首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1. The aggregation of melanosomes within melanophores of the cuckoo wrasse (Labrus ossifagus; belonging to the family Labridae) has, on pharmacological grounds, been shown to be mediated by postsynaptic alpha 2-adrenoceptors which in turn act via an inhibitory control of adenylate cyclase. 2. In the present paper we have investigated some American species belonging to the Labridae, Haemulidae, Embiotocidae, Clinidae and Pleuronectidae. 3. In all instances, except in the case of sargo (Haemulidae), we could demonstrate that melanosome aggregation probably was mediated by postsynaptic alpha 2-adrenoceptors which mediate their effect by inhibiting the adenylate cyclase of the melanophores. 4. Although these receptors apparently, on pharmacological grounds, may be classified as alpha 2-adrenoceptors it was also concluded that there is a phylogenetic divergence among these receptors.  相似文献   

2.
Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca(2+)-) based regulation (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+]i) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca(2+)- sensitive indicator, Fura-2, we demonstrate that [Ca2+]i rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+]i to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+]i is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP]i) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP]i and low [Ca2+]i are necessary to produce pigment dispersion in erythrophores.  相似文献   

3.
K Luby-Phelps  K R Porter 《Cell》1982,29(2):441-450
The integumental pigment cells (erythrophores) of the squirrel fish, Holocentrus ascensionis, are specialized for rapid radial transport of the pigment granules contained within their cytoplasm. Pigment granules in isolated denervated erythrophores alternate spontaneously between a centrally aggregated state and a radially dispersed state. In the absence of external calcium, pigment aggregation does not occur spontaneously and cannot be induced by the aggregating agents epinephrine or high concentration of external K+. Pigment aggregation is also impaired in the presence of D600 or papaverine, compounds reported to antagonize calcium influx into the cell. Pigment aggregation can be induced by experimental elevation of the concentration of cytoplasmic free Ca2+, with a Ca-EGTA buffer system in conjunction with ionophore A23187. The threshold concentration of Ca2+ required to produce this effect is 5 X 10(-6) M. These results suggest that cytoplasmic free Ca2+ is involved in mediating pigment aggregation and that some, if not all, the Ca2+ is supplied by influx from the extracellular space.  相似文献   

4.
It has previously been shown that alpha 2-adrenoceptors are involved in noradrenaline-induced pigment aggregation within fish melanophores. In the present investigation, melanin concentrating hormone (MCH) elicited pigment aggregation (EC50 approximately 1 x 10(-7) M) that was associated with a significant reduction in the cAMP content; 1 x 10(-7) M MCH reduced the cAMP content from a basal level of 50.4 +/- 2.8 pmol/mg protein to 36.9 +/- 3.8 pmol/mg protein. Like the alpha 2-adrenoceptor-induced pigment aggregation, the MCH response was effectively blocked by the adenylate cyclase stimulator forskolin. These findings suggest that attenuation of cAMP may serve as an intracellular signal transduction mechanism for both MCH and noradrenaline.  相似文献   

5.
Adrenaline causes aggregation of human blood platelets through stimulation of alpha-adrenoceptors resembling the alpha 2-type. Alpha-adrenoceptor blocking agents inhibit specifically the adrenaline-induced platelet reactions. The adrenaline-induced aggregation of human blood platelets was inhibited specifically by adrenergic neuron blocking agents such as guanoxan, guanclofine and guanethidine. Guanoxan (I50 = 0.6 mu mol/l) was about three orders of magnitude more effective than guanethidine, guanclofine occupied a median position. The compounds tested inhibited the ADP- and collagen-induced aggregation at relatively high concentrations. This is probably due to non-specific membrane effects. The known alpha-adrenolytic effect of guanoxan is believed to be mediated mainly by alpha 2-adrenoceptors.  相似文献   

6.
Erythrophores derived from Nile tilapia (Oreochromis niloticus) are sensitive to visible light of defined wavelengths in primary culture in the same manner as erythrophores in the skin. Cultured erythrophores aggregate their pigment in response to light with peak wavelengths near 400 or 600 nm, while dispersion is caused by light near 500 nm. In this study, we report that ultraviolet A (UVA) with a peak wavelength near 365 nm also induces pigment aggregation in erythrophores in the skin and in primary culture. The responses of erythrophores in the skin or in culture depend on the light intensity, although the photo-sensitivity differs among individual cells. From the results, we conclude that the action of visible light and UVA light on tilapia erythrophores is direct, and that multiple types of visual pigments may coexist in individual erythrophores.  相似文献   

