首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Sixty percent of calcium in milk is transported across the mammary cells apical membrane by the plasma membrane Ca2+-ATPase 2 (PMCA2). The effect of abrupt cessation of milk production on the Ca2+-ATPases and mammary calcium transport is unknown. We found that 24 h after stopping milk production, PMCA2 and secretory pathway Ca2+-ATPases 1 and 2 (SPCA1 and 2) expression decreased 80-95%. PMCA4 and Sarco/Endoplasmic Reticulum Ca2+-ATPase 2 (SERCA2) expression increased with the loss of PMCA2, SPCA1, and SPCA2 but did not increase until 72-96 h of involution. The rapid loss of these Ca2+-ATPases occurs at a time of high mammary tissue calcium. These results suggest that the abrupt loss of Ca2+-ATPases, required by the mammary gland to regulate the large amount of calcium associated with milk production, could lead to accumulation of cell calcium, mitochondria Ca2+ overload, calcium mediated cell death and thus play a part in early signaling of mammary involution.  相似文献   

2.
Calcium clearance mechanisms of mouse sperm   总被引:6,自引:0,他引:6  
The spermatozoon is specialized for a single vital role in fertilization. Past studies show that Ca2+ signals produced by the opening of plasma membrane entry channels initiate several events required for the sperm to reach and enter the egg but reveal little about how resting [Ca2+]i is maintained or restored after elevation. We examined these homeostatic mechanisms by monitoring the kinetics of recovery from depolarizing stimuli under conditions intended to inhibit candidate mechanisms for sequestration or extrusion of Ca2+ from the cytosol. We found that the Ca2+-ATPase pump of the plasma membrane performs the major task of Ca2+ clearance. It is essential in the final stages of recovery to achieve a low resting [Ca2+]i. With immunomethods we found a approximately 130-kD plasma membrane Ca2+-ATPase protein on Western blots of whole sperm extracts and showed immunolocalization to the proximal principal piece of the flagellum. The plasma membrane Na+-Ca2+ exchanger also exports Ca2+ when [Ca2+]i is elevated. Simultaneous inhibition of both mechanisms of extrusion revealed an additional contribution to clearance from a CCCP-sensitive component, presumably sequestration by the mitochondria. Involvement of SERCA pumps was not clearly detected. Many aspects of the kinetics of Ca2+ clearance observed in the presence and absence of inhibitors were reproduced in a mathematical model based on known and assumed kinetic parameters. The model predicts that when cytosolic [Ca2+] is at 1 microM, the rates of removal by the Ca2+-ATPase, Na+-Ca2+-exchanger, mitochondrial uniporter, and SERCA pump are approximately 1.0, 0.35, 0.33, and 0 micromole l(-1) s(-1), rates substantially slower than those reported for other cells studied by similar methods. According to the model, the Na+-Ca2+ exchanger is poised so that it may run in reverse at resting [Ca2+]i levels. We conclude that the essential functions of sperm do not require the ability to recover rapidly from globally elevated cytosolic [Ca2+].  相似文献   

3.
4.
Regulatory role of prolactin (PRL) on Ca2+ mobilization in human mammary gland cell line MCF-7 was examined. Direct addition of PRL did not affect cytoplasmic Ca2+ concentration ([Ca2+]i); however, treatment with PRL for 24h significantly decreased the peak level and duration time of [Ca2+]i elevation evoked by ATP or thapsigargin (TG). Intracellular Ca2+ release by IP3 or TG in permeablized cells was not decreased after PRL-treatment, indicating that the Ca2+ release was not impaired by PRL treatment. Extracellular Ca2+ entry evoked by ATP or TG was likely to be intact, because entry of extracellular Ba2+ was not affected by PRL treatment. Among Ca2+-ATPases expressed in MCF-7 cells, we found significant increase of secretory pathway Ca2+-ATPase type 2 (SPCA2) mRNA in PRL-treated cells by RT-PCR experiments including quantitative RT-PCR. Knockdown of SPCA2 by siRNA in PRL-treated cells showed similar Ca2+ mobilization to that in PRL-untreated cells. The present results suggest that PRL facilitates Ca2+ transport into Golgi apparatus and may contribute the supply of Ca2+ to milk.  相似文献   

