首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Extract prepared from activated Xenopus eggs is capable of reconstituting nuclei from added DNA or chromatin. We have incubated such extract in the absence of DNA and found that numerous flattened membrane cisternae containing densely spaced pore complexes (annulate lamellae) formed de novo. By electron and immunofluorescence microscopy employing a pore complex-specific antibody we followed their appearance in the extract. Annulate lamellae were first detectable at a 30-min incubation in the form of short cisternae which already contained a high pore density. At 90-120 min they were abundantly present and formed large multilamellar stacks. The kinetics of annulate lamellae assembly were identical to that of nuclear envelope formation after addition of DNA to the extract. However, in the presence of DNA or chromatin, i.e., under conditions promoting the assembly of nuclear envelopes, annulate lamellae formation was considerably reduced and, at sufficiently high chromatin concentrations, completely inhibited. Incubation of the extract with antibodies to lamin LIII did not interfere with annulate lamellae assembly, whereas in the presence of DNA formation of nuclear envelopes around chromatin was inhibited. Our data show that nuclear membrane vesicles are able to fuse spontaneously into membrane cisternae and to assemble pore complexes independently of interactions with chromatin and a lamina. We propose that nuclear envelope precursor material will assemble into a nuclear envelope when chromatin is available for binding the membrane vesicles, and into annulate lamellae when chromatin is absent or its binding sites are saturated.  相似文献   

2.
The nuclear pore complexes are complex protein structures located in the nuclear envelope, where they control the nuclear-cytoplasmic transport, and inside the stacks of endoplasmic reticulum cisternae, annulate lamellae. After overexpression of some nucleoporins, numerous granules are visible in the cytoplasm. According to the published data, these granules are the annulate lamellae. In the current paper, the structural organization of POM121-containing granules was analyzed using correlative light and electron microscopy. The ultrastructural study demonstrates that POM121-containing granules are not annulate lamellae but aggregates of endoplasmic reticulum membranes. Thus, overexpressed POM121 is not able to induce the annulate lamella formation. The mechanisms of self-organization of non-functional structures (such as the aggregates of endoplasmic reticulum membranes described here) and possible involvement of these mechanisms in the formation of cellular structures are discussed.  相似文献   

3.
During spermiogenesis in Drosophila melanogaster, a “perinuclear plasm’ accumulates between the fenestrated portion of the nuclear envelope and an adjacent lamella of ER in the young spermatid. Microtubules appear within the perinuclear plasm and become especially concentrated in a nuclear concavity. Cytoplasmic pores are present locally within the lamella of ER. In addition, localized or discrete bodies composed of fibrogranular material become closely associated with single pore complexes in the lamella of ER. A close association exists between pore complexes (annulate lamellae), the small granular and fibrillar subunits of the fibrogranular bodies, polyribosomes and the nuclear-associated microtubules during much of spermiogenesis. While the fibrogranular material becomes less concentrated during spermiogenesis, the number of pore complexes in a single section increases such that two, three or even four short annulate lamellae are intercalated within many longitudinally oriented microtubules which are present in the furrow of the spermatid nucleus. Structural relationships observed between cytoplasmic pores (annulate lamellae), fibrogranular bodies, polyribosomes and microtubules are discussed in relation to information about the timing of RNA and protein synthesis. This study extends previous observations about the distribution and structural variations of annulate lamellae elsewhere in the spermatid cytoplasm.  相似文献   

4.
The nuclear pore complex (NPC) is a multicomponent structure containing a subset of proteins that bind nuclear transport factors or karyopherins and mediate their movement across the nuclear envelope. By altering the expression of a single nucleoporin gene, NUP53, we showed that the overproduction of Nup53p altered nuclear transport and had a profound effect on the structure of the nuclear membrane. Strikingly, conventional and immunoelectron microscopy analysis revealed that excess Nup53p entered the nucleus and associated with the nuclear membrane. Here, Nup53p induced the formation of intranuclear, tubular membranes that later formed flattened, double membrane lamellae structurally similar to the nuclear envelope. Like the nuclear envelope, the intranuclear double membrane lamellae enclosed a defined cisterna that was interrupted by pores but, unlike the nuclear envelope pores, they lacked NPCs. Consistent with this observation, we detected only two NPC proteins, the pore membrane proteins Pom152p and Ndc1p, in association with these membrane structures. Thus, these pores likely represent an intermediate in NPC assembly. We also demonstrated that the targeting of excess Nup53p to the NPC and its specific association with intranuclear membranes were dependent on the karyopherin Kap121p and the nucleoporin Nup170p. At the nuclear envelope, the abilities of Nup53p to associate with the membrane and drive membrane proliferation were dependent on a COOH-terminal segment containing a potential amphipathic alpha-helix. The implications of these results with regards to the biogenesis of the nuclear envelope are discussed.  相似文献   