7.
The ability to increase the synthesis or vary the distribution of pigment in response to light is an important feature of many pigment cells. Unlike other light-sensitive pigment cells, erythrophores of Nile tilapia change the direction of pigment migration depending on the peak wavelength of incident light: light near 365, 400 or 600 nm induces pigment aggregation, while dispersion occurs in response to light at 500 nm. How these phenomena are achieved is currently unknown. In the present study, the phototransduction involved in the pigment dispersion caused by light at 500 nm or the aggregation by light at 600 nm was examined, using pertussis toxin, cholera toxin, blockers of ion channels, various chemicals affecting serial steps of signaling pathways and membrane-permeable cAMP analog. The results show that light-induced bidirectional movements in tilapia erythrophores may be controlled by cytosolic cAMP levels via Gi- or Gs-type G proteins. In addition, RT-PCR demonstrated for the first time the expression of mRNAs encoding red and green opsins in tilapia fins, only where erythrophores exist. Here, we suggest that multiple cone-type visual pigments may be present in the erythrophores, and that unique cascades in which such opsins couple to Gi or Gs-type G proteins are involved in the photoresponses in these pigment cells. Thus, tilapia erythrophore system seems to be a nice model for understanding the photoresponses of cells other than visual cells.  相似文献   

8.
In the search for new antiarrhythmic agents, some active 2-methoxyphenylpiperazine derivatives of phenytoin were obtained as a chemical modification of compound AZ-99 (3-ethyl-1-[2-hydroxy-3-(4-phenylpiperazin-1-yl)-propyl]-2,4-dioxo-5,5-diphenylimidazolidine). These compounds possessed structural properties similar to those of alpha(1)-adrenoceptor antagonists. In the present study, the affinities of the 2-methoxyphenylpiperazine derivatives (1a-3a) for alpha(1)- and alpha(2)-adrenoceptors were evaluated using radioligand ([(3)H]prazosin, [(3)H]clonidine) binding assays. In the next step, a new series of phenylpiperazine derivatives of phenytoin (4a-16a) containing 2-methoxyphenyl-, 2-ethoxyphenyl-, 2-pyridyl- or 2-furoylpiperazine moiety, as well as, various ester or alkyl substituents at 3-position of hydantoin ring were synthesized. The newly synthesized compounds were tested for their affinity to alpha(1)- and alpha(2)-adrenoceptors. They have shown affinities for alpha(1)-adrenoceptors at nanomolar to submicromolar range. Some compounds were moderately selective ligands of alpha(1)-adrenoceptors. Selected compounds (3a-5a, 7a, 13a, 14a) were also evaluated for their alpha(1)-adrenoceptor antagonistic properties in functional bioassays. A SAR study indicated that the most active compounds contain 2-alkoxyphenylpiperazine moieties and methyl or 2-methylpropionate substituent at 3-N position in hydantoin. The exchange of 2-alkoxyphenyl moiety into 2-furoyl or 2-pyridyl group significantly decreased affinities for alpha(1)-adrenoceptors. Molecular modelling results obtained using conformational analysis CONFLEX and PM5 method for geometry optimization, allowed for comparison of the spatial properties of tested compounds with pharmacophore model created by Barbaro et al. for the ideal alpha(1)-adrenoceptor antagonist.  相似文献   

9.
P T Horn  J D Kohli 《Life sciences》1992,51(10):757-764
Inhibitory alpha-adrenoceptors were studied in cardiac ganglia of pentobarbital-anesthetized dogs. Blockade of alpha 1- or alpha 2-adrenoceptors augmented preganglionic nerve stimulation induced tachycardia without altering the response to postganglionic nerve stimulation. The effect produced by blockade of ganglionic alpha 1-adrenoceptors with terazosin had different frequency-response characteristics from, was of smaller magnitude than, and was additive with the effect produced by blockade of ganglionic alpha 2-adrenoceptors with rauwolscine. The response to activation of ganglionic nicotinic cholinergic receptors in the absence of electrical stimulation of the preganglionic nerve was not affected by blockade of either alpha 1- or alpha 2-adrenoceptors. The response to nicotinic cholinergic receptor activation during periods of continuous preganglionic nerve stimulation was augmented following blockade of alpha 2-adrenoceptors but unaffected by alpha 1-adrenoceptor blockade. These results suggest that there are two different inhibitory pathways involving alpha-adrenoceptors in mammalian sympathetic ganglia and provide evidence that these inhibitory pathways are operative under the experimental conditions of ganglionic transmission.  相似文献   

