. At 40 °C, photosynthesis in LT seedlings might be limited by Rubisco activase capacity, while in HT seedlings, acclimation removed this limitation.  相似文献   

4.
Abstract: The concentration dependency of the impact of elevated atmospheric CO2 concentrations on Arabidopsis thaliana L. was studied. Plants were exposed to nearly ambient (390), 560, 810, 1240 and 1680 μl I-1 CO2 during the vegetative growth phase for 8 days. Shoot biomass production and dry matter content were increased upon exposure to elevated CO2. Maximal increase in shoot fresh and dry weight was obtained at 560 μl I-1 CU2, which was due to a transient stimulation of the relative growth rate for up to 3 days. The shoot starch content increased with increasing CO2 concentrations up to two-fold at 1680 μl I-1 CO2, whereas the contents of soluble sugars and phenolic compounds were hardly affected by elevated CO2. The chlorophyll and carotenoid contents were not substantially affected at elevated CO2 and the chlorophyll a/b ratio remained unaltered. There was no acclimation of photosynthesis at elevated CO2; the photosynthetic capacity of leaves, which had completely developed at elevated CO2 was similar to that of leaves developed in ambient air. The possible consequences of an elevated atmospheric CO2 concentration to Arabidopsis thaliana in its natural habitat is discussed.  相似文献   

5.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

6.
The solubility of carbon dioxide (CO2) in microbiological media at different pH values, water activities ( aw ), temperatures, buffering capacities and ratios of headspace to media volumes was determined by using a coulometer. Buffering capacity and ratio of headspace to media volume were shown to be the major factors influencing the solubility of CO2 in modified atmosphere model systems. The growth inhibitory effects of different dissolved CO2 concentrations (0–50 μmol ml-1) were determined for Pseudomonas fragi at 8°C and 22 C. Pseudomonas fragi was shown to be strongly affected by the CO2 concentration in the media. A carbon dioxide concentration of 40 μmol ml-1 was needed to inhibit Ps. fragi at 8°C. The importance of measuring dissolved CO2 concentrations in modified atmosphere packaging applications was shown and the coulometer proved to be an excellent tool for this purpose.  相似文献   

7.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

8.
The objective of the study was to investigate the interactive effects of elevated atmospheric carbon dioxide concentration, [CO2], and temperature on the wood properties of mature field-grown Norway spruce ( Picea abies (L.) Karst.) trees. Material for the study was obtained from an experiment in Flakaliden, northern Sweden, where trees were grown for 3 years in whole-tree chambers at ambient (365 μmol mol−1) or elevated [CO2] (700 μmol mol−1) and ambient or elevated air temperature (ambient +5.6 °C in winter and ambient +2.8 °C in summer). Elevated temperature affected both wood chemical composition and structure, but had no effect on stem radial growth. Elevated temperature decreased the concentrations of acetone-soluble extractives and soluble sugars, while mean and earlywood (EW) cell wall thickness and wood density were increased. Elevated [CO2] had no effect on stem wood chemistry or radial growth. In wood structure, elevated [CO2] decreased EW cell wall thickness and increased tracheid radial diameter in latewood (LW). Some significant interactions between elevated [CO2] and temperature were found in the anatomical and physical properties of stem wood (e.g. microfibril angle, and LW cell wall thickness and density). Our results show that the wood material properties of mature Norway spruce were altered under exposure to elevated [CO2] and temperature, although stem radial growth was not affected by the treatments.  相似文献   

9.
Abstract: To study physiological responses of mature forest trees to elevated CO2 after lifetime growth under elevated atmospheric CO2 concentrations ( p CO2), photosynthesis, Rubisco content, foliar concentrations of soluble sugars and starch, sugar concentrations in transport tissues (phloem and xylem), structural biomass, and lignin in leaves and branches were investigated in 30- to 50-year-old Quercus pubescens and Q. ilex trees grown at two naturally elevated CO2 springs in Italy. Ribulose-1,5-bisphosphate carboxylase/oxygenase content was decreased in Q. pubescens grown under elevated CO2 concentrations, but not in Q. ilex. Photosynthesis was consistently higher in Q. pubescens grown at elevated CO2 as compared with "control" sites, whereas the response in Q. ilex was less pronounced. Stomatal conductance was lower in both species leading to decreased transpiration and increased instantaneous water use efficiency in Q. pubescens. Overall mean sugar + starch concentrations of the leaves were not affected by elevated p CO2, but phloem exudates contained higher concentrations of soluble sugars. This finding suggests increased transport to sinks. Qualitative changes in major carbon-bearing compounds, such as structural biomass and lignins, were only found in bark but not in other tissues. These results support the concept that the maintenance of increased rates of photosynthesis after long-term acclimation to elevated p CO2 provides a means of optimization of water relations under arid climatic conditions but does not cause an increase in aboveground carbon sequestration per unit of tissue in Mediterranean oak species.  相似文献   