5.
6.
Plant calcium pumps, similarly to animal Ca2+ pumps, belong to the superfamily of P-type ATPase comprising also the plasma membrane H+-ATPase of fungi and plants, Na+/K+ ATPase of animals and H+/K+ ATPase of mammalian gastric mucosa. According to their sensitivity to calmodulin the plant Ca2+-ATPases have been divided into two subgroups: type IIA (homologues of animal SERCA) and type IIB (homologues of animal PMCA). Regardless of the similarities in a protein sequence, the plant Ca2+ pumps differ from those in animals in their cellular localization, structure and sensitivity to inhibitors. Genomic investigations revealed multiplicity of plant Ca2+-ATPases; they are present not only in the plasma membranes and ER but also in membranes of most of the cell compartments, such as vacuole, plastids, nucleus or Golgi apparatus. Studies using yeast mutants made possible the functional and biochemical characterization of individual plant Ca2+-ATMPases. Plant calcium pumps play an essential role in signal transduction pathways, they are responsible for the regulation of [Ca2+] in both cytoplasm and endomembrane compartments. These Ca2+-ATPases appear to be involved in plant adaptation to stress conditions, like salinity, chilling or anoxia.  相似文献   

7.
Previous data from our laboratory showed that the reticulum of the sea cucumber smooth muscle body wall retains both a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and a sulfated polysaccharide. In this invertebrate, the transport of Ca2+ by the SERCA is naturally inhibited by these endogenous sulfated polysaccharides. The inhibition is reverted by K+ leading to an enhancement of the Ca2+ transport rate. We now show that vesicles derived from the endoplasmic reticulum of unfertilized eggs from the sea urchin Arbacia lixula retain a SERCA that is able to transport Ca2+ at the expense of ATP hydrolysis. As described for the sea cucumber SERCA isoform, the enzyme from the sea urchin is activated by K+ but not by Li+ and is inhibited by thapsigargin, a specific inhibitor of SERCA. A new sulfated polysaccharide was identified in the sea urchin eggs reticulum composed mainly by galactose, glucose, hexosamine and manose. After extraction and purification, this sulfated polysaccharide was able to inhibit the mammal SERCA isoform found in rabbit skeletal muscle and the inhibition is reversed by K+. These data suggest that the regulation of the SERCA pump by K+ and sulfated polysaccharides is not restricted to few marine invertebrates but is widespread.  相似文献   

8.
9.
Revisiting the role of H+ in chemotactic signaling of sperm   总被引:1,自引:0,他引:1  
Chemotaxis of sperm is an important step toward fertilization. During chemotaxis, sperm change their swimming behavior in a gradient of the chemoattractant that is released by the eggs, and finally sperm accumulate near the eggs. A well established model to study chemotaxis is the sea urchin Arbacia punctulata. Resact, the chemoattractant of Arbacia, is a peptide that binds to a receptor guanylyl cyclase. The signaling pathway underlying chemotaxis is still poorly understood. Stimulation of sperm with resact induces a variety of cellular events, including a rise in intracellular pH (pHi) and an influx of Ca2+; the Ca2+ entry is essential for the chemotactic behavior. Previous studies proposed that the influx of Ca2+ is initiated by the rise in pHi. According to this proposal, a cGMP-induced hyperpolarization activates a voltage-dependent Na+/H+ exchanger that expels H+ from the cell. Because some aspects of the proposed signaling pathway are inconsistent with recent results (Kaupp, U.B., J. Solzin, J.E. Brown, A. Helbig, V. Hagen, M. Beyermann, E. Hildebrand, and I. Weyand. 2003. Nat. Cell Biol. 5:109-117), we reexamined the role of protons in chemotaxis of sperm using kinetic measurements of the changes in pHi and intracellular Ca2+ concentration. We show that for physiological concentrations of resact (<25 pM), the influx of Ca2+ precedes the rise in pHi. Moreover, buffering of pHi completely abolishes the resact-induced pHi signal, but leaves the Ca2+ signal and the chemotactic motor response unaffected. We conclude that an elevation of pHi is required neither to open Ca(2+)-permeable channels nor to control the chemotactic behavior. Intracellular release of cGMP from a caged compound does not cause an increase in pHi, indicating that the rise in pHi is induced by cellular events unrelated to cGMP itself, but probably triggered by the consumption and subsequent replenishment of GTP. These results show that the resact-induced rise in pHi is not an obligatory step in sperm chemotactic signaling. A rise in pHi is also not required for peptide-induced Ca2+ entry into sperm of the sea urchin Strongylocentrotus purpuratus. Speract, a peptide of S. purpuratus may act as a chemoattractant as well or may serve functions other than chemotaxis.  相似文献   