10.
Hypertension may cause activation of blood platelets in vivo. One of the possible mechanisms could be adrenergic activation of platelets by catecholamines. Therefore, we have studied specific binding of the alpha 2-adrenoceptor blocker, 3H-yohimbine, to platelets in order to elucidate the role of alpha 2-adrenoceptors of platelets in hypertensive animals. Particularly, competitive inhibition of 3H-yohimbine binding to platelets by hydergine, and plasma catecholamine levels were investigated in hypertensive (stress induced) and normotensive monkeys. It was demonstrated that 3H-yohimbine binds to platelets from rhesus monkeys with high affinity and specificity. The binding was found to be saturable and reversible. Additionally, it was shown that hydergine inhibits specific binding of 3H-yohimbine to platelets from hypertensive monkeys more potent that to those from normotensive animals. The obtained data suggest that the total number of the number of available, free alpha 2-adrenoceptors were reduced on the platelets from hypertensive monkeys. The latter was confirmed by the decreased adrenaline level in the plasma of hypertensive animals.  相似文献   

11.
The effects of specific agonists and antagonists of adrenoceptors and inhibitors of cAMP phosphodiesterase on electrostimulated phasic contractions in the ureter of guinea pig were studied. It has been shown that there mainly excitatory alpha 1-adrenoceptors in this object, the density of beta-adrenoceptors is slight and functional alpha 2-adrenoceptors are probably absent. Some aspects of adrenergic regulation of the contractile function of guinea pig ureter are discussed.  相似文献   

12.
The gastrointestinal tract is innervated by extrinsic noradrenergic nerves which regulate various digestive functions, including mucosal secretions, bowel propulsion and gut sensations, via activation of alpha2-adrenoceptors. These receptors are mostly involved in the prejunctional modulation of enteric neurotransmission, but they act also at extra-neural postjunctional sites. Alpha2-adrenoceptor population consists of distinct subtypes, designated as alpha2A, alpha2B and alpha2C, endowed with different physiological and pharmacological properties, and the attempts to classify alpha2-adrenoceptors at gastrointestinal level have indicated a large predominance of alpha2A subtypes. Studies in humans have shown a favourable influence of alpha2-adrenoceptor activation on colonic tone and sensation, and there is clinical evidence indicating that alpha2-agonists can improve intestinal functions and induce a satisfactory relief of symptoms in patients with irritable bowel syndrome. In addition, genetic investigations have highlighted significant associations of alpha2-adrenoceptor gene polymorphisms with constipation and somatic symptoms in functional disorders of lower digestive tract. Post-operative ileus is a common surgical complication characterized by severe alteration of gut motility, resulting mainly from neurogenic and inflammatory mechanisms. Experiments in models of post-operative ileus have demonstrated an intense expression of alpha2-adrenoceptors in monocytes recruited into the intestinal muscularis, and provided consistent evidence that these receptors promote post-operative gut dysfunctions by hampering enteric neurotransmission and contributing to local inflammatory reaction. Changes in the enteric nervous system are being increasingly recognized also as major determinants of digestive symptoms associated with bowel inflammation. In this regard, studies based on functional and molecular approaches concur in suggesting that the expression of enteric alpha2-adrenoceptors is up-regulated in the presence of intestinal inflammation, and that alpha2-mediated mechanisms are responsible for gut motor alterations occurring at both inflamed and non-inflamed sites. The present review discusses pathophysiological implications of enteric alpha2-adrenoceptors, in the attempt to highlight potential therapeutic applications for drugs targeted on these receptors.  相似文献   