10.
To investigate if Eucalyptus species have responded to industrial-age climate change, and how they may respond to a future climate, we measured growth and physiology of fast- ( E. saligna ) and slow-growing ( E. sideroxylon ) seedlings exposed to preindustrial (290), current (400) or projected (650 μL L−1) CO2 concentration ([CO2]) and to current or projected (current +4 °C) temperature. To evaluate maximum potential treatment responses, plants were grown with nonlimiting soil moisture. We found that: (1) E. sideroxylon responded more strongly to elevated [CO2] than to elevated temperature, while E. saligna responded similarly to elevated [CO2] and elevated temperature; (2) the transition from preindustrial to current [CO2] did not enhance eucalypt plant growth under ambient temperature, despite enhancing photosynthesis; (3) the transition from current to future [CO2] stimulated both photosynthesis and growth of eucalypts, independent of temperature; and (4) warming enhanced eucalypt growth, independent of future [CO2], despite not affecting photosynthesis. These results suggest large potential carbon sequestration by eucalypts in a future world, and highlight the need to evaluate how future water availability may affect such responses.  相似文献   

11.
Depending on the environmental conditions, imbibed seeds survive subzero temperatures either by supercooling or by tolerating freezing-induced desiccation. We investigated what the predominant survival mechanism is in freezing canola ( Brassica napus cv. Quest) and concluded that it depends on the cooling rate. Seeds cooled at 3°C h−1 or faster supercooled, whereas seeds cooled over a 4-day period to −12°C and then cooled at 3°C h−1 to−40°C did not display low temperature exotherms. Both differential thermal analysis and nuclear magnetic resonance (NMR) spectroscopy confirmed that imbibed canola seeds undergo freezing-induced desiccation at slow cooling rates. The freezing tolerance of imbibed canola seed (LT50) was determined by slowly cooling to −12°C for 48 h, followed with cooling at 3°C h−1 to −40°C, or by holding at a constant −6°C (LD50). For both tests, the loss in freezing tolerance of imbibed seeds was a function of time and temperature of imbibition. Freezing tolerance was rapidly lost after radicle emergence. Seeds imbibed in 100 μ M abscisic acid (ABA), particularly at 2°C, lost freezing tolerance at a slower rate compared with water-imbibed seeds. Seeds imbibed in water either at 23°C for 16 h, or 8°C for 6 days, or 2°C for 6 days were not germinable after storage at −6°C for 10 days. Seeds imbibed in ABA at 23°C for 24 h, or 8°C for 8 days, or 2°C for 15 days were highly germinable after 40 days at a constant −6°C. Desiccation injury induced at a high temperature (60°C), as with injury induced by freezing, was found to be a function of imbibition temperature and time.  相似文献   

12.
The effects of 80% oxygen–20% carbon dioxide (O2–CO2) and 80% nitrogen–20% carbon dioxide (N2–CO2) atmospheres were compared with respect to the microbial and sensory characteristics of vacuum skin-packaged grain-fed beef steaks stored at −1 and 4 °C. In both N2–CO2 and O2–CO2 atmospheres, lactobacilli were predominant over Brochothrix , pseudomonads, enterobacteria and yeasts and moulds. The results of the current investigation showed that the O2–CO2 atmospheres did not yield total viable counts in excess of 105 cfu cm−2 on beef steaks after 4 weeks of storage. However, the sensory analysis and thiobarbituric acid (TBA) values (as a measure of oxidative rancidity) of the products were unacceptable at this time. In contrast, the N2–CO2 atmospheres yielded maximum total viable counts of approximately 107 cfu cm−2 and the sensory analysis and TBA values of the product were judged to be acceptable after 4 weeks of storage at −1 °C. These results indicate that sensory effects of the product were influenced to a greater extent by the chemical effects of high concentration of O2 on rancidity than by the high levels of lactobacilli.  相似文献   