5.
Tumour cells in vitro responded to prolonged treatment with colchicine with the formation of annulate lamellae. Following the colchicine treatment, paracrystals were induced with vinblastine. A close association of annulate lamellae with vinblastine-induced crystals was observed. The hypothesis that annulate lamellae and the related unclear membrane with the pore complexes may play a role in the control of the cytoplasmic microtubule complex is discussed.  相似文献   

6.
Semi-isolated annulate lamellae were prepared from single newt oocytes (Triturus alpestris) by a modified Callan-Tomlin technique. Such preparations were examined with the electron microscope, and the negative staining appearance of the annulate lamellae is described. The annulate lamellae can be detected either adhering to the nuclear envelope or being detached from it. Sometimes they are observed to be connected with slender tubular-like structures interpreted as parts of the endoplasmic reticulum. The results obtained from negative staining are combined with those from sections. Especially, the structural data on the annulate lamellae and the nuclear envelope of the very same cell were compared. Evidence is presented that in the oocytes studied the two kinds of porous cisternae, namely annulate lamellae and nuclear envelope, are markedly distinguished in that the annulate lamellae exhibit a much higher pore frequency (generally about twice that found for the corresponding nuclear envelope) and have also a relative pore area occupying as much as 32% to 55% of the cisternal surface (compared with 13% to 22% in the nuclear envelopes). The pore diameter and all other ultrastructural details of the pore complexes, however, are equivalent in both kinds of porous cisternae. Like the annuli of the nuclear pore complexes of various animal and plant cells, the annuli of the annulate lamellae pores reveal also an eightfold symmetry of their subunits in negatively stained as well as in sectioned material. Furthermore, the annulate lamellae are shown to be a site of activity of the Mg-Na-K-stimulated ATPase.  相似文献   

7.
Purification of the vertebrate nuclear pore complex by biochemical criteria   总被引:3,自引:0,他引:3  
The nuclear pore is a large and complex biological machine, mediating all signal-directed transport between the nucleus and the cytoplasm. The vertebrate pore has a mass of ∼120 million daltons or 30 times the size of a ribosome. The large size of the pore, coupled to its tight integration in the nuclear lamina, has hampered the isolation of pore complexes from vertebrate sources. We have now developed a strategy for the purification of nuclear pores from in vitro assembled annulate lamellae (AL), a cytoplasmic mimic of the nuclear envelope that lacks a lamina, nuclear matrix, and chromatin-associated proteins. We find that purified pore complexes from annulate lamellae contain every nuclear pore protein tested. In addition, immunoblotting reveals the presence of soluble transport receptors and factors known to play important roles in the transport of macromolecules through the pore. While transport factors such as Ran and NTF2 show only transient interaction with the pores, a number of soluble transport receptors, including importin β, show a tight association with the purified pores. In summary, we report that we have purified the vertebrate pore by biochemical criteria; silver staining reveals ∼40–50 distinct protein bands.  相似文献   

8.
Mamon LA 《Tsitologiia》2005,47(3):263-276
Chromosomes/chromatids transport to cell division poles (chromosome segregation) and nuclear-cytoplasmic transport give way to each other during cell cycle. Disassembly and reassembly of the nuclear envelope during input or output mitosis are the critical time periods for changing one kind of transport system for the other one. The interest in the problem of relationships between nuclear-cytoplasmic transport and chromosome segregation came into view after revealing some factors involved in both transport systems. Among these factors are GTPase Ran, nuclear transport receptors and associated molecules, kinetochore proteins and proteins of nuclear pore complexes (nucleoprin, for example), spindle microtubules, microtubule motor proteins, and signal molecules. The role of all of these factors in the transport systems is not known. A decision of this problem will make it possible to determine mechanisms of both transport systems and to understand the character of evolutionary relationships between these systems.  相似文献   