13.
Pigment aggregation in melanophores of Labrus ossifagus is controlled by an alpha2-adrenoceptor and is somehow modulated by melatonin. The signal transduction mechanisms seem to involve both an attenuation of cAMP and an increase in intracellular Ca2+, inhibiting protein kinase A or activating a phosphatase, respectively. These effects result in dephosphorylation, which in turn induces aggregation. Various alpha2-adrenoceptor agonists attenuate cAMP levels or increase the concentration of intracellular Ca2+. Noradrenaline, for example, lowers cAMP but does not affect the calcium signal whereas B-HT 920, an alpha2-adrenoceptor specific agonist, does not induce a cAMP decrease but does appear to induce an increase in intracellular Ca2+. This later inference is drawn from experiments with BAPTA/AM, an intracellular calcium chelator, which counteracts the aggregation induced by B-HT 920. Interestingly, the very potent alpha2-adrenoceptor agonist medetomidine apparently activates both signal transduction pathways, which could explain its high efficacy in producing aggregation. Melatonin itself does not cause pigment aggregation, but it potentiates noradrenaline-induced aggregation. It has been suggested that melatonin receptors and alpha2-adrenoceptors follow the same signal transduction pathway, i.e. an attenuation of cAMP. In our experiments, melatonin did not reduce cAMP levels; instead it appears to increase Ca2+ concentration, since melatonin-potentiated aggregation was inhibited by BAPTA/AM. Thus, aggregation amplified by melatonin is probably not mediated by a further decrease in cAMP, but by the same signal transduction mechanism as B-HT 920, i.e. an increase in Ca2+. This further strengthens the suggestion that melatonin and B-HT 920 bind to the same site, but it is unclear if that particular site is on the melatonin receptor or the alpha2-adrenoceptor.  相似文献   

14.
Alpha 2-adrenoceptor activation inhibits cyclic AMP accumulation in fat cells from many species. However, the presence of alpha 2-adrenoceptors in rat adipocytes has been difficult to demonstrate. We observed that alpha 2-adrenergic activation inhibits forskolin-stimulated cyclic AMP accumulation both in rat and hamster adipocytes; UK 14304, p-amino clonidine and clonidine were the agents with higher efficacy. The effect of UK 14304 was blocked by yohimbine but not by prazosin demonstrating the involvement of alpha 2-adrenoceptors. Pertussis toxin blocked the alpha 2-adrenergic effect. Our results demonstrate the presence in rat fat cells of alpha 2-adrenoceptors coupled to adenylate cyclase via "Gi".  相似文献   

15.
The alpha2-adrenoceptors are G-protein-coupled receptors that mediate many of the physiological effects of norepinephrine and epinephrine. Mammals have three subtypes of alpha2-adrenoceptors, alpha2A, alpha2B and alpha2C. Zebrafish, a teleost fish used widely as a model organism, has five distinct alpha2-adrenoceptor genes. The zebrafish has emerged as a powerful tool to study development and genetics, with many mutations causing diseases reminiscent of human diseases. Three of the zebrafish adra2 genes code for orthologues of the mammalian alpha2-adrenoceptors, while two genes code for alpha2Da- and alpha2Db- adrenoceptors, representing a duplicated, fourth alpha2-adrenoceptor subtype. The three different mammalian alpha2-adrenoceptor subtypes have distinct expression patterns in different organs and tissues, and mediate different physiological functions. The zebrafish alpha2-adrenergic system, with five different alpha2-adrenoceptors, appears more complicated. In order to deduce the physiological functions of the zebrafish alpha2-adrenoceptors, we localized the expression of the five different alpha2-adrenoceptor subtypes using RT-PCR, mRNA in situ hybridization, and receptor autoradiography using the radiolabelled alpha2-adrenoceptor antagonist [ethyl-3H]RS-79948-197. Localization of the alpha2A-, alpha2B- and alpha2C-adrenoceptors in zebrafish shows marked conservation when compared with mammals. The zebrafish alpha2A, alpha2Da, and alpha2Db each partially follow the distribution pattern of the mammalian alpha2A: a possible indication of subfunction partitioning between these subtypes. The alpha2-adrenergic system is functional in zebrafish also in vivo, as demonstrated by marked locomotor inhibition, similarly to mammals, and lightening of skin colour induced by the specific alpha2-adrenoceptor agonist, dexmedetomidine. Both effects were antagonized by the specific alpha2-adrenoceptor antagonist atipamezole.  相似文献   

