首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Escherichia coli hosts expressing fabG of Pseudomonas aeruginosa showed 3-ketoacyl coenzyme A (CoA) reductase activity toward R-3-hydroxyoctanoyl-CoA. Furthermore, E. coli recombinants carrying the poly-3-hydroxyalkanoate (PHA) polymerase-encoding gene phaC in addition to fabG accumulated medium-chain-length PHAs (mcl-PHAs) from alkanoates. When E. coli fadB or fadA mutants, which are deficient in steps downstream or upstream of the 3-ketoacyl-CoA formation step during beta-oxidation, respectively, were transformed with fabG, higher levels of PHA were synthesized in E. coli fadA, whereas similar levels of PHA were found in E. coli fadB, compared with those of the corresponding mutants carrying phaC alone. These results strongly suggest that FabG of P. aeruginosa is able to reduce mcl-3-ketoacyl-CoAs generated by the beta-oxidation to 3-hydroxyacyl-CoAs to provide precursors for the PHA polymerase.  相似文献   

2.
By in vitro evolution experiment, we have first succeeded in acquiring higher active mutants of a synthase that is a key enzyme essential for bacterial synthesis of biodegradable polyester, polyhydroxyalkanoate (PHA). Aeromonas caviae FA440 synthase, termed PhaC(Ac), was chosen as a good target for evolution, since it can synthesize a PHA random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate [P(3HB-co-3HHx)] that is a tough and flexible material compared to polyhydroxybutyrate (PHB) homopolyester. The in vitro enzyme evolution system consists of PCR-mediated random mutagenesis targeted to a limited region of the phaC(Ac) gene and screening mutant enzymes with higher activities based on two types of polyester accumulation system by using Escherichia coli for the synthesis of PHB (by JM109 strain) (S. Taguchi, A. Maehara, K. Takase, M. Nakahara, H. Nakamura, and Y. Doi, FEMS Microbiol. Lett. 198:65-71, 2001) and of P(3HB-co-3HHx) [by LS5218 [fadR601 atoC(Con)] strain]. The expression vector for the phaC(Ac) gene, together with monomer-supplying enzyme genes, was designed to synthesize PHB homopolyester from glucose and P(3HB-co-3HHx) copolyester from dodecanoate. Two evolved mutant enzymes, termed E2-50 and T3-11, screened through the evolution system exhibited 56 and 21% increases in activity toward 3HB-coenzyme A, respectively, and consequently led to enhanced accumulation (up to 6.5-fold content) of P(3HB-co-3HHx) in the recombinant LS5218 strains. Two single mutations in the mutants, N149S for E2-50 and D171G for T3-11, occurred at positions that are not highly conserved among the PHA synthase family. It should be noted that increases in the 3HHx fraction (up to 16 to 18 mol%) were observed for both mutants compared to the wild type (10 mol%).  相似文献   

3.
An Escherichia coli strain has been constructed that produces the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(HB-co-HV). This has been accomplished by placing the PHB biosynthetic genes from Alcaligenes eutrophus into an E. coli fadR atoC(Con) mutant and culturing the strain in M9 minimal medium containing glucose and propionate. 3-Hydroxyvalerate incorporation is absolutely dependent on the presence of both glucose and propionate, and 3-hydroxybutyrate-3-hydroxyvalerate ratios in the copolymer can be manipulated by altering the propionate concentration and/or the glucose concentration in the culture. P(HB-co-HV) production can be accomplished by using a wide variety of feeding regimens, but the most efficient is to allow the culture to grow to late log phase in minimal medium containing acetate and then add glucose and propionate to initiate copolymer production. A broad range of propionate concentrations can be used in the culture to stimulate 3-hydroxyvalerate incorporation; however, the most efficient utilization of propionate occurs at concentrations below 10 mM. 3-Hydroxyvalerate molar percentages in the copolymer are relatively constant over the course of growth. The copolymer has been purified and confirmed to be P(HB-co-HV) by gas chromatography/mass spectrometry and differential scanning calorimetry.  相似文献   