9.
《The Journal of cell biology》1995,129(6):1459-1472
Formation of the nuclear pore is an intricate process involving membrane fusion and the ordered assembly of up to 1,000 pore proteins. As such, the study of pore assembly is not a simple one. Interestingly, annulate lamellae, a cytoplasmic organelle consisting of stacks of flattened membrane cisternae perforated by numerous pore complexes, have been found to form spontaneously in a reconstitution system derived from Xenopus egg extracts, as determined by electron microscopy (Dabauvalle et al., 1991). In this work, a biochemical assay for annulate lamellae (AL) formation was developed and used to study the mechanism of AL assembly in general and the assembly of individual nucleoporins into pore complexes in particular. Upon incubation of Xenopus egg cytosol and membrane vesicles, the nucleoporins nup58, nup60, nup97, nup153, and nup200 initially present in a disassembled form in the cytosol became associated with membranes and were pelletable. The association was time and temperature dependent and could be measured by immunoblotting. Thin-section electron microscopy as well as negative staining confirmed that annulate lamellae were forming coincident with the incorporation of pore proteins into membranes. Homogenization and subsequent flotation of the membrane fraction allowed us to separate a population of dense membranes, containing the integral membrane pore protein gp210 and all other nucleoporins tested, from the bulk of cellular membranes. Electron microscopy indicated that annulate lamellae were enriched in this dense, pore protein-containing fraction. GTP gamma S prevented incorporation of the soluble pore proteins into membranes. To address whether AL form in the absence of N-acetylglucosaminylated pore proteins, AL assembly was carried out in WGA-sepharose-depleted cytosol. Under these conditions, annulate lamellae formed but were altered in appearance. When the membrane fraction containing this altered AL was homogenized and subjected to flotation, the pore protein- containing membranes still sedimented in a distinct peak but were less dense than control annulate lamellae.  相似文献   

10.
非洲爪蟾卵经钙离子载体A 23187激活后,在10,000g下离心得到爪蟾卵提取物。Lambda DNA加入上述提取物可构建出染色质结构,并在染色质表面重建核被膜,同时在染色质外的区域形成环形片层。核被膜与环形片层有相似的发生途径,它们都是由两类在形态、大小、膜结构上有明显差别的膜泡融合而来。首先是直径200nm的圆形小膜泡相互融合成双层膜片层,同时核孔复合体在双层膜上大量装配,以这些双层膜片层为基础,光滑的大膜泡与之融合导致环形片层的扩张与核被膜的成熟。  相似文献   

11.
Intranuclear and cytoplasmic annulate lamellae were studied in grasshopper spermatocytes (Melanoplus) with the electron microscope. Although cytoplasmic annulate lamellae were observed in all three species examined, intranuclear annulate lamellae were found in only one species. The intranuclear annulate lamellae encompass certain nuclear material adjacent to the nuclear envelope forming a vesicle that is extruded into the spermatocyte cytoplasm. In this same species, cytoplasmic annulate lamellae are seen contiguous with granular masses of varying size. These structures were noted as being morphologically indistinguishable from the "yolk nuclei" of dragonfly oocytes (Kessel and Beams, 1969; Kessel, 1973).  相似文献   

12.
The Origin and Fate of Annulate Lamellae in Maturing Sand Dollar Eggs   总被引:10,自引:10,他引:0       下载免费PDF全文
Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae.  相似文献   