16.
Fischer 344 (F344) and Lewis rat strains have been shown to exhibit different vulnerability to development or maintenance of opioid seeking behaviours probably due to differences in the endogenous opioid system. Since opioid and alpha(2)-adrenergic mechanisms closely interact in nociception and substance abuse, strain differences may be expected to affect alpha(2)-adrenoceptor-mediated events. The sensitivity of these two strains to alpha(2)-adrenoceptor-mediated antinociception has been reported to be markedly different. In this work we have further studied the function of alpha(2)-adrenoceptors in F344 and Lewis rats by means of several in vivo and in vitro procedures. Comparative studies of [(3)H]RX821002 and [(35)S]GTPgammaS binding revealed that alpha(2)-adrenoceptors could be slightly more responsive to agonist stimulation in the brain cortex of F344 rats, which is in agreement with previous antinociception studies. However, these differences were modest, not observed in the spinal cord and did not translate into functional differences concerning the effects of clonidine on vas deferens contractility and body temperature. Conditioning experiments showed that a moderate dose of clonidine, which is relevant in antinociceptive and opioid antiwithdrawal studies, induces a robust place aversion which is also equivalent in F344 and Lewis rats. This finding underlies the consistency of the effect and its independency of genetic differences between both rat strains. It seems therefore that the pharmacological properties of alpha(2)-adrenoceptors are similar in F344 and Lewis rats, and thus the previously reported differences in clonidine-induced antinociception could be attributed to other factors such as dissimilar endogenous function of specific noradrenergic pathways.  相似文献   

17.
The concentration-dependent effects of clonidine, isomers of epinephrine, norepinephrine (NE), isoproterenol, cobefrin and alpha-methyldopamine, and related desoxy analogs (epinine, dopamine, N-isopropyldopamine) were examined on human platelets. The rank order of aggregatory potency (pD2 values) was R(-)-epinephrine (6.3) greater than R(-)-NE (5.9) greater than (+/-)-erythro-cobefrin (5.3) greater than S(+)-epinephrine (4.7) = S(+)-NE (4.7) = clonidine (4.7) = dopamine (4.6) greater than epinine (4.4) greater than S(+)-alpha-methyldopamine (4.3) = R(-)-alpha-methyldopamine (4.3) greater than (+/-)-threo-cobefrin (3.7). The isoproterenol isomers and N-isopropyl-dopamine were inactive as agonists. In 9 of 16 platelet-rich plasma preparations, R(-)-epinephrine, R(-)-NE, and (+/-)erythro-cobefrin were agonists and the remaining analogs blocked R(-)-NE-induced aggregation with a rank order of inhibitory potencies (pKB values) of clonidine (6.2) greater than S(+)-alpha-methyldopamine (5.0) greater than dopamine (4.6) = R(-)-alpha-methyldopamine (4.4) greater than or equal to S(+)-NE (4.3) greater than N-isopropyldopamine (4.1) greater than S(+)-isoproterenol (3.7) = R(-)-isoproterenol (3.5). Each compound was also able to reverse prostaglandin E1 (PGE1) (0.1 microM)-induced blockade of the maximal aggregation response to ADP. At high concentrations, R(-)-isoproterenol was more potent than either the S(+)-isomer or desoxy analog, N-isopropyldopamine, in the reversal of PGE1 inhibition of ADP aggregation. Phentolamine blocked these alpha 2-adrenoceptor-mediated actions against PGE1 on ADP aggregation. The rank order of potency for the reversal of PGE1-mediated inhibition of ADP aggregation by these catecholamines was similar to that observed for platelet aggregation. Our results indicate that (i) the stereochemical requirements for the interaction of catecholamines with platelet alpha 2-adrenoceptors are in agreement with the Easson-Stedman hypothesis and other alpha-adrenoceptor tissues; (ii) catecholamines lacking a benzylic hydroxyl group in the R-configuration and/or possessing an N-isopropyl group were alpha 2-adrenoceptor antagonists; (iii) clonidine gave quantitatively different responses compared with catecholamines for interaction with alpha 2-adrenoceptors; and (iv) inhibition of platelet adenylate cyclase is correlated to the inhibition of epinephrine-induced aggregation response for this series of compounds.  相似文献   