4.
Several recombinant Escherichia coli strains, including XL1-Blue, JM109, HB101, and DH5alpha harboring a stable high-copynumber plasmid pSYL105 containing the Alcaligenes eutrophus polyhydroxyalkanoate (PHA) biosynthesis genes were constructed. These recombinant strains were examined for their ability to synthesize and accumulate poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer from glucose and either propionate or valerate. All recombinant E. coli strains could synthesize the P(3HB-co-3HV) copolymer in the medium containing glucose and propionate. However, only the homopolymer poly-(3-hydroxybutyrate) [P(3HB)] was synthesized from glucose and valerate. The PHA concentration and the 3HV fraction could be increased by inducing with acetate and/or oleate. When supplemented with oleate, the 3HV fraction increased by fourfold compared with that obtained without induction. Induction with propionate resulted in lower PHA concentration due to the inhibitory effect, but an 3HV fraction of as high as 33.0% could be obtained. These results suggest that P(3HB-co-3HV) can be efficiently produced from propionate by recombinant E. coli by inducing with acetate, propionate, or oleate. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
S Slater  T Gallaher    D Dennis 《Applied microbiology》1992,58(4):1089-1094
An Escherichia coli strain has been constructed that produces the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(HB-co-HV). This has been accomplished by placing the PHB biosynthetic genes from Alcaligenes eutrophus into an E. coli fadR atoC(Con) mutant and culturing the strain in M9 minimal medium containing glucose and propionate. 3-Hydroxyvalerate incorporation is absolutely dependent on the presence of both glucose and propionate, and 3-hydroxybutyrate-3-hydroxyvalerate ratios in the copolymer can be manipulated by altering the propionate concentration and/or the glucose concentration in the culture. P(HB-co-HV) production can be accomplished by using a wide variety of feeding regimens, but the most efficient is to allow the culture to grow to late log phase in minimal medium containing acetate and then add glucose and propionate to initiate copolymer production. A broad range of propionate concentrations can be used in the culture to stimulate 3-hydroxyvalerate incorporation; however, the most efficient utilization of propionate occurs at concentrations below 10 mM. 3-Hydroxyvalerate molar percentages in the copolymer are relatively constant over the course of growth. The copolymer has been purified and confirmed to be P(HB-co-HV) by gas chromatography/mass spectrometry and differential scanning calorimetry.  相似文献   

6.
In this study, the enhancement of photosynthetic PHA production was achieved using the highly active mutants of PHA synthase created by the in vitro evolutionally techniques. The wild-type and mutated PHA synthase genes from Aeromonas caviae were introduced into Arabidopsis thaliana together with the NADPH-dependent acetoacetyl-CoA reductase gene from Ralstonia eutropha. Expression of the highly active mutated PHA synthase genes, N149S and D171G, led to an 8-10-fold increase in PHA content in the T1 transgenic Arabidopsis, compared to plants harboring the wild-type PHA synthase gene. In homozygous T2 progenies, PHA content was further increased up to 6.1 mg/g cell dry weight. GC/MS analysis of the purified PHA from the transformants revealed that these PHAs were poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymers consisting of 0.2-0.8 mol % 3HV. The monomer composition of the P(3HB-co-3HV) copolymers synthesized by the wild-type and mutated PHA synthases reflected the substrate specificities observed in Escherichia coli. These results indicate that in vitro evolved PHA synthases can enhance the productivity of PHA and regulate the monomer composition in transgenic plants.  相似文献   