13.
Human emerin is a nuclear membrane protein that is lost or altered in patients with Emery-Dreifuss muscular dystrophy (EMD). While the protein is expressed in the majority of human tissues analyzed, the pathology predominates in cardiac and skeletal muscles of patients with EMD. Our results show that emerin can be detected by immunocytochemistry and immunoblotting in the nuclear envelope of all vertebrates studied from man to Xenopus. Immunolocalizations and nuclear envelope extraction experiments confirm that emerin possesses properties characteristic for integral membrane proteins of the inner nuclear membrane. Some nuclear envelope proteins are localized also in annulate lamellae (AL), i.e. cytoplasmic flattened membrane cisternae penetrated by pore complexes. To verify whether emerin is contained in these membrane stacks, we have induced the formation of AL by exposure of rat cells (line RV-SMC) to sublethal doses of the antimitotic drug vinblastine sulfate and found that emerin is present in the nuclear envelope, but is absent from AL. In contrast to the homogeneous distribution of emerin in the nuclear envelope of interphase cells, this protein shows a focal accumulation in the nuclear membranes of late telophase cells. During early reassembly of the nuclear envelope at this mitotic stage emerin colocalizes with lamin A/C but not with lamin B and LAP2 proteins. Confocal laser scanning microscopy after double-labeling experiments with emerin and tubulin shows that emerin is concentrated in areas of the mitotic spindle and in the midbody of mitotic cells suggesting a close interaction of these proteins. Our data suggest that emerin participates in the reorganisation of the nuclear envelope at the end of mitosis.  相似文献   

14.
This review is devoted to annulate lamellae, a specific compartment of endoplasmic reticulum that occurs, presumably, in actively growing and rapidly dividing cells (oocytes, embryonic and tumor cells). We summarized both earlier and recent data on the dustribution of annulate lamellae in various cell types, on their morphology, and the distribution of interaction with intracellular structures at various treatments. As the annulate lamellae contain cytoplasmic pore complexes, a special attention was paid to their relation with nuclear pores. Possible functions of the annulate lamellae in intracellular processes and, particularly, in nuclear envelope assembly, are discussed.  相似文献   

15.
将HeLa细胞中期染色体(簇)、非洲爪蟾卵提取物和ATP再生体系混合温育,能够促使细胞核自发重建。在此非细胞体系中重建的细胞核处于一般细胞核大小范围,具有典型的双层核膜,核孔复合体、染色质、核纤层、核骨架等结构,核重建具有一个明显的过程;发现环形片层通过与核膜融合方式参与核膜和核孔复合体组装。  相似文献   

16.
Twelve nontumorous adenohypophyses and 36 various pituitary adenomas, removed by surgery, have been investigated by electron microscopy in order to shed some light on annulate lamellae, primarily on their ultrastructural features, incidence, origin, fate and functional significance. No annulate lamellae were found in the nontumorous adenohypophyses and in 33 pituitary adenomas. They were, however, detected in two adenomas consisting of undifferentiated cells and one adenoma composed of sparsely granulated prolactin cells indicating that these unique membrane configurations cannot be regarded as an exceedingly rare finding and, furthermore, that they may be disclosed not only in undifferentiated but occasionally in highly differentiated cells. Annulate lamellae may arise from endoplasmic reticulum and/or nuclear envelope and consist of arrays of smooth walled double membrane sheets exhibiting regularly spaced interruptions as well as continuities with the endoplasmic reticulum. No relationship was established between annulate lamellae and adenohypophysial secretory activity. Our findings seem to be consistent with the view that annulate lamellae are present in those cells which have the tendency to proliferate.  相似文献   