18.
Alpha-adrenoceptors: recent development and some comparative aspects   总被引:2,自引:0,他引:2  
On anatomical and functional bases, alpha-adrenoceptors have been divided into pre- and postsynaptic alpha-adrenoceptors. Recently, alpha-adrenoceptors have been classified as alpha 1 and alpha 2 according to their pharmacological responses, irrespective of their anatomical location. The presynaptic alpha-adrenoceptors, which have been recognized as alpha 2, determine the frequency of the nerve impulses travelling along the axon and also the amount of transmitter released per nerve impulse from the varicose terminal. Postsynaptic alpha-adrenoceptors have been recognized in various tissues including smooth muscle, pancreatic islets, fat cells, platelets and other tissues. Both alpha 1- and alpha 2-adrenoceptors have been located postsynaptically. alpha-Adrenoceptors have been found also in the central nervous system. Generally, they fall into the same categories (alpha 1 and alpha 2) as the peripheral alpha-adrenoceptors. A new class of drugs, the so called calcium blockers, inhibit the postsynaptic response to alpha 2 stimulation but not the alpha 1-mediated response, indicating that the alpha 2-adrenoceptors are dependent on Ca2+ ions for their function. In the most primitive group of vertebrates, the fishes, alpha-adrenoceptors seem to be different in as much as they do not respond to many of the classical drugs employed to distinguish between alpha-adrenoceptors in mammals. In reptiles and amphibians alpha 2-adrenoceptors have been shown to exist. These receptors are involved in the regulation of melanocytes. In the most advanced non-mammalian vertebrates (birds) both peripheral and central alpha-adrenoceptors seem to be qualitatively similar to the mammalian types.  相似文献   

19.
Comparisons among spontaneously hypertensive (SHR), Kyoto Wistar (KW), and Wistar (W) rats were made of the functional states of central nervous system (CNS) alpha 2-adrenoceptors (clonidine-induced mydriasis) and nonvascular peripheral presynaptic alpha 2-adrenoceptors (clonidine-induced inhibition of the neurogenic twitch of the isolated vas deferens). While there were no differences among the strains of rats in the concentration of clonidine required to produce a 50% inhibition of the electrically evoked contractile response of the vas deferens, there was a significant reduction in the mean effective concentration (ED50) of clonidine to induce mydriasis in SHR as compared with KW and W rats. These observations indicate that CNS alpha 2-adrenoceptors may be functionally more sensitive in SHR. The data also suggest that the sensitivity of nonvascular presynaptic alpha 2-adrenoceptors, at least in the vas deferens, is not altered in hypertensive animals.  相似文献   

20.
The adrenergic receptor subtypes mediating the response to sympathetic nerve stimulation in the pulmonary vascular bed of the cat were investigated under conditions of controlled blood flow and constant left atrial pressure. The increase in lobar vascular resistance in response to sympathetic nerve stimulation was reduced by prazosin and to a lesser extent by yohimbine, the respective alpha 1- and alpha 2-adrenoceptor antagonists. Moreover, in animals pretreated with a beta-adrenoceptor antagonist to prevent an interaction between alpha- and beta 2-adrenoceptors, responses to nerve stimulation were reduced by prazosin, but yohimbine had no significant effect. On the other hand, in animals pretreated with a beta-adrenoceptor antagonist, yohimbine had an inhibitory effect on responses to tyramine and to norepinephrine. Propranolol had no significant effect on the response to nerve stimulation, whereas ICI 118551, a selective beta 2-adrenoceptor antagonist, enhanced responses to nerve stimulation and injected norepinephrine. The present data suggest that neuronally released norepinephrine increases pulmonary vascular resistance in the cat by acting mainly on alpha 1-adrenoceptors and to a lesser extent on postjunctional alpha 2-adrenoceptors but that this effect is counteracted by an action on presynaptic alpha 2-receptors. The present studies also suggest that neuronally released norepinephrine acts on beta 2-adrenoceptors and that the response to sympathetic nerve stimulation represents the net effect of the adrenergic transmitter on alpha 1-, alpha 2-, and beta 2-adrenoceptors in the pulmonary vascular bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号