13.
A transient CO2 burst from seedlings of some plant species was observed after a rapid temperature decrease. The magnitude of the CO2 release depended on initial temperature, oxygen concentration and light intensity. To obtain a maximal value of CO2 release, the temperature had to decrease by more than 8°C. The phenomenon was detected only in the light, and was confined to C3 species. It was inhibited by low oxygen concentration, indicating its possible connection with photorespiration.  相似文献   

14.
The role of ABA in freezing tolerance and cold acclimation in barley   总被引:4,自引:0,他引:4  
The role of ABA in freezing resistance in nonacclimated and cold‐acclimated barley ( Hordeum vulgare L.) was studied. Eleven nonacclimated cultivars differed in their LT50, ranging from −10.8 to −4.8°C. Sugars, free proline, soluble proteins and ABA were analyzed in nonacclimated cultivars and during cold acclimation of one cultivar. There was an inverse correlation between LT50 and both ABA and sucrose contents. Exogenous ABA caused a decrease in the freezing point of leaf tissue in the cultivar with the lowest level of endogenous ABA, but not in the cultivar with the highest level, suggesting that ABA in the latter may be near the optimum endogenous level to induce freezing tolerance. Plants of cv. Aramir treated with ABA or allowed to acclimate to cold temperature increased their soluble sugar content to a similar level. The LT50 of leaves of cold‐acclimated cv. Aramir decreased from −5.8 to −11.4°C, with biphasic kinetics, accumulating proline and soluble sugars with similar kinetics. The biphasic profile observed during cold acclimation could be a direct consequence of cryoprotectant accumulation kinetics. ABA and soluble protein accumulation showed a single step profile, associated mainly with the second phase of the LT50 decrease. Thus, a significant increase in endogenous ABA is part of the response of barley to low temperature and may be required as a signal for the second phase of cold acclimation. Endogenous ABA contents in the nonacclimated state may determine constitutive freezing tolerance.  相似文献   

15.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

16.
Three soybean ( Glycine max L. Merr.) cultivars (Maple Glen, Clark and CNS) were exposed to three CO2 concentrations (370, 555 and 740 μmol mol−1) and three growth temperatures (20/15°, 25/20° and 31/26°C, day/night) to determine intraspecific differences in single leaf/whole plant photosynthesis, growth and partitioning, phenology and final biomass. Based on known carboxylation kinetics, a synergistic effect between temperature and CO2 on growth and photosynthesis was predicted since elevated CO2 increases photosynthesis by reducing photorespiration and photorespiration increases with temperature. Increasing CO2 concentrations resulted in a stimulation of single leaf photosynthesis for 40–60 days after emergence (DAE) at 20/15°C in all cultivars and for Maple Glen and CNS at all temperatures. For Clark, however, the onset of flowering at warmer temperatures coincided with the loss of stimulation in single leaf photosynthesis at elevated CO2 concentrations. Despite the season-long stimulation of single leaf photosynthesis, elevated CO2 concentrations did not increase whole plant photosynthesis except at the highest growth temperature in Maple Glen and CNS, and there was no synergistic effect on final biomass. Instead, the stimulatory effect of CO2 on growth was delayed by higher temperatures. Data from this experiment suggest that: (1) intraspecific variation could be used to select for optimum soybean cultivars with future climate change; and (2) the relationship between temperature and CO2 concentration may be expressed differently at the leaf and whole plant levels and may not solely reflect known changes in carboxylation kinetics.  相似文献   