10.
11.
Fedirko  N.  Vats  Yu.  Kruglikov  I.  Voitenko  N. 《Neurophysiology》2004,36(3):169-173
In a rat model of streptozotocin (STZ)-induced diabetes, we earlier showed that under these conditions the concentration of free cytosolic Ca2+ in input neurons of the nociceptive system increases, Ca2+ signals are prolonged, while Ca2+ release from intracellular calcium stores decreases. The aim of our study was to test the hypothesis that changes in the activities of Ca2+,Mg2+-ATPases of the endoplasmic reticulum (SERCA) and plasmalemma (PMCA) could be responsible for diabetes-induced disorders of calcium homeostasis in nociceptive neurons. We measured the Ca2+,Mg2+-ATPase activities in microsomal fractions obtained from tissues of the dorsal root ganglia (DRG) and spinal dorsal horn (DH) of control rats and rats with experimentally induced diabetes. The integral specific Ca2+,Mg2+-ATPase activity in microsomes from diabetic rats was lower than that in the control group. The activity of SERCA in samples of DRG and DH of diabetic rats was reduced by 50 ± 8 and 48 ± 12%, respectively, as compared with the control (P < 0.01). At the same time, the activity of PMCA decreased by 63 ± 6% in DRG and by 60 ± 9% in DH samples (P < 0.01). We conclude that diabetic polyneuropathy is associated with the reduction of the rate of recovery of the Ca2+ level in the cytosol of DRG and DH neurons due to down-regulation of the SERCA and PMCA activities.  相似文献   

12.
Fedirko  N. V.  Vats  Yu. A.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2003,35(5):355-360
It is obvious that disruption of functions of the nervous system in diabetes mellitus is to a great extent related to the changes of synthesis or exocytosis of neurotransmitters. Since the mechanisms underlying exocytosis are similar in cells of different types, it may be assumed that studying these mechanisms in secretory cells will allow experimenters to obtain information on ways to control this process in neurons. Based on the supposition that changes in the activity of Ca2+-controlling systems in exocrine cells play an important role in functional disorders in the salivary glands in diabetes mellitus, we demonstrated, using the fura-2/AM dye, that the intracellular calcium concentration ([Ca2+] i ) in secretory cells of the above glands in rats with streptozotocin-induced diabetes mellitus (being in the resting state) is significantly increased (on average, by 65%). In our study, we showed that Ca2+-ATPases play an important role in the control of calcium homeostasis in secretory cells of salivary glands in diabetes mellitus. In particular, we demonstrated that the kinetic parameters of microsomal Ca2+-ATPases decreased: V 0, by 50 ± 7, and P max, by 52 ± 6%, on average. In diabetes mellitus, V max of Ca2+-ATPases also dropped significantly, by 47 ± 8 and 79 ± 9%, on average, for PMCA and SERCA, respectively. The decrease in K ATP was 71 ± 11% for SERCA and that in K Ca was 92 ± 3% for PMCA. We concluded that the activity of Ca2+-ATPases of secretory cells in diabetes mellitus is suppressed because of a decrease in the turnover and/or in the specific number of active molecules of the enzyme.  相似文献   

13.
The biochemical functions of intracellular and plasma membrane Ca2+-transporting ATPases in the control of cytosolic and organellar Ca2+ levels are well established, but the physiological roles of specific isoforms are less well understood. There appear to be three different types of Ca2+ pumps in mammalian tissues: the sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), which sequester Ca2+ within the endoplasmic or sarcoplasmic reticulum, the plasma membrane Ca2+-ATPases (PMCAs), which extrude Ca2+ from the cell, and the putative secretory pathway Ca2+-ATPase (SPCA), the function of which is poorly understood. This review describes the results of recent analyses of mouse models with null mutations in the genes encoding SERCA and PMCA isoforms and genetic studies of SERCA and SPCA dysfunction in both humans and model organisms. These studies are yielding important insights regarding the physiological functions of individual Ca2+-transporting ATPases in vivo.  相似文献   

14.
Speract, a sperm-activating peptide (SAP) from sea urchin eggs, increases the intracellular concentration of Ca2+ ([Ca2+]i) and modulates sperm motility. We measured the initial sperm response to speract using its caged analog and observed, for the first time, a small but significant decrease in sperm [Ca2+]i before the increase. Both directions of the [Ca2+]i change were completely blocked in high K+ seawater. Using membrane-permeant caged cyclic nucleotides (cNMP), only cGMP induced the decrease in [Ca2+]i although both cGMP and cAMP increased the [Ca2+]i. The decrease in the [Ca2+]i induced by cGMP was more notable following a second photolytic event, once [Ca2+]i had been elevated by an initial flash. This pattern of [Ca2+]i change was confirmed in individual sperm. These results together with pharmacological evidence suggest that the initial [Ca2+]i decrease is due to a Na+/Ca2+ exchanger activity, stimulated by hyperpolarization mediated by K+ efflux through cGMP-regulated K+ channels.  相似文献   