7.
Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  相似文献   

8.
In our previous study, in vitro evolution of type II polyhydroxyalkanoate (PHA) synthase (PhaC1Ps) from Pseudomonas sp. 61-3 yielded eleven mutant enzymes capable of synthesizing homopolymer of (R)-3-hydroxybutyrate [P(3HB)] in recombinant Escherichia coli JM109. These recombinant strains were capable of accumulating up to approximately 400-fold more P(3HB) than strains expressing the wild-type enzyme. These mutations enhanced the ability of the enzyme to specifically incorporate the 3HB-coenzyme A (3HB-CoA) substrate or improved catalytic efficiency toward the various monomer substrates of C4 to C12 (R)-3-hydroxyacyl-CoAs which can intrinsically be channeled by PhaC1Ps into P(3HB-co-3HA) copolymerization. In this study, beneficial amino acid substitutions of PhaC1Ps were analyzed based on the accumulation level and the monomer composition of P(3HB-co-3HA) copolymers generated by E. coli LS5218 [fadR601 atoC(Con)] harboring the monomer supplying enzyme genes. Substitutions of Ser by Thr(Cys) at position 325 were found to lead to an increase in the total amount of P(3HB-co-3HA) accumulated, whereas 3HB fractions in the P(3HB-co-3HA) copolymer were enriched by substitutions of Gln by Lys(Arg, Met) at position 481. This strongly suggests that amino acid substitutions at positions 325 and 481 are responsible for synthase activity and/or substrate chain-length specificity of PhaC1Ps. These in vivo results were supported by the in vitro results obtained from synthase activity assays using representative single and double mutants and synthetic substrates, (R,S)-3HB-CoA and (R,S)-3-hydroxydecanoyl-CoA. Notably, the position 481 was found to be a determinant for substrate chain-length specificity of PhaC1Ps.  相似文献   

9.
The recombinant Escherichia coli strain, equipped with the newly cloned Aeromonas PHA biosynthesis genes, could produce a terpolymer of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) [P(3HB-co-3HV-co-3HHx)] from dodecanoic acid plus odd carbon number fatty acid. In addition, the orf1 gene of Aeromonas hydrophila was found to play a critical role in assimilating the 3HV monomer and in regulating the monomer fraction in the terpolymer.  相似文献   

10.
高产稳产聚羟基烷酸的重组大肠杆菌的构建   总被引:7,自引:0,他引:7  
重组大肠杆菌Escherichia coliHMS174(pTZ18UPHB) 含有携带聚羟基烷酸(PHA) 合成基因( phaCAB)** 的质粒pTZ18UPHB,是很有潜力的PHA 生产菌,但存在着质粒不稳定和不能合成3羟基丁酸(3HB) 与3羟基戊酸(3HV) 共聚物[P(3HBco3HV)] 的缺陷。将RK2 质粒上的par DE 基因引入pTZ18UPHB 构成质粒pJMC2 ,该质粒可以在宿主E.ColiHMS174 中稳定遗传。将培养基中的磷酸盐浓度降至18 m mol/L,发现E.Coli HMS174(pJMC2) 能够以丙酸为前体合成P(3HBco3HV) ,其中3HV 在共聚物中的含量为5 % ~8 % 。在5L自动发酵罐中分批补料培养E.Coli HMS174(pJMC2) ,培养基初始磷酸盐浓度为15 m mol/L,30 h 后每升培养液中干菌体可达42-5 g,P(3HBco3HV) 占干重的70 % ,其中3HV 在共聚物中的含量为4-9 % 。  相似文献   