17.
Cold-acclimation-induced changes in freezing tolerance and translatable RNA content were compared in seedlings of a relatively cold sensitive citrus species, Citrus grandis L. Osb. cv. Thong Dee (pummelo), and the cold-hardy citrus relative, Poncirus trifoliata L. Raf. cv. Pomeroy (trifoliate orange). Cold acclimation of pummelo (10 days at 15°C followed by 4 weeks at 10°/5°C, day/night) resulted in a decrease in LT50 from −6 to −8°C, while in trifoliate orange (acclimated for 7 weeks at 5°C), the LT50 decreased from −9 to −18°C. Qualitative changes in the in vitro translation profile, revealed by two-dimensional gel electrophoresis, were observed following cold acclimation in both species. An mRNA for a large polypeptide (ca 160 kDa) was detected following cold acclimation of trifoliate orange. A similar change was not observed in pummelo following cold acclimation.  相似文献   

18.
Seedlings of loblolly pine, Pinus taeda , were grown in open-topped chambers under four levels of CO2: two ambient and two elevated. Larvae of the red-headed pine sawfly, Neodiprion lecontei , were reared from early instar to pupation, primarily on branches within chambers. Larval growth and mortality were assessed and leaf phytochemistry samples of immature and mature leaves collected weekly. Mature leaves grown under elevated CO2 had significant reductions in leaf nitrogen and increases in non-structural carbohydrate contents, resulting in foliage being a poorer food source for larvae, i.e. higher carbohydrate:nitrogen ratio. Nutritional constituents of immature needles were unaffected by seedling CO2 treatment. Volatile mono- and sesquiterpenes were unrelated to plant CO2 treatments for either leaf age class. Larval consumption of immature needles significantly increased on seedlings grown under CO2 enrichment, while mature needle consumption was not different between the treatments. The average weight gain per larva significantly declined in late instar larvae consuming elevated CO2-grown needles. In spite of this reduced growth, neither the days to pupation nor pupal weights were different among the CO2 treatments. This study suggests that enriched CO2-induced alterations in pine needle phytochemistry can affect red-headed pine sawfly performance. However, compensatory measures by larvae, such as choosing to consume more nutritious immature needles, apparently helps offset enriched CO2-induced reductions in the leaf quality of mature needles.  相似文献   

19.
The relationship between CO2 assimilation rate, growth and partitioning of carbon among starch, sucrose, glucose and fructose were studied in phosphorus (Pi)-limited Lemna gibba L. G3. Two experimental models were used: 1) Cultures were grown at various stable, suboptimal rates regulated by the supply of Pi; 2) cultures growing at optimal rates were transferred to Pi-free medium. The response to a Pi deficiency can be divided into two phases. Phase I is characterized by hyperactivity of the sucrose synthesis pathway, leading to high levels of glucose and fructose. Phase II is characterized by starch accumulation associated with a decrease in the cytoplasmic pools of soluble sugars owing to inhibition of carbon export from the chloroplast. A strong negative correlation was found between the CO2 assimilation rate and starch levels. No significant correlation was found between assimilation and ATP levels and decrease in relative growth rate did not significantly affect the adenylate energy charge (EC). The regulatory aspects of the partitioning of carbon among soluble sugars and starch as well as the negative correlation between carbohydrate levels and CO2 assimilation at Pi-limited growth are discussed.  相似文献   

20.
Seeds of cherry ( Prunus avium ) were germinated and grown for two growing seasons in ambient (∼350 μmol mol−1) or elevated (ambient+∼350 μmol mol−1) CO2 mole fractions in six open-top chambers. The seedlings were fertilized once a week, following Ingestad principles in order to supply mineral nutrients at free-access rates. In the first growing season gradual drought was imposed on rapidly growing cherry seedlings by withholding water for a 6-wk drying cycle. In the second growing season, the rapid onset of drought was imposed at the height of the growing season on the seedlings which had already experienced drought in the first growing season. Elevated [CO2] significantly increased total dry-mass production in both water regimes, but did not ameliorate the growth response to drought of the cherry seedlings subjected to two sequential drying cycles. Water loss did not differ in either well watered or droughted seedlings between elevated and ambient [CO2]; consequently whole-plant water- use efficiency (the ratio of total dry mass produced to total water consumption) was significantly increased. Similar patterns of carbon allocation between shoot and root were found in elevated and ambient [CO2] when the seedlings were the same size. Thus, elevated [CO2] did not improve drought tolerance, but it accelerated ontogenetic development irrespective of water status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号