17.
During initial stages of oogenesis, many nucleoli are adpressed to the inner membrane of the nuclear envelope. Small nucleolar fragments appear to traverse the pores of the nuclear envelope and accumulate in the perinuclear ooplasm as fibrogranular bodies. Mitochondria become closely associated with some of the fibrogranular bodies. In addition to ribosomes and polyribosomes that are present in small oocytes, lamellae of rough-surfaced endoplasmic reticulum (rER) increase greatly in number during early stages of differentiation. Some individual lamellae are attached at their ends to the outer membrane of the nuclear envelope. Many parallel lamellae of rER are then encountered as well as numerous circular profiles consisting of concentric loops of rER. Soon after the differentiation of the extensive system of rER, lipid droplets or spheres appear in the ooplasm and they are initially surrounded by many circular, concentric lamellae of rER. Initially, the number of concentric lamellae of rER surrounding a lipid droplet may vary from less than a dozen to more than two dozen. During middle and late phases of vitellogenesis, most of the lipid spheres that comprise the most numerous and significant component of the yolk are surrounded by only one or two concentric lamellae of rER (in some cases the lamellae are part rough-surfaced and part smooth-surfaced). In addition, annulate lamellae are then observed to be associated with a portion of the lipid droplet surface. The number of annulate lamellae that extend focally from the lipid sphere distally into the cytoplasm is variable; often two or three to more than a dozen lamellae. Small granules, many of which range from 6 to 12 nm and thin fibrils (approximately 2–3 nm in width) may be associated with the annulate lamellae. In addition, polyribosomes frequently appear to be continuous with the pore-associated material of the annulate lamellae. The ends of some annulate lamellae may extend as lamellae of the rER. The morphologic relationships and relationships and variations observed between the lipid droplets, rER, annulate lamellae, and polyribosomes during lipidogenesis in this oocyte are interpreted to support a recent hypothesis (Kessel, 1981a,b) that the pores of annulate lamellae may be involved in some manner with the processing of ribosomal subunits or precursors into functioning polyribosomes, and that their appearance in specific association with the surface of many lipid spheres and rER in the oocyte late in vitellogenesis may be related to the formation of additional functional polyribosomes necessary to complete the final synthesis of many lipid droplets that are present in the ooplasm of the full-grown oocyte.  相似文献   

18.
Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae.  相似文献   

19.
Summary The formation of the extranuclear annulate lamellae has been revealed to be connected with a process of nuclear emission which is very active during the previtellogenetic stages of the Boltenia oocyte development. This process involves both of the nuclear membranes. At many spots on the surface of the nuclear envelope, the outer membrane pulls away from the inner membrane, thus forming what has been designated as blisters of various sizes and shapes. Masses of nuclear content, apparently not from the nucleolus, are pushed into the blisters. These blisters may become detached from the nuclear envelope and lie free in the cytoplasm. But in many cases, the detachment seems delayed, and in each blister many emission masses are squeezed tightly together and flat one on top of the other. These masses, in sections, may present the appearance of a stack of elongated outlines. The membrane, limiting any two adjacent masses in close contact, develop annuli. It is thus that an annulate lamella is formed. Whether an annulate lamella is formed between a pair of neighboring masses depends on their proximity. So the production of the annulate lamellae is incidental to, but not a necessary part of the process of nuclear emission. After the original outer nuclear membrane forming the blister has disintegrated, the annulate lamellae are left exposed in the cytoplasm.It is clear that, 1. both membranes of an annulate lamella are of inner nuclear membrane origin, 2. they hold between them some of the content of the enlarged perinuclear space resulting from the raising of the outer nuclear membrane when the blister is formed, and 3. the material held between any two lamellae is from the nucleus.The intranuclear annulate lamellae simply arise from the narrow pouches formed by the inner nuclear membrane towards the interior of the nucleus, and on these narrow pouches annuli are developed. So the intranuclear annulate lamellae is also composed of two membranes of an inner nuclear membrane origin holding between them a quantity of the content of the perinuclear space.Supported by Grant GM-11858 of National Institute of Health. The author is indebted to Dr. Richard Cloney of the Department of Zoology, University of Washington, for the use of the electron microscope.  相似文献   

20.
Cells generate diverse microtubule populations by polymerization of a common α/β-tubulin building block. How microtubule associated proteins translate microtubule heterogeneity into specific cellular functions is not clear. We evaluated the ability of kinesin motors involved in vesicle transport to read microtubule heterogeneity by using single molecule imaging in live cells. We show that individual Kinesin-1 motors move preferentially on a subset of microtubules in COS cells, identified as the stable microtubules marked by post-translational modifications. In contrast, individual Kinesin-2 (KIF17) and Kinesin-3 (KIF1A) motors do not select subsets of microtubules. Surprisingly, KIF17 and KIF1A motors that overtake the plus ends of growing microtubules do not fall off but rather track with the growing tip. Selection of microtubule tracks restricts Kinesin-1 transport of VSVG vesicles to stable microtubules in COS cells whereas KIF17 transport of Kv1.5 vesicles is not restricted to specific microtubules in HL-1 myocytes. These results indicate that kinesin families can be distinguished by their ability to recognize microtubule heterogeneity. Furthermore, this property enables kinesin motors to segregate membrane trafficking events between stable and dynamic microtubule populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号