11.
Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  相似文献   

12.
β-Ketothiolases catalyze the first step of poly(3-hydroxybutyrate) [poly(3HB)] biosynthesis in bacteria by condensation of two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA and also take part in the degradation of fatty acids. During growth on propionate or valerate, Ralstonia eutropha H16 produces the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)]. In R. eutropha, 15 β-ketothiolase homologues exist. The synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) could be significantly reduced in an 8-fold mutant (Lindenkamp et al., Appl. Environ. Microbiol. 76:5373-5382, 2010). In this study, a 9-fold mutant deficient in nine β-ketothiolase gene homologues (phaA, bktB, H16_A1713, H16_B1771, H16_A1528, H16_B0381, H16_B1369, H16_A0170, and pcaF) was generated. In order to examine the polyhydroxyalkanoate production capacity when short- or long-chain and even- or odd-chain-length fatty acids were provided as carbon sources, the growth and storage behavior of several mutants from the previous study and the newly generated 9-fold mutant were analyzed. Propionate, valerate, octanoate, undecanoic acid, or oleate was chosen as the sole carbon source. On octanoate, no significant differences in growth or storage behavior were observed between wild-type R. eutropha and the mutants. In contrast, during the growth on oleate of a multiple mutant lacking phaA, bktB, and H16_A0170, diminished poly(3HB) accumulation occurred. Surprisingly, the amount of accumulated poly(3HB) in the multiple mutants grown on gluconate differed; it was much lower than that on oleate. The β-ketothiolase activity toward acetoacetyl-CoA in H16ΔphaA and all the multiple mutants remained 10-fold lower than the activity of the wild type, regardless of which carbon source, oleate or gluconate, was employed. During growth on valerate as a sole carbon source, the 9-fold mutant accumulated almost a poly(3-hydroxyvalerate) [poly(3HV)] homopolyester with 99 mol% 3HV constituents.  相似文献   

13.
Expression of Escherichia coli open reading frame yfcX is shown to be required for medium-chain-length polyhydroxyalkanoate (PHA(MCL)) formation from fatty acids in an E. coli fadB mutant. The open reading frame encodes a protein, YfcX, with significant similarity to the large subunit of multifunctional beta-oxidation enzymes. E. coli fadB strains modified to contain an inactivated copy of yfcX and to express a medium-chain-length synthase are unable to form PHA(MCL)s when grown in the presence of fatty acids. Plasmid-based expression of yfcX in the FadB(-) YfcX(-) PhaC(+) strain restores polymer formation. YfcX is shown to be a multifunctional enzyme that minimally encodes hydratase and dehydrogenase activities. The gene encoding YfcX is located downstream from yfcY, a gene encoding thiolase activity. Results of insertional inactivation studies and enzyme activity analyses suggest a role for yfcX in PHA monomer unit formation in recombinant E. coli fadB mutant strains. Further studies are required to determine the natural role of YfcX in the metabolism of E. coli.  相似文献   

14.
In vitro evolution of the polyhydroxyalkanoate (PHA) synthase gene from Pseudomonas sp. 61-3 (phaC1(Ps)) has been performed to generate highly active enzymes. In this study, a positive mutant of PHA synthase, Glu130Asp (E130D), was characterized in detail in vivo and in vitro. Recombinant Escherichia coli strain JM109 harboring the E130D mutant gene accumulated 10-fold higher (1.0 wt %) poly(3-hydroxybutyrate) [P(3HB)] from glucose, compared to recombinant E. coli harboring the wild-type PHA synthase gene (0.1 wt %). Recombinant E. coli strain LS5218 harboring the E130D PHA synthase gene grown on dodecanoate produced more poly(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] (20 wt %) copolymer than an LS5218 strain harboring the wild-type PHA synthase gene (13 wt %). The E130D mutation also resulted in the production of copolymer with a slight increase in 3HB composition, compared to copolymer produced by the wild-type PHA synthase. In vitro enzyme activities of the E130D PHA synthase toward various 3-hydroxyacyl-CoAs (4-10 carbons in length) were all higher than those of the wild-type enzyme. The combination of the E130D mutation with other beneficial mutations, such as Ser325Thr and Gln481Lys, exhibited a synergistic effect on in vivo PHA production and in vitro enzyme activity. Interestingly, gel-permeation chromatography analysis revealed that the E130D mutation also had a synergistic effect on the molecular weight of polymers produced in vivo.  相似文献   