15.
Sea urchin sperm have a single mitochondrion which, aside from its main ATP generating function, may regulate motility, intracellular Ca2+ concentration ([Ca2+]i) and possibly the acrosome reaction (AR). We have found that acute application of agents that inhibit mitochondrial function via differing mechanisms (CCCP, a proton gradient uncoupler, antimycin, a respiratory chain inhibitor, oligomycin, a mitochondrial ATPase inhibitor and CGP37157, a Na+/Ca2+ exchange inhibitor) increases [Ca2+]i with at least two differing profiles. These increases depend on the presence of extracellular Ca2+, which indicates they involve Ca2+ uptake and not only mitochondrial Ca2+ release. The plasma membrane permeation pathways activated by the mitochondrial inhibitors are permeable to Mn2+. Store-operated Ca2+ channel (SOC) blockers (Ni2+, SKF96365 and Gd2+) and internal-store ATPase inhibitors (thapsigargin and bisphenol) antagonize Ca2+ influx induced by the mitochondrial inhibitors. The results indicate that the functional status of the sea urchin sperm mitochondrion regulates Ca2+ entry through SOCs. As neither CCCP nor dicycloexyl carbodiimide (DCCD), another mitochondrial ATPase inhibitor, eliminate the oligomycin induced increase in [Ca2+]i, apparently oligomycin also has an extra mitochondrial target.  相似文献   

16.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

17.
In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype.  相似文献   

18.
Vascular endothelial cells (EC) and smooth muscle cells (SMC) require a decrease in cytoplasmic Ca2+ concentration after activation. This can be achieved by Ca2+ sequestration by the sarco-/endoplasmic reticulum Ca2+ pumps (SERCA) and Ca2+ extrusion by plasma membrane Ca2+ pumps (PMCA) and Na+-Ca2+-exchangers (NCX). Since the two cell types differ in their structure and function, we compared the activities of PMCA, NCX and SERCA in pig coronary artery EC and SMC, the types of isoforms expressed using RT-PCR, and their protein abundance using Western blots. The activity of NCX is higher in EC than in SMC but those of PMCA and SERCA is lower. Consistently, the protein abundance for NCX protein is higher in EC than in SMC and those of PMCA and SERCA is lower. Based on RT-PCR experiments, the types of RNA present are as follows: EC for PMCA1 while SMC for PMCA4 and PMCA1; EC for SERCA2 and SERCA3 and SMC for SERCA2. Both EC and SMC express NCX1 (mainly NCX1.3). PMCA, SERCA and NCX differ in their affinities for Ca2+ and regulation. Based on these observations and the literature, we conclude that the tightly regulated Ca2+ removal systems in SMC are consistent with the cyclical control of contractility of the filaments and those in EC are consistent with Ca2+ regulation of the endothelial nitric oxide synthase near the cell surface. The differences between EC and SMC should be considered in therapeutic interventions of cardiovascular diseases.  相似文献   

19.
Plasma membrane Ca2+-ATPase 2 (PMCA2) knockout mice showed that ∼60% of calcium in milk is transported across the mammary cells apical membrane by PMCA2. The remaining milk calcium is thought to arrive via the secretory pathway through the actions of secretory pathway Ca2+-ATPase’s 1 and/or 2 (SPCA1 and 2). However, another secretory pathway calcium transporter was recently described. The question becomes whether this Golgi Ca2+/H+ antiporter (TMEM165) is expressed sufficiently in the Golgi of lactating mammary tissue to be a relevant contributor to secretory pathway mammary calcium transport. TMEM165 shows marked expression on day one of lactation when compared to timepoints prepartum. At peak lactation TMEM165 expression was 25 times greater than that of early pregnancy. Forced cessation of lactation resulted in a rapid ∼50% decline in TMEM165 expression at 24 h of involution and TMEM165 expression declined 95% at 96 h involution. It is clear that the timing, magnitude of TMEM165 expression and its Golgi location supports a role for this Golgi Ca2+/H+ antiporter as a contributor to mammary Golgi calcium transport needs, in addition to the better-characterized roles of SPCA1&2.  相似文献   

20.
Enzymes are able to handle the energy derived from the hydrolysis of phosphate compounds in such a way as to determine the parcel that is used for work and the fraction that is converted into heat. The sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) is a family of membrane-bound ATPases that are able to transport Ca2+ ion across the membrane using the chemical energy derived from ATP hydrolysis. The heat released during ATP hydrolysis by SERCA may vary from 10 up to 30 kcal/mol depending on the SERCA isoform used and on whether or not a Ca2+ gradient is formed across the membrane. Drugs such as heparin, dimethyl sulfoxide and the platelet-activating factor (PAF) are able to modify the fraction of the chemical energy released during ATP hydrolysis that is used for Ca2+ transport and the fraction that is dissipated in the surrounding medium as heat. The thyroid hormone 3,5,3′-triiodo L-thyronine (T3) regulates the expression and function of the thermogenic SERCA isoforms. Modulation of heat production by SERCA might be one of the mechanisms involved in the increased thermogenesis found in hyperthyroidism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号