15.
A new method to estimate the number of polyhydroxyalkanoates (PHA)-degraders in soil and to isolate degraders, called the film-MPN method, is proposed. The incubation time was measured by the first order reaction (FOR) model. This method was used to estimate numbers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB-co-3HV)]- and poly(3-hydroxyvalerate-co-4-hydroxybutyrate)[P(3HB-co-4HB)]-degraders in garden soil (4.30 x 10(5) and 2.15 x 10(5) aerobic degraders per gram of dry soil, respectively). The number of P(3HB-co-3HV)-degraders in paddy field soil was 5.06 x 10(5) aerobic degraders per gram dry soil. Also, several P(3HB-co-3HV)-degraders were isolated directly from positive-growth tubes of high dilution.  相似文献   

16.
Park SJ  Lee SY 《Journal of bacteriology》2003,185(18):5391-5397
The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional beta-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the beta-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.  相似文献   

17.
A new method to estimate the number of polyhydroxyalkanoates (PHA)-degraders in soil and to isolate degraders, called the film-MPN method, is proposed. The incubation time was measured by the first order reaction (FOR) model. This method was used to estimate numbers of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB-co-3HV)]- and poly(3-hydroxyvalerate-co-4-hydroxybutyrate)[P(3HB-co-4HB)]-degraders in garden soil (4.30 × 105 and 2.15 × 105 aerobic degraders per gram of dry soil, respectively). The number of P(3HB-co-3HV)-degraders in paddy field soil was 5.06 × 105 aerobic degraders per gram dry soil. Also, several P(3HB-co-3HV)-degraders were isolated directly from positive-growth tubes of high dilution.  相似文献   

18.
Abstract n -Amyl alcohol was examined as a source for the synthesis of the 3-hydroxyvalerate (3HV) unit of the biopolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)), by Alcaligenes sp., Pseudomonas sp. and several methylotrophic bacteria. A. eutrophus and Ps. lemoignei synthesized P(3HB-co-3HV) from glucose and n -amyl alcohol under nitrogen-deficient conditions. Many of methylotrophic bacteria grown on methanol synthesized the copolyester from methanol and n -amyl alcohol under nitrogen-deficient conditions. The content and composition of the polyester varied from strain to strain. Paracoccus denitrificans differed from all others in having a higher content of 3-hydroxyvalerate units in the copolyester synthesized.  相似文献   

19.
Summary A Pseudomonas sp. EL-2 strain capable of synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was isolated from activated sludge. For simulation of P(3HB-co-3HV) production in the cells, deficiency of nutrients such as NH4 +, SO4 2- and Mg2+ was crucial and the maximum content of P(3HB-co-3HV) could reach 46% on NH4 +-deficient medium. This organism synthesized P(3HB-co-3HV) with 3HV monomer in the range from 1.9 to 49.3 mol% from unrelated single carbon sources such as glucose, fructose, propionate, or sorbitol. P(3HB-co-3HV)s containing a higher fraction of 3HV were produced by adding propionic acid to glucose medium.  相似文献   

20.
Poly(3-hydroxybutyrate-co-38 mol%-3-hydroxyvalerate) [P(3HB-co-38mol%-3HV)] was produced by Cupriavidus sp. USMAA2-4 in the presence of oleic acid and 1-pentanol. Due to enormous production of empty fruit bunch (EFB) in the oil palm plantation and high production cost of P(3HB-co-3HV), oil palm EFB fibers were used for biocomposites preparation. In this study, maleic anhydride (MA) and benzoyl peroxide (DBPO) were used to improve the miscibility between P(3HB-co-3HV) and EFB fibers. Introduction of MA into P(3HB-co-3HV) backbone reduced the molecular weight and improved the thermal stability of P(3HB-co-3HV). Thermal stability of P(3HB-co-3HV)/EFB composites was shown to be comparable to that of commercial packaging product. Composites with 35% EFB fibers content have the highest tensile strength compared to 30% and 40%. P(3HB-co-3HV)/EFB blends showed less chemicals leached compared to commercial packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号